
Rearranging,
� < tan� 1 � s.

(b) Both m and g canceled out, so the angle of repose would be the same on an asteroid.

Page 236, problem 25:
(a) There is no theoretical limit on how much normal force FN the climber can make on the
walls with each foot, so the frictional force can be made arbitrarily large. This means that with
any � > 0, we can always get the vertical forces to cancel. The theoretical minimum value of�
will be determined by the need for the horizontal forces to cancel, so that the climber doesn’t
pop out of the corner like a watermelon seed squeezed between two �ngertips. The horizontal
component of the frictional force is always less than the magnitude of the frictional force, which
is turn is less than �F N . To �nd the minimum value of � , we set the static frictional force equal
to �F N .

Let the x axis be along the plane that bisects the two walls, lety be the horizontal direction
perpendicular to x, and let z be vertical. Then cancellation of the forces in thez direction
is not the limiting factor, for the reasons described above, and cancellation iny is guaranteed
by symmetry, so the only issue is the cancellation of thex forces. We have 2Fs cos(�=2) �
2FN sin(�=2) = 0. Combining this with Fs = �F N results in � = tan( �=2).

(b) For � = 0, � is very close to zero. That is, we can always theoretically stay stuck between
two parallel walls, simply by pressing hard enough, even if the walls are made of ice or polished
marble with a coating of WD-40. As � gets close to 180� , � blows up to in�nity. We need at
least some dihedral angle to do this technique, because otherwise we’re facing a at wall, and
there is nothing to cancel the wall’s normal force on our feet.

(c) The result is 99.0� , i.e., just a little wider than a right angle.

Solutions for chapter 9
Page 253, problem 5:
Each cyclist has a radial acceleration ofv2=r = 5 m=s2. The tangential accelerations of cyclists
A and B are 375 N=75 kg = 5 m=s2.

Page 254, problem 6:
(a) The inward normal force must be su�cient to produce circular motion, so

jFN j = mv2=r.

We are searching for the minimum speed, which is the speed at which the static friction force is
just barely able to cancel out the downward gravitational force. The maximum force of static
friction is

jF sj = � sjFN j,
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and this cancels the gravitational force, so

jF sj = mg.

Solving these three equations forv gives

v =
r

gr
� s

.

(b) Greater by a factor of
p

3.

Page 254, problem 7:
The inward force must be supplied by the inward component of the normal force,

jFN j sin � = mv2=r.

The upward component of the normal force must cancel the downward force of gravity,

jFN j cos� = mg.

Eliminating jFN j and solving for � , we �nd

� = tan � 1
�

v2

gr

�
.

Solutions for chapter 10
Page 280, problem 10:
Newton’s law of gravity is F = GMm=r 2. Both G and the astronaut’s massm are the same in
the two situations, so F / Mr � 2. In terms of ratios, this is

Fc

Fe
=

M c

M e

�
r c

re

� � 2
.

The result is 11 N.

Page 281, problem 11:
Newton’s law of gravity says F = Gm1m2=r2, and Newton’s second law saysF = m2a, so
Gm1m2=r2 = m2a. Sincem2 cancels,a is independent ofm2.

Page 281, problem 12:
Newton’s second law gives

F = mD aD ,

where F is Ida’s force on Dactyl. Using Newton’s universal law of gravity, F= GmI mD =r2,and
the equation a = v2=r for circular motion, we �nd

GmI mD =r2 = mD v2=r.

Dactyl’s mass cancels out, giving
GmI =r2 = v2=r.

Dactyl’s velocity equals the circumference of its orbit divided by the time for one orbit: v =
2�r=T . Inserting this in the above equation and solving formI , we �nd

mI =
4� 2r 3

GT 2 ,

552



so Ida’s density is

� = mI =V

=
4� 2r 3

GV T2 .

Page 281, problem 15:
Newton’s law of gravity depends on the inverse square of the distance, so if the two planets’
masses had been equal, then the factor of 0.83=0.059 = 14 in distance would have caused the
force on planet c to be 142 = 2.0 � 102 times weaker. However, planet c’s mass is 3.0 times
greater, so the force on it is only smaller by a factor of 2.0� 102=3.0 = 65.

Page 282, problem 16:
The reasoning is reminiscent of section 10.2. From Newton’s second law we have

F = ma = mv2=r = m(2�r=T )2=r = 4 � 2mr=T 2,

and Newton’s law of gravity gives F = GMm=r 2, where M is the mass of the earth. Setting
these expressions equal to each other, we have

4� 2mr=T 2 = GMm=r 2,

which gives

r =
�

GMT 2

4� 2

� 1=3

= 4.22 � 104 km.

This is the distance from the center of the earth, so to �nd the altitude, we need to subtract
the radius of the earth. The altitude is 3.58 � 104 km.

Page 282, problem 17:
Any fractional change in r results in double that amount of fractional change in 1=r2. For
example, raising r by 1% causes 1=r2 to go down by very nearly 2%. A 27-day orbit is 1/13.5
of a year, so the fractional change in 1=r2 is

2 �
(4=13.5) cm

3.84� 105 km
�

1 km
105 cm

= 1.5 � 10� 11

Page 283, problem 19:
(a) The asteroid’s mass depends on the cube of its radius, and for a given mass the surface
gravity depends on r � 2. The result is that surface gravity is directly proportional to radius.
Half the gravity means half the radius, or one eighth the mass. (b) To agree with a, Earth’s
mass would have to be 1/8 Jupiter’s. We assumed spherical shapes and equal density. Both
planets are at least roughly spherical, so the only way out of the contradiction is if Jupiter’s
density is signi�cantly less than Earth’s.

Solutions for chapter 11
Page 309, problem 7:
A force is an interaction between two objects, so while the bullet is in the air, there is no force.
There is only a force while the bullet is in contact with the book. There is energy the whole
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time, and the total amount doesn’t change. The bullet has some kinetic energy, and transfers
some of it to the book as heat, sound, and the energy required to tear a hole through the book.

Page 309, problem 8:
(a) The energy stored in the gasoline is being changed into heat via frictional heating, and also
probably into sound and into energy of water waves. Note that the kinetic energy of the propeller
and the boat are not changing, so they are not involved in the energy transformation. (b) The
crusing speed would be greater by a factor of the cube root of 2, or about a 26% increase.

Page 309, problem 9:
We don’t have actual masses and velocities to plug in to the equation, but that’s OK. We just
have to reason in terms of ratios and proportionalities. Kinetic energy is proportional to mass
and to the square of velocity, so B’s kinetic energy equals

(13.4 J)(3.77)=(2.34)2 = 9.23 J

Page 309, problem 11:
Room temperature is about 20� C. The fraction of the energy that actually goes into heating
the water is

(250 g)=(0.24 g� � C=J) � (100� C � 20� C)
(1.25 � 103 J=s) (126 s)

= 0.53

So roughly half of the energy is wasted. The wasted energy might be in several forms: heating
of the cup, heating of the oven itself, or leakage of microwaves from the oven.

Solutions for chapter 12
Page 325, problem 5:

E total ,i = E total ,f

P Ei + heat i = P Ef + KE f + heat f

1
2

mv2 = P Ei � P Ef + heat i � heatf

= � � P E � �heat

v =

s

2
�

� � P E � �heat
m

�

= 6.4 m=s

Page 326, problem 7:
Let � be the angle by which he has progressed around the pipe. Conservation of energy gives

E total ,i = E total ,f

P Ei = P Ef + KE f

0 = � P E + KE f

0 = mgr (cos� � 1) +
1
2

mv2.

While he is still in contact with the pipe, the radial component of his acceleration is

ar =
v2

r
,
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and making use of the previous equation we �nd

ar = 2g(1 � cos� ).

There are two forces on him, a normal force from the pipe and a downward gravitational force
from the earth. At the moment when he loses contact with the pipe, the normal force is zero,
so the radial component,mg cos� , of the gravitational force must equal mar ,

mg cos� = 2mg(1 � cos� ),

which gives

cos� =
2
3

.

The amount by which he has dropped isr (1 � cos� ), which equals r=3 at this moment.

Page 326, problem 9:
(a) Example: As one child goes up on one side of a see-saw, another child on the other side
comes down. (b) Example: A pool ball hits another pool ball, and transfers some KE.

Page 326, problem 11:
Suppose the river is 1 m deep, 100 m wide, and ows at a speed of 10 m/s, and that the falls
are 100 m tall. In 1 second, the volume of water owing over the falls is 103 m3, with a mass of
106 kg. The potential energy released in one second is (106 kg)(g)(100 m) = 109 J, so the power
is 109 W. A typical household might have 10 hundred-watt applicances turned on at any given
time, so it consumes about 103 watts on the average. The plant could supply a about million
households with electricity.

Solutions for chapter 13
Page 354, problem 18:
No. Work describes how energy was transferred by some process. It isn’t a measurable property
of a system.

Solutions for chapter 14
Page 387, problem 8:
Let m be the mass of the little puck and M = 2.3m be the mass of the big one. All we need
to do is �nd the direction of the total momentum vector before the collision, because the total
momentum vector is the same after the collision. Given the two components of the momentum
vector px = Mv and py = mv, the direction of the vector is tan� 1(py=px ) = 23 � counterclockwise
from the big puck’s original direction of motion.

Page 388, problem 11:
Momentum is a vector. The total momentum of the molecules is always zero, since the momenta
in di�erent directions cancal out on the average. Cooling changes individual molecular momenta,
but not the total.

Page 388, problem 14:
By conservation of momentum, the total momenta of the pieces after the explosion is the same
as the momentum of the �rework before the explosion. However, there is no law of conservation
of kinetic energy, only a law of conservation of energy. The chemical energy in the gunpowder
is converted into heat and kinetic energy when it explodes. All we can say about the kinetic
energy of the pieces is that their total is greater than the kinetic energy before the explosion.
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Page 388, problem 15:
(a) Particle i had velocity vi in the center-of-mass frame, and has velocityvi + u in the new
frame. The total kinetic energy is

1
2

m1 (v1 + u)2 + : : : ,

where \. . . " indicates that the sum continues for all the particles. Rewriting this in terms of
the vector dot product, we have

1
2

m1 (v1 + u) � (v1 + u) + : : : =
1
2

m1 (v1 � v1 + 2u � v1 + u � u) + : : : .

When we add up all the terms like the �rst one, we get K cm . Adding up all the terms like the
third one, we get M ju j2=2. The terms like the second term cancel out:

m1u � v1 + : : : = u � (m1v1 + : : :) ,

where the sum in brackets equals the total momentum in the center-of-mass frame, which is
zero by de�nition.
(b) Changing frames of reference doesn’t change the distances between the particles, so the
potential energies are all una�ected by the change of frames of reference. Suppose that in a
given frame of reference, frame 1, energy is conserved in some process: the initial and �nal
energies add up to be the same. First let’s transform to the center-of-mass frame. The potential
energies are una�ected by the transformation, and the total kinetic energy is simply reduced
by the quantity M ju1j2=2, where u1 is the velocity of frame 1 relative to the center of mass.
Subtracting the same constant from the initial and �nal energies still leaves them equal. Now
we transform to frame 2. Again, the e�ect is simply to change the initial and �nal energies by
adding the same constant.

Page 389, problem 16:
A conservation law is about addition: it says that when you add up a certain thing, the total
always stays the same. Funkosity would violate the additive nature of conservation laws, because
a two-kilogram mass would have twice as much funkosity as a pair of one-kilogram masses moving
at the same speed.

Solutions for chapter 15
Page 424, problem 20:
The pliers are not moving, so their angular momentum remains constant at zero, and the total
torque on them must be zero. Not only that, but each half of the pliers must have zero total
torque on it. This tells us that the magnitude of the torque at one end must be the same as
that at the other end. The distance from the axis to the nut is about 2.5 cm, and the distance
from the axis to the centers of the palm and �ngers are about 8 cm. The angles are close
enough to 90� that we can pretend they’re 90 degrees, considering the rough nature of the other
assumptions and measurements. The result is (300 N)(2.5 cm) = (F )(8 cm), or F = 90 N.

Page 425, problem 28:
The foot of the rod is moving in a circle relative to the center of the rod, with speedv = �b=T ,
and acceleration v2=(b=2) = ( � 2=8)g. This acceleration is initially upward, and is greater in
magnitude than g, so the foot of the rod will lift o� without dragging. We could also worry
about whether the foot of the rod would make contact with the oor again before the rod
�nishes up at on its back. This is a question that can be settled by graphing, or simply by
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inspection of �gure m on page 403. The key here is that the two parts of the acceleration are
both independent of m and b, so the result is univeral, and it does su�ce to check a graph in
a single example. In practical terms, this tells us something about how di�cult the trick is to
do. Because� 2=8 = 1.23 isn’t much greater than unity, a hit that is just a little too weak (by
a factor of 1.231=2 = 1.11) will cause a fairly obvious qualitative change in the results. This is
easily observed if you try it a few times with a pencil.

Solutions for chapter 16
Page 449, problem 11:
(a) We have

dP = �g dy

� P =
Z

�g dy,

and since we’re taking water to be incompressible, andg doesn’t change very much over 11 km
of height, we can treat � and g as constants and take them outside the integral.

� P = �g � y

= (1.0 g=cm3)(9.8 m=s2)(11.0 km)

= (1.0 � 103 kg=m3)(9.8 m=s2)(1.10 � 104 m)

= 1.0 � 108 Pa

= 1.0 � 103 atm.

The precision of the result is limited to a few percent, due to the compressibility of the water,
so we have at most two signi�cant �gures. If the change in pressure were exactly a thousand
atmospheres, then the pressure at the bottom would be 1001 atmospheres; however, this dis-
tinction is not relevant at the level of approximation we’re attempting here.
(b) Since the air in the bubble is in thermal contact with the water, it’s reasonable to assume
that it keeps the same temperature the whole time. The ideal gas law isP V = nkT , and
rewriting this as a proportionality gives

V / P � 1,

or
Vf

Vi
=

�
Pf

Pi

� � 1
� 103.

Since the volume is proportional to the cube of the linear dimensions, the growth in radius is
about a factor of 10.

Page 449, problem 12:
(a) Roughly speaking, the thermal energy is� kB T (where kB is the Boltzmann constant), and
we need this to be on the same order of magnitude aske2=r (where k is the Coulomb constant).
For this type of rough estimate it’s not especially crucial to get all the factors of two right, but
let’s do so anyway. Each proton’s average kinetic energy due to motion along a particular axis
is (1=2)kB T . If two protons are colliding along a certain line in the center-of-mass frame, then
their average combined kinetic energy due to motion along that axis is 2(1=2)kB T = kB T . So
in fact the factors of 2 cancel. We haveT = ke2=kB r .
(b) The units are K = (J �m=C2)(C2)=((J=K) �m), which does work out.
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(c) The numerical result is � 1010 K, which as suggested is much higher than the temperature
at the core of the sun.

Page 450, problem 13:
If the full-sized brick A undergoes some process, such as heating it with a blowtorch, then we
want to be able to apply the equation � S = Q=T to either the whole brick or half of it, which
would be identical to B. When we rede�ne the boundary of the system to contain only half of
the brick, the quantities � S and Q are each half as big, because entropy and energy are additive
quantities. T , meanwhile, stays the same, because temperature isn’t additive | two cups of
co�ee aren’t twice as hot as one. These changes to the variables leave the equation consistent,
since each side has been divided by 2.

Page 450, problem 14:
(a) If the expression 1 + by is to make sense, thenby has to be unitless, sob has units of m� 1.
The input to the exponential function also has to be unitless, sok also has of m� 1. The only
factor with units on the right-hand side is Po, so Po must have units of pressure, or Pa.
(b)

dP = �g dy

� =
1
g

dP
dy

=
Po

g
e� ky (� k � kby + b)

(c) The three terms inside the parentheses on the right all have units of m� 1, so it makes sense
to add them, and the factor in parentheses has those units. The units of the result from b then
look like

kg
m3 =

Pa
m=s2 m� 1

=
N=m2

m2=s2

=
kg�m� 1 �s� 2

m2=s2 ,

which checks out.

Answers to self-checks for volume 1

Answers to self-checks for chapter 0
Page 17, self-check A:
If only he has the special powers, then his results can never be reproduced.

Page 19, self-check B:
They would have had to weigh the rays, or check for a loss of weight in the object from which
they were have emitted. (For technical reasons, this was not a measurement they could actually
do, hence the opportunity for disagreement.)

Page 25, self-check C:
A dictionary might de�ne \strong" as \possessing powerful muscles," but that’s not an oper-
ational de�nition, because it doesn’t say how to measure strength numerically. One possible
operational de�nition would be the number of pounds a person can bench press.
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Page 29, self-check D:
A microsecond is 1000 times longer than a nanosecond, so it would seem like 1000 seconds, or
about 20 minutes.

Page 30, self-check E:
Exponents have to do with multiplication, not addition. The �rst line should be 100 times
longer than the second, not just twice as long.

Page 33, self-check F:
The various estimates di�er by 5 to 10 million. The CIA’s estimate includes a ridiculous number
of gratuitous signi�cant �gures. Does the CIA understand that every day, people in are born
in, die in, immigrate to, and emigrate from Nigeria?

Page 33, self-check G:
(1) 4; (2) 2; (3) 2

Answers to self-checks for chapter 1
Page 42, self-check A:
1 yd2 � (3 ft=1 yd)2 = 9 ft 2

1 yd3 � (3 ft=1 yd)3 = 27 ft 3

Page 48, self-check B:
C1=C2 = ( w1=w2)4

Answers to self-checks for chapter 2
Page 71, self-check A:
Coasting on a bike and coasting on skates give one-dimensional center-of-mass motion, but
running and pedaling require moving body parts up and down, which makes the center of mass
move up and down. The only example of rigid-body motion is coasting on skates. (Coasting on
a bike is not rigid-body motion, because the wheels twist.)

Page 71, self-check B:
By shifting his weight around, he can cause the center of mass not to coincide with the geometric
center of the wheel.

Page 72, self-check C:
(1) a point in time; (2) time in the abstract sense; (3) a time interval

Page 73, self-check D:
Zero, because the \after" and \before" values ofx are the same.

Page 81, self-check E:
(1) The e�ect only occurs during blasto�, when their velocity is changing. Once the rocket
engines stop �ring, their velocity stops changing, and they no longer feel any e�ect. (2) It is
only an observable e�ect of your motion relative to the air.

Answers to self-checks for chapter 3
Page 97, self-check A:
Its speed increases at a steady rate, so in the next second it will travel 19 cm.

Answers to self-checks for chapter 4
Page 139, self-check A:
(1) The case of � = 0 represents an object falling in a vacuum, i.e., there is no density of air.
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The terminal velocity would be in�nite. Physically, we know that an object falling in a vacuum
would never stop speeding up, since there would be no force of air friction to cancel the force of
gravity. (2) The 4-cm ball would have a mass that was greater by a factor of 4� 4 � 4, but its
cross-sectional area would be greater by a factor of 4� 4. Its terminal velocity would be greater
by a factor of

p
43=42 = 2. (3) It isn’t of any general importance. It’s just an example of one

physical situation. You should not memorize it.

Page 142, self-check B:
(1) This is motion, not force. (2) This is a description of how the sub is able to get the water
to produce a forward force on it. (3) The sub runs out of energy, not force.

Answers to self-checks for chapter 5
Page 155, self-check A:
The sprinter pushes backward against the ground, and by Newton’s third law, the ground pushes
forward on her. (Later in the race, she is no longer accelerating, but the ground’s forward force
is needed in order to cancel out the backward forces, such as air friction.)

Page 163, self-check B:
(1) It’s kinetic friction, because her uniform is sliding over the dirt. (2) It’s static friction,
because even though the two surfaces are moving relative to the landscape, they’re not slipping
over each other. (3) Only kinetic friction creates heat, as when you rub your hands together. If
you move your hands up and down together without sliding them across each other, no heat is
produced by the static friction.

Page 163, self-check C:
By the POFOSTITO mnemonic, we know that each of the bird’s forces on the trunk will be of
the same type as the corresponding force of the tree on the bird, but in the opposite direction.
The bird’s feet make a normal force on the tree that is to the right and a static frictional force
that is downward.

Page 164, self-check D:
Frictionless ice can certainly make a normal force, since otherwise a hockey puck would sink
into the ice. Friction is not possible without a normal force, however: we can see this from the
equation, or from common sense, e.g., while sliding down a rope you do not get any friction
unless you grip the rope.

Page 165, self-check E:
(1) Normal forces are always perpendicular to the surface of contact, which means right or left
in this �gure. Normal forces are repulsive, so the cli� ’s force on the feet is to the right, i.e., away
from the cli�. (2) Frictional forces are always parallel to the surface of contact, which means
right or left in this �gure. Static frictional forces are in the direction that would tend to keep
the surfaces from slipping over each other. If the wheel was going to slip, its surface would be
moving to the left, so the static frictional force on the wheel must be in the direction that would
prevent this, i.e., to the right. This makes sense, because it is the static frictional force that
accelerates the dragster. (3) Normal forces are always perpendicular to the surface of contact.
In this diagram, that means either up and to the left or down and to the right. Normal forces
are repulsive, so the ball is pushing the bat away from itself. Therefore the ball’s force is down
and to the right on this diagram.

Answers to self-checks for chapter 6
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Page 191, self-check A:
The wind increases the ball’s overall speed. If you think about it in terms of overall speed,
it’s not so obvious that the increased speed is exactly su�cient to compensate for the greater
distance. However, it becomes much simpler if you think about the forward motion and the
sideways motion as two separate things. Suppose the ball is initially moving at one meter per
second. Even if it picks up some sideways motion from the wind, it’s still getting closer to the
wall by one meter every second.

Answers to self-checks for chapter 7
Page 203, self-check A:
v = � r =� t

Page 204, self-check B:

Page 209, self-check C:
A � B is equivalent to A + ( � B ), which can be calculated graphically by reversingB to form
� B , and then adding it to A .

Answers to self-checks for chapter 8
Page 219, self-check A:
(1) It is speeding up, because the �nal velocity vector has the greater magnitude. (2) The result
would be zero, which would make sense. (3) Speeding up produced a �v vector in the same
direction as the motion. Slowing down would have given a �v that pointed backward.

Page 220, self-check B:
As we have already seen, the projectile hasax = 0 and ay = � g, so the acceleration vector is
pointing straight down.

Answers to self-checks for chapter 9
Page 243, self-check A:
(1) Uniform. They have the same motion as the drum itself, which is rotating as one solid piece.
No part of the drum can be rotating at a di�erent speed from any other part. (2) Nonuniform.
Gravity speeds it up on the way down and slows it down on the way up.

Answers to self-checks for chapter 10
Page 262, self-check A:
It would just stay where it was. Plugging v = 0 into eq. [1] would give F = 0, so it would not
accelerate from rest, and would never fall into the sun. No astronomer had ever observed an
object that did that!

Page 263, self-check B:

F / mr=T 2 / mr=(r 3=2)2 / mr=r 3 = m=r2

Page 266, self-check C:
The equal-area law makes equally good sense in the case of a hyperbolic orbit (and observations
verify it). The elliptical orbit law had to be generalized by Newton to include hyperbolas. The
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law of periods doesn’t make sense in the case of a hyperbolic orbit, because a hyperbola never
closes back on itself, so the motion never repeats.

Page 271, self-check D:
Above you there is a small part of the shell, comprising only a tiny fraction of the earth’s mass.
This part pulls you up, while the whole remainder of the shell pulls you down. However, the
part above you is extremely close, so it makes sense that its force on you would be far out of
proportion to its small mass.

Answers to self-checks for chapter 11
Page 300, self-check A:
(1) A spring-loaded toy gun can cause a bullet to move, so the spring is capable of storing energy
and then converting it into kinetic energy. (2) The amount of energy stored in the spring relates
to the amount of compression, which can be measured with a ruler.

Answers to self-checks for chapter 12
Page 320, self-check A:
Both balls start from the same height and end at the same height, so they have the same �y.
This implies that their losses in potential energy are the same, so they must both have gained
the same amount of kinetic energy.

Answers to self-checks for chapter 13
Page 330, self-check A:
Work is de�ned as the transfer of energy, so like energy it is a scalar with units of joules.

Page 334, self-check B:
Whenever energy is transferred out of the spring, the same amount has to be transferred into
the ball, and vice versa. As the spring compresses, the ball is doing positive work on the spring
(giving up its KE and transferring energy into the spring as PE), and as it decompresses the
ball is doing negative work (extracting energy).

Page 337, self-check C:
(a) No. The pack is moving at constant velocity, so its kinetic energy is staying the same. It
is only moving horizontally, so its gravitational potential energy is also staying the same. No
energy transfer is occurring. (b) No. The horse’s upward force on the pack forms a 90-degree
angle with the direction of motion, so cos� = 0, and no work is done.

Page 339, self-check D:
Only in (a) can we useF d to calculate work. In (b) and (c), the force is changing as the distance
changes.

Answers to self-checks for chapter 15
Page 406, self-check A:
1, 2, and 4 all have the same sign, because they are trying to twist the wrench clockwise. The
sign of torque 3 is opposite to the signs of the others. The magnitude of torque 3 is the greatest,
since it has a larger , and the force is nearly all perpendicular to the wrench. Torques 1 and 2
are the same because they have the same values ofr and F? . Torque 4 is the smallest, due to
its small r .

Answers to self-checks for chapter 16
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Page 433, self-check A:
Solids can exert shear forces. A solid could be in an equilibrium in which the shear forces were
canceling the forces due to unequal pressures on the sides of the cube.

Answers to self-checks for chapter 18
Page 470, self-check A:
The horizontal axis is a time axis, and the period of the vibrations is independent of amplitude.
Shrinking the amplitude does not make the cycles any faster.

Page 471, self-check B:
Energy is proportional to the square of the amplitude, so its energy is four times smaller after
every cycle. It loses three quarters of its energy with each cycle.

Page 477, self-check C:
She should tap the wine glasses she �nds in the store and look for one with a highQ, i.e., one
whose vibrations die out very slowly. The one with the highestQ will have the highest-amplitude
response to her driving force, making it more likely to break.

Answers to self-checks for chapter 19
Page 493, self-check A:
The leading edge is moving up, the trailing edge is moving down, and the top of the hump is
motionless for one instant.

Page 500, self-check B:
(a) It doesn’t have w or h in it. (b) Inertia is measured by � , tightness by T . (c) Inertia would
be measured by the density of the metal, tightness by its resistance to compression. Lead is
more dense than aluminum, and this would tend to make the speed of the waves lower in lead.
Lead is also softer, so it probably has less resistance to compression, and we would expect this
to provide an additional e�ect in the same direction. Compressional waves will de�nitely be
slower in lead than in aluminum.

Answers to self-checks for chapter 20
Page 519, self-check A:
The energy of a wave is usually proportional to the square of its amplitude. Squaring a negative
number gives a positive result, so the energy is the same.

Page 519, self-check B:
A substance is invisible to sonar if the speed of sound waves in it is the same as in water.
Reections only occur at boundaries between media in which the wave speed is di�erent.

Page 521, self-check C:
No. A material object that loses kinetic energy slows down, but a wave is not a material object.
The velocity of a wave ordinarily only depends on the medium, not the amplitude. The speed
of a soft sound, for example, is the same as the speed of a loud sound.

Page 530, self-check D:
1. No. To get the best possible interference, the thickness of the coating must be such that the
second reected wave train lags behind the �rst by an integer number of wavelengths. Optimal
performance can therefore only be produced for one speci�c color of light. The typical greenish
color of the coatings shows that they do the worst job for green light.

2. Light can be reected either from the outer surface of the �lm or from the inner surface, and
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there can be either constructive or destructive interference between the two reections. We see
a pattern that varies across the surface because its thickness isn’t constant. We see rainbow
colors because the condition for destructive or constructive interference depends on wavelength.
White light is a mixture of all the colors of the rainbow, and at a particular place on the soap
bubble, part of that mixture, say red, may be reected strongly, while another part, blue for
example, is almost entirely transmitted.

Page 531, self-check E:
The period is the time required to travel a distance 2L at speedv, T = 2L=v. The frequency is
f = 1=T = v=2L .

Page 536, self-check F:
The wave pattern will look like this: . Three quarters of a wavelength �t in the tube, so the
wavelength is three times shorter than that of the lowest-frequency mode, in which one quarter
of a wave �ts. Since the wavelength is smaller by a factor of three, the frequency is three times
higher. Instead of f o, 2f o, 3f o, 4f o, : : :, the pattern of wave frequencies of this air column goes
f o, 3f o, 5f o, 7f o, : : :

Answers for volume 1

Answers for chapter 1
Page 61, problem 23:
Check: The actual number of species of lupine occurring in the San Gabriels is 22. You should
�nd that your answer comes out in the same ballpark as this �gure, but not exactly the same,
of course, because the scaling rule is only a generalization.

Answers for chapter 16
Page 449, problem 10:
(a) � 2 � 10% (b) 5% (c) The high end for the body’s actual e�ciency is higher than the limit
imposed by the laws of thermodynamics. However, the high end of the 1-5 watt range quoted in
the problem probably includes large people who aren’t just lying around. Still, it’s impressive
that the human body comes so close to the thermodynamic limit.

Answers for chapter 20
Page 538, problem 3:
Check: The actual length of a ute is about 66 cm.
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the public domain. I’ve included some public-domain paintings; photographic reproductions of them are not
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Chapter 21

Electricity and circuits

Where the telescope ends, the microscope begins. Which of the two
has the grander view? Victor Hugo

His father died during his mother’s pregnancy. Rejected by her as
a boy, he was packed o� to boarding school when she remarried.
He himself never married, but in middle age he formed an intense
relationship with a much younger man, a relationship that he ter-
minated when he underwent a psychotic break. Following his early
scienti�c successes, he spent the rest of his professional life mostly
in frustration over his inability to unlock the secrets of alchemy.

The man being described is Isaac Newton, but not the triumphant
Newton of the standard textbook hagiography. Why dwell on the
sad side of his life? To the modern science educator, Newton’s life-
long obsession with alchemy may seem an embarrassment, a distrac-
tion from his main achievement, the creation the modern science of
mechanics. To Newton, however, his alchemical researches were nat-
urally related to his investigations of force and motion. What was
radical about Newton’s analysis of motion was its universality: it
succeeded in describing both the heavens and the earth with the
same equations, whereas previously it had been assumed that the
sun, moon, stars, and planets were fundamentally di�erent from
earthly objects. But Newton realized that if science was to describe
all of nature in a uni�ed way, it was not enough to unite the human
scale with the scale of the universe: he would not be satis�ed until
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he �t the microscopic universe into the picture as well.

It should not surprise us that Newton failed. Although he was a �rm
believer in the existence of atoms, there was no more experimental
evidence for their existence than there had been when the ancient
Greeks �rst posited them on purely philosophical grounds. Alchemy
labored under a tradition of secrecy and mysticism. Newton had
already almost single-handedly transformed the fuzzyheaded �eld
of \natural philosophy" into something we would recognize as the
modern science of physics, and it would be unjust to criticize him
for failing to change alchemy into modern chemistry as well. The
time was not ripe. The microscope was a new invention, and it was
cutting-edge science when Newton’s contemporary Hooke discovered
that living things were made out of cells.

21.1 The quest for the atomic force
Newton was not the �rst of the age of reason. He was the last of
the magicians. John Maynard Keynes

Nevertheless it will be instructive to pick up Newton’s train of
thought and see where it leads us with the bene�t of modern hind-
sight. In uniting the human and cosmic scales of existence, he had
reimagined both as stages on which the actors were objects (trees
and houses, planets and stars) that interacted through attractions
and repulsions. He was already convinced that the objects inhab-
iting the microworld were atoms, so it remained only to determine
what kinds of forces they exerted on each other.

His next insight was no less brilliant for his inability to bring it to
fruition. He realized that the many human-scale forces | friction,
sticky forces, the normal forces that keep objects from occupying
the same space, and so on | must all simply be expressions of a
more fundamental force acting between atoms. Tape sticks to paper
because the atoms in the tape attract the atoms in the paper. My
house doesn’t fall to the center of the earth because its atoms repel
the atoms of the dirt under it.

Here he got stuck. It was tempting to think that the atomic force
was a form of gravity, which he knew to be universal, fundamental,
and mathematically simple. Gravity, however, is always attractive,
so how could he use it to explain the existence of both attractive
and repulsive atomic forces? The gravitational force between ob-
jects of ordinary size is also extremely small, which is why we never
notice cars and houses attracting us gravitationally. It would be
hard to understand how gravity could be responsible for anything
as vigorous as the beating of a heart or the explosion of gunpowder.
Newton went on to write a million words of alchemical notes �lled
with speculation about some other force, perhaps a \divine force" or
\vegetative force" that would for example be carried by the sperm
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a / Four pieces of tape are
prepared, 1, as described in the
text. Depending on which com-
bination is tested, the interaction
can be either repulsive, 2, or
attractive, 3.

to the egg.

Luckily, we now know enough to investigate a di�erent suspect as a
candidate for the atomic force: electricity. Electric forces are often
observed between objects that have been prepared by rubbing (or
other surface interactions), for instance when clothes rub against
each other in the dryer. A useful example is shown in �gure a/1:
stick two pieces of tape on a tabletop, and then put two more pieces
on top of them. Lift each pair from the table, and then separate
them. The two top pieces will then repel each other, a/2, as will
the two bottom pieces. A bottom piece will attract a top piece,
however, a/3. Electrical forces like these are similar in certain ways
to gravity, the other force that we already know to be fundamental:

� Electrical forces are universal. Although some substances,
such as fur, rubber, and plastic, respond more strongly to
electrical preparation than others, all matter participates in
electrical forces to some degree. There is no such thing as a
\nonelectric" substance. Matter is both inherently gravita-
tional and inherently electrical.

� Experiments show that the electrical force, like the gravita-
tional force, is an inverse squareforce. That is, the electrical
force between two spheres is proportional to 1=r2, where r is
the center-to-center distance between them.

Furthermore, electrical forces make more sense than gravity as can-
didates for the fundamental force between atoms, because we have
observed that they can be either attractive or repulsive.

21.2 Electrical forces
Charge

\Charge" is the technical term used to indicate that an object has
been prepared so as to participate in electrical forces. This is to
be distinguished from the common usage, in which the term is used
indiscriminately for anything electrical. For example, although we
speak colloquially of \charging" a battery, you may easily verify
that a battery has no charge in the technical sense, e.g., it does not
exert any electrical force on a piece of tape that has been prepared
as described in the previous section.

Two types of charge

We can easily collect reams of data on electrical forces between
di�erent substances that have been charged in di�erent ways. We
�nd for example that cat fur prepared by rubbing against rabbit
fur will attract glass that has been rubbed on silk. How can we
make any sense of all this information? A vast simpli�cation is
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achieved by noting that there are really only two types of charge.
Suppose we pick cat fur rubbed on rabbit fur as a representative of
type A, and glass rubbed on silk for type B. We will now �nd that
there is no \type C." Any object electri�ed by any method is either
A-like, attracting things A attracts and repelling those it repels, or
B-like, displaying the same attractions and repulsions as B. The two
types, A and B, always display opposite interactions. If A displays
an attraction with some charged object, then B is guaranteed to
undergo repulsion with it, and vice-versa.

The coulomb

Although there are only two types of charge, each type can come in
di�erent amounts. The metric unit of charge is the coulomb (rhymes
with \drool on"), de�ned as follows:

One Coulomb (C) is the amount of charge such that a force of
9.0� 109 N occurs between two pointlike objects with charges
of 1 C separated by a distance of 1 m.

The notation for an amount of charge is q. The numerical factor
in the de�nition is historical in origin, and is not worth memoriz-
ing. The de�nition is stated for pointlike, i.e., very small, objects,
because otherwise di�erent parts of them would be at di�erent dis-
tances from each other.

A model of two types of charged particles

Experiments show that all the methods of rubbing or otherwise
charging objects involve two objects, and both of them end up get-
ting charged. If one object acquires a certain amount of one type of
charge, then the other ends up with an equal amount of the other
type. Various interpretations of this are possible, but the simplest
is that the basic building blocks of matter come in two avors, one
with each type of charge. Rubbing objects together results in the
transfer of some of these particles from one object to the other. In
this model, an object that has not been electrically prepared may ac-
tually possesses a great deal ofboth types of charge, but the amounts
are equal and they are distributed in the same way throughout it.
Since type A repels anything that type B attracts, and vice versa,
the object will make a total force of zero on any other object. The
rest of this chapter eshes out this model and discusses how these
mysterious particles can be understood as being internal parts of
atoms.

Use of positive and negative signs for charge

Because the two types of charge tend to cancel out each other’s
forces, it makes sense to label them using positive and negative signs,
and to discuss thetotal charge of an object. It is entirely arbitrary
which type of charge to call negative and which to call positive.
Benjamin Franklin decided to describe the one we’ve been calling
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\A" as negative, but it really doesn’t matter as long as everyone is
consistent with everyone else. An object with a total charge of zero
(equal amounts of both types) is referred to as electricallyneutral .

self-check A
Criticize the following statement: �There are two types of charge, attrac-
tive and repulsive.� . Answer, p.
1022

Coulomb’s law

A large body of experimental observations can be summarized as
follows:

Coulomb’s law: The magnitude of the force acting between point-
like charged objects at a center-to-center distancer is given by the
equation

jF j = k
jq1jjq2j

r 2 ,

where the constantk equals 9.0� 109 N�m2=C2. The force is attrac-
tive if the charges are of di�erent signs, and repulsive if they have
the same sign.

Clever modern techniques have allowed the 1=r2 form of Coulomb’s
law to be tested to incredible accuracy, showing that the exponent
is in the range from 1.9999999999999998 to 2.0000000000000002.

Note that Coulomb’s law is closely analogous to Newton’s law of
gravity, where the magnitude of the force isGm1m2=r2, except that
there is only one type of mass, not two, and gravitational forces
are never repulsive. Because of this close analogy between the two
types of forces, we can recycle a great deal of our knowledge of
gravitational forces. For instance, there is an electrical equivalent
of the shell theorem: the electrical forces exerted externally by a
uniformly charged spherical shell are the same as if all the charge
was concentrated at its center, and the forces exerted internally are
zero.

Conservation of charge

An even more fundamental reason for using positive and negative
signs for electrical charge is that experiments show that charge is
conserved according to this de�nition: in any closed system, the
total amount of charge is a constant. This is why we observe that
rubbing initially uncharged substances together always has the re-
sult that one gains a certain amount of one type of charge, while
the other acquires an equal amount of the other type. Conservation
of charge seems natural in our model in which matter is made of
positive and negative particles. If the charge on each particle is a
�xed property of that type of particle, and if the particles themselves
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b / A charged piece of tape
attracts uncharged pieces of
paper from a distance, and they
leap up to it.

c / The paper has zero total
charge, but it does have charged
particles in it that can move.

can be neither created nor destroyed, then conservation of charge is
inevitable.

Electrical forces involving neutral objects

As shown in �gure b, an electrically charged object can attract ob-
jects that are uncharged. How is this possible? The key is that
even though each piece of paper has a total charge of zero, it has at
least some charged particles in it that have some freedom to move.
Suppose that the tape is positively charged, c. Mobile particles in
the paper will respond to the tape’s forces, causing one end of the
paper to become negatively charged and the other to become posi-
tive. The attraction between the paper and the tape is now stronger
than the repulsion, because the negatively charged end is closer to
the tape.

self-check B
What would have happened if the tape was negatively charged? .
Answer, p. 1022

Discussion questions

A If the electrical attraction between two pointlike objects at a distance
of 1 m is 9 � 109 N, why can’t we infer that their charges are +1 and � 1 C?
What further observations would we need to do in order to prove this?

B An electrically charged piece of tape will be attracted to your hand.
Does that allow us to tell whether the mobile charged particles in your
hand are positive or negative, or both?

21.3 Current
Unity of all types of electricity

We are surrounded by things we have beentold are \electrical,"
but it’s far from obvious what they have in common to justify being
grouped together. What relationship is there between the way socks
cling together and the way a battery lights a lightbulb? We have
been told that both an electric eel and our own brains are somehow
electrical in nature, but what do they have in common?

British physicist Michael Faraday (1791-1867) set out to address
this problem. He investigated electricity from a variety of sources
| including electric eels! | to see whether they could all produce
the same e�ects, such as shocks and sparks, attraction and repul-
sion. \Heating" refers, for example, to the way a lightbulb �lament
gets hot enough to glow and emit light. Magnetic induction is an
e�ect discovered by Faraday himself that connects electricity and
magnetism. We will not study this e�ect, which is the basis for the
electric generator, in detail until later in the book.
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d / Michael Faraday (1791-
1867) was the son of a poor
blacksmith.

e / Gymnotus carapo, a knife�sh,
uses electrical signals to sense
its environment and to commu-
nicate with others of its species.

source e�ect
attraction and

shocks sparks repulsion heating
rubbing

p p p p

battery
p p p p

animal
p p

(
p

)
p

magnetically
induced

p p p p

The table shows a summary of some of Faraday’s results. Check
marks indicate that Faraday or his close contemporaries were able to
verify that a particular source of electricity was capable of producing
a certain e�ect. (They evidently failed to demonstrate attraction
and repulsion between objects charged by electric eels, although
modern workers have studied these species in detail and been able
to understand all their electrical characteristics on the same footing
as other forms of electricity.)

Faraday’s results indicate that there is nothing fundamentally dif-
ferent about the types of electricity supplied by the various sources.
They are all able to produce a wide variety of identical e�ects. Wrote
Faraday, \The general conclusion which must be drawn from this
collection of facts is that electricity, whatever may be its source, is
identical in its nature."

If the types of electricity are the same thing, what thing is that?
The answer is provided by the fact that all the sources of electricity
can cause objects to repel or attract each other. We use the word
\charge" to describe the property of an object that allows it to
participate in such electrical forces, and we have learned that charge
is present in matter in the form of nuclei and electrons. Evidently
all these electrical phenomena boil down to the motion of charged
particles in matter.

Electric current

If the fundamental phenomenon is the motion of charged particles,
then how can we de�ne a useful numerical measurement of it? We
might describe the ow of a river simply by the velocity of the
water, but velocity will not be appropriate for electrical purposes
because we need to take into account how much charge the moving
particles have, and in any case there are no practical devices sold
at Radio Shack that can tell us the velocity of charged particles.
Experiments show that the intensity of various electrical e�ects is
related to a di�erent quantity: the number of coulombs of charge
that pass by a certain point per second. By analogy with the ow
of water, this quantity is called the electric current, I . Its units
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f / Andr·e Marie Amp�ere (1775-
1836).

of coulombs/second are more conveniently abbreviated as amperes,
1 A=1 C/s. (In informal speech, one usually says \amps.")

The main subtlety involved in this de�nition is how to account for
the two types of charge. The stream of water coming from a hose
is made of atoms containing charged particles, but it produces none
of the e�ects we associate with electric currents. For example, you
do not get an electrical shock when you are sprayed by a hose. This
type of experiment shows that the e�ect created by the motion of
one type of charged particle can be canceled out by the motion of
the opposite type of charge in the same direction. In water, every
oxygen atom with a charge of +8e is surrounded by eight electrons
with charges of � e, and likewise for the hydrogen atoms.

We therefore re�ne our de�nition of current as follows:

de�nition of electric current
When charged particles are exchanged between regions of space
A and B, the electric current owing from A to B is

I =
� q
� t

,

where � q is the change in region B’s total charge occurring
over a period of time � t.

In the garden hose example, your body picks up equal amounts of
positive and negative charge, resulting in no change in your total
charge, so the electrical current owing into you is zero.

Interpretation of � q=� t example 1
. How should the expression � q=� t be interpreted when the cur-
rent isn’t constant?

. You’ve seen lots of equations of this form before: v = � x=� t ,
F = � p=� t , etc. These are all descriptions of rates of change,
and they all require that the rate of change be constant. If the
rate of change isn’t constant, you instead have to use the slope
of the tangent line on a graph. The slope of a tangent line is
equivalent to a derivative in calculus; applications of calculus are
discussed in section 21.7.

Ions moving across a cell membrane example 2
. Figure g shows ions, labeled with their charges, moving in or
out through the membranes of four cells. If the ions all cross
the membranes during the same interval of time, how would the
currents into the cells compare with each other?

. Cell A has positive current going into it because its charge is
increased, i.e., has a positive value of � q.

Cell B has the same current as cell A, because by losing one unit
of negative charge it also ends up increasing its own total charge
by one unit.
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Cell C’s total charge is reduced by three units, so it has a large
negative current going into it.

Cell D loses one unit of charge, so it has a small negative current
into it.

g / Example 2

It may seem strange to say that a negatively charged particle going
one way creates a current going the other way, but this is quite
ordinary. As we will see, currents ow through metal wires via the
motion of electrons, which are negatively charged, so the direction
of motion of the electrons in a circuit is always opposite to the
direction of the current. Of course it would have been convenient
of Benjamin Franklin had de�ned the positive and negative signs of
charge the opposite way, since so many electrical devices are based
on metal wires.

Number of electrons �owing through a lightbulb example 3
. If a lightbulb has 1.0 A �owing through it, how many electrons
will pass through the �lament in 1.0 s?

. We are only calculating the number of electrons that �ow, so we
can ignore the positive and negative signs. Solving for � q = I� t
gives a charge of 1.0 C �owing in this time interval. The number
of electrons is

number of electrons = coulombs �
electrons
coulomb

= coulombs=
coulombs
electron

= 1.0 C=e

= 6.2 � 1018

21.4 Circuits
How can we put electric currents to work? The only method of
controlling electric charge we have studied so far is to charge di�er-
ent substances, e.g., rubber and fur, by rubbing them against each
other. Figure h/1 shows an attempt to use this technique to light
a lightbulb. This method is unsatisfactory. True, current will ow
through the bulb, since electrons can move through metal wires, and
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h / 1. Static electricity runs
out quickly. 2. A practical circuit.
3. An open circuit. 4. How an
ammeter works. 5. Measuring
the current with an ammeter.

the excess electrons on the rubber rod will therefore come through
the wires and bulb due to the attraction of the positively charged
fur and the repulsion of the other electrons. The problem is that
after a zillionth of a second of current, the rod and fur will both have
run out of charge. No more current will ow, and the lightbulb will
go out.

Figure h/2 shows a setup that works. The battery pushes charge
through the circuit, and recycles it over and over again. (We will
have more to say later in this chapter about how batteries work.)
This is called a complete circuit. Today, the electrical use of the
word \circuit" is the only one that springs to mind for most people,
but the original meaning was to travel around and make a round
trip, as when a circuit court judge would ride around the boondocks,
dispensing justice in each town on a certain date.

Note that an example like h/3 does not work. The wire will quickly
begin acquiring a net charge, because it has no way to get rid of the
charge owing into it. The repulsion of this charge will make it more
and more di�cult to send any more charge in, and soon the electrical
forces exerted by the battery will be canceled out completely. The
whole process would be over so quickly that the �lament would not
even have enough time to get hot and glow. This is known as an
open circuit. Exactly the same thing would happen if the complete
circuit of �gure h/2 was cut somewhere with a pair of scissors, and
in fact that is essentially how an ordinary light switch works: by
opening up a gap in the circuit.

The de�nition of electric current we have developed has the great
virtue that it is easy to measure. In practical electrical work, one
almost always measures current, not charge. The instrument used to
measure current is called anammeter. A simpli�ed ammeter, h/4,
simply consists of a coiled-wire magnet whose force twists an iron
needle against the resistance of a spring. The greater the current,
the greater the force. Although the construction of ammeters may
di�er, their use is always the same. We break into the path of the
electric current and interpose the meter like a tollbooth on a road,
h/5. There is still a complete circuit, and as far as the battery and
bulb are concerned, the ammeter is just another segment of wire.

Does it matter where in the circuit we place the ammeter? Could
we, for instance, have put it in the left side of the circuit instead
of the right? Conservation of charge tells us that this can make no
di�erence. Charge is not destroyed or \used up" by the lightbulb,
so we will get the same current reading on either side of it. What is
\used up" is energy stored in the battery, which is being converted
into heat and light energy.
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i / Alessandro Volta (1745-1827).

21.5 Voltage
The volt unit

Electrical circuits can be used for sending signals, storing informa-
tion, or doing calculations, but their most common purpose by far is
to manipulate energy, as in the battery-and-bulb example of the pre-
vious section. We know that lightbulbs are rated in units of watts,
i.e., how many joules per second of energy they can convert into
heat and light, but how would this relate to the ow of charge as
measured in amperes? By way of analogy, suppose your friend, who
didn’t take physics, can’t �nd any job better than pitching bales of
hay. The number of calories he burns per hour will certainly depend
on how many bales he pitches per minute, but it will also be pro-
portional to how much mechanical work he has to do on each bale.
If his job is to toss them up into a hayloft, he will get tired a lot
more quickly than someone who merely tips bales o� a loading dock
into trucks. In metric units,

joules
second

=
haybales
second

�
joules

haybale
.

Similarly, the rate of energy transformation by a battery will not
just depend on how many coulombs per second it pushes through a
circuit but also on how much mechanical work it has to do on each
coulomb of charge:

joules
second

=
coulombs

second
�

joules
coulomb

or
power = current � work per unit charge.

Units of joules per coulomb are abbreviated asvolts, 1 V=1 J/C,
named after the Italian physicist Alessandro Volta. Everyone knows
that batteries are rated in units of volts, but the voltage concept is
more general than that; it turns out that voltage is a property of
every point in space. To gain more insight, let’s think more carefully
about what goes on in the battery and bulb circuit.

The voltage concept in general

To do work on a charged particle, the battery apparently must be
exerting forces on it. How does it do this? Well, the only thing that
can exert an electrical force on a charged particle is another charged
particle. It’s as though the haybales were pushing and pulling each
other into the hayloft! This is potentially a horribly complicated
situation. Even if we knew how much excess positive or negative
charge there was at every point in the circuit (which realistically we
don’t) we would have to calculate zillions of forces using Coulomb’s
law, perform all the vector additions, and �nally calculate how much
work was being done on the charges as they moved along. To make
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things even more scary, there is more than one type of charged
particle that moves: electrons are what move in the wires and the
bulb’s �lament, but ions are the moving charge carriers inside the
battery. Luckily, there are two ways in which we can simplify things:

The situation is unchanging. Unlike the imaginary setup
in which we attempted to light a bulb using a rubber rod and a
piece of fur, this circuit maintains itself in a steady state (after
perhaps a microsecond-long period of settling down after the
circuit is �rst assembled). The current is steady, and as charge
ows out of any area of the circuit it is replaced by the same
amount of charge owing in. The amount of excess positive
or negative charge in any part of the circuit therefore stays
constant. Similarly, when we watch a river owing, the water
goes by but the river doesn’t disappear.

Force depends only on position. Since the charge distri-
bution is not changing, the total electrical force on a charged
particle depends only on its own charge and on its location.
If another charged particle of the same type visits the same
location later on, it will feel exactly the same force.

The second observation tells us that there is nothing all that dif-
ferent about the experience of one charged particle as compared to
another’s. If we single out one particle to pay attention to, and �g-
ure out the amount of work done on it by electrical forces as it goes
from point A to point B along a certain path, then this is the same
amount of work that will be done on any other charged particles
of the same type as it follows the same path. For the sake of visu-
alization, let’s think about the path that starts at one terminal of
the battery, goes through the light bulb’s �lament, and ends at the
other terminal. When an object experiences a force that depends
only on its position (and when certain other, technical conditions
are satis�ed), we can de�ne an electrical energy associated with the
position of that object. The amount of work done on the parti-
cle by electrical forces as it moves from A to B equals the drop in
electrical energy between A and B. This electrical energy is what is
being converted into other forms of energy such as heat and light.
We therefore de�ne voltage in general as electrical energy per unit
charge:

de�nition of voltage di�erence
The di�erence in voltage between two points in space is de-

�ned as

� V = � P Eelec=q,

where � P Eelec is the change in the electrical energy of a par-
ticle with charge q as it moves from the initial point to the
�nal point.

The amount of power dissipated (i.e., rate at which energy is trans-
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j / Example 4.

formed by the ow of electricity) is then given by the equation

P = I � V .

Energy stored in a battery example 4
. The 1.2 V rechargeable battery in �gure j is labeled 1800 milliamp-
hours. What is the maximum amount of energy the battery can
store?

. An ampere-hour is a unit of current multiplied by a unit of time.
Current is charge per unit time, so an ampere-hour is in fact a
funny unit of charge:

(1 A)(1 hour) = (1 C/s)(3600 s)
= 3600 C

1800 milliamp-hours is therefore 1800 � 10� 3 � 3600 C = 6.5 �
103 C. That’s a huge number of charged particles, but the total
loss of electrical energy will just be their total charge multiplied by
the voltage difference across which they move:

� PEelec = q� V

= (6.5 � 103 C)(1.2 V)
= 7.8 kJ

Units of volt-amps example 5
. Doorbells are often rated in volt-amps. What does this combi-
nation of units mean?

. Current times voltage gives units of power, P = I� V , so volt-
amps are really just a nonstandard way of writing watts. They are
telling you how much power the doorbell requires.

Power dissipated by a battery and bulb example 6
. If a 9.0-volt battery causes 1.0 A to �ow through a lightbulb, how
much power is dissipated?

. The voltage rating of a battery tells us what voltage difference
� V it is designed to maintain between its terminals.

P = I � V
= 9.0 A � V

= 9.0
C
s

�
J
C

= 9.0 J/s
= 9.0 W

The only nontrivial thing in this problem was dealing with the units.
One quickly gets used to translating common combinations like
A � V into simpler terms.
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Here are a few questions and answers about the voltage concept.

Question: OK, so what is voltage, really?
Answer: A device like a battery has positive and negative charges
inside it that push other charges around the outside circuit. A
higher-voltage battery has denser charges in it, which will do more
work on each charged particle that moves through the outside cir-
cuit.

To use a gravitational analogy, we can put a paddlewheel at the
bottom of either a tall waterfall or a short one, but a kg of water
that falls through the greater gravitational energy di�erence will
have more energy to give up to the paddlewheel at the bottom.

Question: Why do we de�ne voltage as electrical energy divided by
charge, instead of just de�ning it as electrical energy?
Answer: One answer is that it’s the only de�nition that makes the
equation P = I � V work. A more general answer is that we want
to be able to de�ne a voltage di�erence between any two points
in space without having to know in advance how much charge the
particles moving between them will have. If you put a nine-volt
battery on your tongue, then the charged particles that move across
your tongue and give you that tingly sensation are not electrons but
ions, which may have charges of +e, � 2e, or practically anything.
The manufacturer probably expected the battery to be used mostly
in circuits with metal wires, where the charged particles that owed
would be electrons with charges of� e. If the ones owing across
your tongue happen to have charges of� 2e, the electrical energy
di�erence for them will be twice as much, but dividing by their
charge of � 2e in the de�nition of voltage will still give a result of 9
V .

Question: Are there two separate roles for the charged particles in
the circuit, a type that sits still and exerts the forces, and another
that moves under the inuence of those forces?
Answer: No. Every charged particle simultaneously plays both
roles. Newton’s third law says that any particle that has an electri-
cal force acting on it must also be exerting an electrical force back on
the other particle. There are no \designated movers" or \designated
force-makers."

Question: Why does the de�nition of voltage only refer to voltage
di�erences ?
Answer: It’s perfectly OK to de�ne voltage as V = P Eelec=q. But
recall that it is only di�erences in interaction energy, U, that have
direct physical meaning in physics. Similarly, voltage di�erences are
really more useful than absolute voltages. A voltmeter measures
voltage di�erences, not absolute voltages.
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Discussion questions

A A roller coaster is sort of like an electric circuit, but it uses gravitational
forces on the cars instead of electric ones. What would a high-voltage
roller coaster be like? What would a high-current roller coaster be like?

B Criticize the following statements:

�He touched the wire, and 10000 volts went through him.�

�That battery has a charge of 9 volts.�

�You used up the charge of the battery.�

C When you touch a 9-volt battery to your tongue, both positive and
negative ions move through your saliva. Which ions go which way?

D I once touched a piece of physics apparatus that had been wired
incorrectly, and got a several-thousand-volt voltage difference across my
hand. I was not injured. For what possible reason would the shock have
had insuf�cient power to hurt me?
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k / Georg Simon Ohm (1787-
1854).

21.6 Resistance
Resistance

So far we have simply presented it as an observed fact that a battery-
and-bulb circuit quickly settles down to a steady ow, but why
should it? Newton’s second law,a = F=m, would seem to predict
that the steady forces on the charged particles should make them
whip around the circuit faster and faster. The answer is that as
charged particles move through matter, there are always forces, anal-
ogous to frictional forces, that resist the motion. These forces need
to be included in Newton’s second law, which is reallya = Ftotal =m,
not a = F=m. If, by analogy, you push a crate across the oor at
constant speed, i.e., with zero acceleration, the total force on it must
be zero. After you get the crate going, the oor’s frictional force is
exactly canceling out your force. The chemical energy stored in
your body is being transformed into heat in the crate and the oor,
and no longer into an increase in the crate’s kinetic energy. Simi-
larly, the battery’s internal chemical energy is converted into heat,
not into perpetually increasing the charged particles’ kinetic energy.
Changing energy into heat may be a nuisance in some circuits, such
as a computer chip, but it is vital in a lightbulb, which must get hot
enough to glow. Whether we like it or not, this kind of heating e�ect
is going to occur any time charged particles move through matter.

What determines the amount of heating? One ashlight bulb de-
signed to work with a 9-volt battery might be labeled 1.0 watts,
another 5.0. How does this work? Even without knowing the de-
tails of this type of friction at the atomic level, we can relate the
heat dissipation to the amount of current that ows via the equa-
tion P = I �V. If the two ashlight bulbs can have two di�erent
values ofP when used with a battery that maintains the same � V ,
it must be that the 5.0-watt bulb allows �ve times more current to
ow through it.

For many substances, including the tungsten from which lightbulb
�laments are made, experiments show that the amount of current
that will ow through it is directly proportional to the voltage dif-
ference placed across it. For an object made of such a substance,
we de�ne its electrical resistance as follows:

de�nition of resistance
If an object inserted in a circuit displays a current ow pro-
portional to the voltage di�erence across it, then we de�ne its
resistance as the constant ratio

R = � V=I

The units of resistance are volts/ampere, usually abbreviated as
ohms, symbolized with the capital Greek letter omega, 
.
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l / Four objects made of the
same substance have different
resistances.

Resistance of a lightbulb example 7
. A �ashlight bulb powered by a 9-volt battery has a resistance of
10 
 . How much current will it draw?

. Solving the de�nition of resistance for I, we �nd

I = � V=R
= 0.9 V=

= 0.9 V=(V=A)
= 0.9 A

Ohm’s law states that many substances, including many solids and
some liquids, display this kind of behavior, at least for voltages
that are not too large. The fact that Ohm’s law is called a \law"
should not be taken to mean that all materials obey it, or that it has
the same fundamental importance as Newton’s laws, for example.
Materials are calledohmic or nonohmic, depending on whether they
obey Ohm’s law. Although we will concentrate on ohmic materials
in this book, it’s important to keep in mind that a great many
materials are nonohmic, and devices made from them are often very
important. For instance, a transistor is a nonohmic device that can
be used to amplify a signal (as in a guitar ampli�er) or to store and
manipulate the ones and zeroes in a computer chip.

If objects of the same size and shape made from two di�erent ohmic
materials have di�erent resistances, we can say that one material is
more resistive than the other, or equivalently that it is less conduc-
tive. Materials, such as metals, that are very conductive are said
to be goodconductors. Those that are extremely poor conductors,
for example wood or rubber, are classi�ed asinsulators. There is
no sharp distinction between the two classes of materials. Some,
such as silicon, lie midway between the two extremes, and are called
semiconductors.

On an intuitive level, we can understand the idea of resistance by
making the sounds \hhhhhh" and \���." To make air ow out of
your mouth, you use your diaphragm to compress the air in your
chest. The pressure di�erence between your chest and the air outside
your mouth is analogous to a voltage di�erence. When you make the
\h" sound, you form your mouth and throat in a way that allows air
to ow easily. The large ow of air is like a large current. Dividing
by a large current in the de�nition of resistance means that we get
a small resistance. We say that the small resistance of your mouth
and throat allows a large current to ow. When you make the \f"
sound, you increase the resistance and cause a smaller current to
ow.
Note that although the resistance of an object depends on the sub-
stance it is made of, we cannot speak simply of the \resistance of
gold" or the \resistance of wood." Figure l shows four examples of
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m / A medical MRI scanner,
which uses superconductors.

objects that have had wires attached at the ends as electrical con-
nections. If they were made of the same substance, they would all
nevertheless have di�erent resistances because of their di�erent sizes
and shapes. A more detailed discussion will be more natural in the
context of the following chapter, but it should not be too surprising
that the resistance of l/2 will be greater than that of l/1 | the
image of water owing through a pipe, however incorrect, gives us
the right intuition. Object l/3 will have a smaller resistance than
l/1 because the charged particles have less of it to get through.

Superconductors

All materials display some variation in resistance according to tem-
perature (a fact that is used in thermostats to make a thermometer
that can be easily interfaced to an electric circuit). More spectac-
ularly, most metals have been found to exhibit a sudden change to
zero resistance when cooled to a certain critical temperature. They
are then said to be superconductors. Currently, the most impor-
tant practical application of superconductivity is in medical MRI
(magnetic resonance imaging) scanners. The mechanism of MRI is
explained on p. 479, but the important point for now is that when
your body is inserted into one of these devices, you are being im-
mersed in an extremely strong magnetic �eld produced by electric
currents owing through the coiled wires of an electromagnet. If
these wires were not superconducting, they would instantly burn up
because of the heat generated by their resistance.

There are many other potential applications for superconductors,
but most of these, such as power transmission, are not currently
economically feasible because of the extremely low temperatures
required for superconductivity to occur.

However, it was discovered in 1986 that certain ceramics are super-
conductors at less extreme temperatures. The technological barrier
is now in �nding practical methods for making wire out of these
brittle materials. Wall Street is currently investing billions of dol-
lars in developing superconducting devices for cellular phone relay
stations based on these materials.

There is currently no satisfactory theory of superconductivity in
general, although superconductivity in metals is understood fairly
well. Unfortunately I have yet to �nd a fundamental explanation of
superconductivity in metals that works at the introductory level.

Constant voltage throughout a conductor

The idea of a superconductor leads us to the question of how we
should expect an object to behave if it is made of a very good con-
ductor. Superconductors are an extreme case, but often a metal
wire can be thought of as a perfect conductor, for example if the
parts of the circuit other than the wire are made of much less con-
ductive materials. What happens if R equals zero in the equation
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o / The voltmeter doesn’t care
which of these setups you use.

R = � V=I? The result of dividing two numbers can only be zero if
the number on top equals zero. This tells us that if we pick any two
points in a perfect conductor, the voltage di�erence between them
must be zero. In other words, the entire conductor must be at the
same voltage.

n / 1. The �nger deposits charges
on the solid, spherical, metal
doorknob and is then withdrawn.
2. Almost instantaneously, the
charges’ mutual repulsion makes
them redistribute themselves uni-
formly on the surface of the
sphere. The only excess charge
is on the surface; charges do ex-
ist in the atoms that form the in-
terior of the sphere, but they are
balanced. Charges on the interior
feel zero total electrical force from
the ones at the surface. Charges
at the surface experience a net
outward repulsion, but this is can-
celed out by the force that keeps
them from escaping into the air.
3. A voltmeter shows zero dif-
ference in voltage between any
two points on the interior or sur-
face of the sphere. If the volt-
age difference wasn’t zero, then
energy could be released by the
�ow of charge from one point to
the other; this only happens be-
fore equilibrium is reached.

Constant voltage means that no work would be done on a charge as
it moved from one point in the conductor to another. If zero work
was done only along a certain path between two speci�c points, it
might mean that positive work was done along part of the path and
negative work along the rest, resulting in a cancellation. But there is
no way that the work could come out to be zero for all possible paths
unless the electrical force on a charge was in fact zero at every point.
Suppose, for example, that you build up a static charge by scu�ng
your feet on a carpet, and then you deposit some of that charge onto
a doorknob, which is a good conductor. How can all that charge be
in the doorknob without creating any electrical force at any point
inside it? The only possible answer is that the charge moves around
until it has spread itself into just the right con�guration so that the
forces exerted by all the little bits of excess surface charge on any
charged particle within the doorknob exactly cancel out.

We can explain this behavior if we assume that the charge placed
on the doorknob eventually settles down into a stable equilibrium.
Since the doorknob is a conductor, the charge is free to move through
it. If it was free to move and any part of it did experience a nonzero
total force from the rest of the charge, then it would move, and we
would not have an equilibrium.

Excess charge placed on a conductor, once it reaches its equilibrium
con�guration, is entirely on the surface, not on the interior. This
should be intuitively reasonable in �gure n, for example, since the
charges are all repelling each other. A proof is given in example 15
on p. 652.

Since wires are good conductors, constancy of voltage throughout a
conductor provides a convenient freedom in hooking up a voltmeter
to a circuit. In �gure o, points B and C are on the same piece of
conducting wire, so VB = VC . Measuring VB � VA gives the same
result as measuringVC � VA .
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p / Example 8. In 1 and 2,
charges that are visible on the
front surface of the conductor are
shown as solid dots; the others
would have to be seen through
the conductor, which we imagine
is semi-transparent.

q / Short-circuiting a battery.
Warning: you can burn yourself
this way or start a �re! If you
want to try this, try making the
connection only very brie�y, use
a low-voltage battery, and avoid
touching the battery or the wire,
both of which will get hot.

The lightning rod example 8
Suppose you have a pear-shaped conductor like the one in �gure
p/1. Since the pear is a conductor, there are free charges every-
where inside it. Panels 1 and 2 of the �gure show a computer sim-
ulation with 100 identical electric charges. In 1, the charges are
released at random positions inside the pear. Repulsion causes
them all to �y outward onto the surface and then settle down into
an orderly but nonuniform pattern.

We might not have been able to guess the pattern in advance, but
we can verify that some of its features make sense. For example,
charge A has more neighbors on the right than on the left, which
would tend to make it accelerate off to the left. But when we
look at the picture as a whole, it appears reasonable that this is
prevented by the larger number of more distant charges on its left
than on its right.

There also seems to be a pattern to the nonuniformity: the charges
collect more densely in areas like B, where the surface is strongly
curved, and less densely in �atter areas like C.

To understand the reason for this pattern, consider p/3. Two con-
ducting spheres are connected by a conducting wire. Since the
whole apparatus is conducting, it must all be at one voltage. As
shown in problem 43 on p. 620, the density of charge is greater
on the smaller sphere. This is an example of a more general fact
observed in p/2, which is that the charge on a conductor packs
itself more densely in areas that are more sharply curved.

Similar reasoning shows why Benjamin Franklin used a sharp tip
when he invented the lightning rod. The charged stormclouds in-
duce positive and negative charges to move to opposite ends of
the rod. At the pointed upper end of the rod, the charge tends
to concentrate at the point, and this charge attracts the light-
ning. The same effect can sometimes be seen when a scrap
of aluminum foil is inadvertently put in a microwave oven. Mod-
ern experiments (Moore et al., Journal of Applied Meteorology 39
(1999) 593) show that although a sharp tip is best at starting a
spark, a more moderate curve, like the right-hand tip of the pear
in this example, is better at successfully sustaining the spark for
long enough to connect a discharge to the clouds.

Short circuits

So far we have been assuming a perfect conductor. What if it is
a good conductor, but not a perfect one? Then we can solve for
� V = IR . An ordinary-sized current will make a very small result
when we multiply it by the resistance of a good conductor such as
a metal wire. The voltage throughout the wire will then be nearly
constant. If, on the other hand, the current is extremely large, we
can have a signi�cant voltage di�erence. This is what happens in a
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Resistors.

r / The symbol used in schemat-
ics to represent a resistor.

s / An example of a resistor
with a color code.

color meaning
black 0
brown 1
red 2
orange 3
yellow 4
green 5
blue 6
violet 7
gray 8
white 9
silver � 10%
gold � 5%

t / Color codes used on resistors.

short-circuit: a circuit in which a low-resistance pathway connects
the two sides of a voltage source. Note that this is much more
speci�c than the popular use of the term to indicate any electrical
malfunction at all. If, for example, you short-circuit a 9-volt battery
as shown in �gure q, you will produce perhaps a thousand amperes
of current, leading to a very large value ofP = I � V . The wire gets
hot!

self-check C
What would happen to the battery in this kind of short circuit? .
Answer, p. 1022

Resistors

Inside any electronic gadget you will see quite a few little circuit
elements like the one shown in the photo. Theseresistors are simply
a cylinder of ohmic material with wires attached to the end.

At this stage, most students have a hard time understanding why
resistors would be used inside a radio or a computer. We obviously
want a lightbulb or an electric stove to have a circuit element that
resists the ow of electricity and heats up, but heating is undesirable
in radios and computers. Without going too far a�eld, let’s use a
mechanical analogy to get a general idea of why a resistor would be
used in a radio.

The main parts of a radio receiver are an antenna, a tuner for se-
lecting the frequency, and an ampli�er to strengthen the signal suf-
�ciently to drive a speaker. The tuner resonates at the selected fre-
quency, just as in the examples of mechanical resonance discussed
in chapter 18. The behavior of a mechanical resonator depends on
three things: its inertia, its sti�ness, and the amount of friction or
damping. The �rst two parameters locate the peak of the resonance
curve, while the damping determines the width of the resonance.
In the radio tuner we have an electrically vibrating system that res-
onates at a particular frequency. Instead of a physical object moving
back and forth, these vibrations consist of electrical currents that
ow �rst in one direction and then in the other. In a mechanical sys-
tem, damping means taking energy out of the vibration in the form
of heat, and exactly the same idea applies to an electrical system:
the resistor supplies the damping, and therefore controls the width
of the resonance. If we set out to eliminate all resistance in the tuner
circuit, by not building in a resistor and by somehow getting rid of
all the inherent electrical resistance of the wires, we would have a
useless radio. The tuner’s resonance would be so narrow that we
could never get close enough to the right frequency to bring in the
station. The roles of inertia and sti�ness are played by other circuit
elements we have not discusses (a capacitor and a coil).

Many electrical devices are based on electrical resistance and Ohm’s
law, even if they do not have little components in them that look
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like the usual resistor. The following are some examples.

Lightbulb

There is nothing special about a lightbulb �lament | you can easily
make a lightbulb by cutting a narrow waist into a metallic gum
wrapper and connecting the wrapper across the terminals of a 9-volt
battery. The trouble is that it will instantly burn out. Edison solved
this technical challenge by encasing the �lament in an evacuated
bulb, which prevented burning, since burning requires oxygen.

Polygraph

The polygraph, or \lie detector," is really just a set of meters for
recording physical measures of the subject’s psychological stress,
such as sweating and quickened heartbeat. The real-time sweat
measurement works on the principle that dry skin is a good insula-
tor, but sweaty skin is a conductor. Of course a truthful subject may
become nervous simply because of the situation, and a practiced liar
may not even break a sweat. The method’s practitioners claim that
they can tell the di�erence, but you should think twice before al-
lowing yourself to be polygraph tested. Most U.S. courts exclude
all polygraph evidence, but some employers attempt to screen out
dishonest employees by polygraph testing job applicants, an abuse
that ranks with such pseudoscience as handwriting analysis.

Fuse

A fuse is a device inserted in a circuit tollbooth-style in the same
manner as an ammeter. It is simply a piece of wire made of metals
having a relatively low melting point. If too much current passes
through the fuse, it melts, opening the circuit. The purpose is to
make sure that the building’s wires do not carry so much current
that they themselves will get hot enough to start a �re. Most modern
houses use circuit breakers instead of fuses, although fuses are still
common in cars and small devices. A circuit breaker is a switch
operated by a coiled-wire magnet, which opens the circuit when
enough current ows. The advantage is that once you turn o� some
of the appliances that were sucking up too much current, you can
immediately ip the switch closed. In the days of fuses, one might
get caught without a replacement fuse, or even be tempted to stu�
aluminum foil in as a replacement, defeating the safety feature.

Voltmeter

A voltmeter is nothing more than an ammeter with an additional
high-value resistor through which the current is also forced to ow.
Ohm’s law states that the current through the resistor is related
directly to the voltage di�erence across it, so the meter can be cali-
brated in units of volts based on the known value of the resistor. The
voltmeter’s two probes are touched to the two locations in a circuit
between which we wish to measure the voltage di�erence, u/2. Note
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u / 1. A simpli�ed diagram of
how a voltmeter works. 2. Mea-
suring the voltage difference
across a lightbulb. 3. The same
setup drawn in schematic form. 4.
The setup for measuring current
is different.

how cumbersome this type of drawing is, and how di�cult it can
be to tell what is connected to what. This is why electrical draw-
ing are usually shown in schematic form. Figure u/3 is a schematic
representation of �gure u/2.

The setups for measuring current and voltage are di�erent. When
we are measuring current, we are �nding \how much stu� goes
through," so we place the ammeter where all the current is forced
to go through it. Voltage, however, is not \stu� that goes through,"
it is a measure of electrical energy. If an ammeter is like the meter
that measures your water use, a voltmeter is like a measuring stick
that tells you how high a waterfall is, so that you can determine how
much energy will be released by each kilogram of falling water. We
do not want to force the water to go through the measuring stick!
The arrangement in �gure u/3 is a parallel circuit: one in there are
\forks in the road" where some of the current will ow one way and
some will ow the other. Figure u/4 is said to be wired in series:
all the current will visit all the circuit elements one after the other.
We will deal with series and parallel circuits in more detail in the
following chapter.

If you inserted a voltmeter incorrectly, in series with the bulb and
battery, its large internal resistance would cut the current down so
low that the bulb would go out. You would have severely disturbed
the behavior of the circuit by trying to measure something about it.

Incorrectly placing an ammeter in parallel is likely to be even more
disconcerting. The ammeter has nothing but wire inside it to pro-
vide resistance, so given the choice, most of the current will ow
through it rather than through the bulb. So much current will ow
through the ammeter, in fact, that there is a danger of burning out
the battery or the meter or both! For this reason, most ammeters
have fuses or circuit breakers inside. Some models will trip their
circuit breakers and make an audible alarm in this situation, while
others will simply blow a fuse and stop working until you replace it.

Discussion questions

A In �gure u/1, would it make any difference in the voltage measure-
ment if we touched the voltmeter’s probes to different points along the
same segments of wire?

B Explain why it would be incorrect to de�ne resistance as the amount
of charge the resistor allows to �ow.

21.7
R

Applications of calculus
As discussed in example 1 on page 578, the de�nition of current as
the rate of change of charge with respect to time must be reexpressed
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as a derivative in the case where the rate of change is not constant,

I =
dq
dt

.

Finding current given charge example 9
. A charged balloon falls to the ground, and its charge begins
leaking off to the Earth. Suppose that the charge on the balloon
is given by q = ae� bt . Find the current as a function of time, and
interpret the answer.

. Taking the derivative, we have

I =
dq
dt

= � abe� bt

An exponential function approaches zero as the exponent gets
more and more negative. This means that both the charge and
the current are decreasing in magnitude with time. It makes sense
that the charge approaches zero, since the balloon is losing its
charge. It also makes sense that the current is decreasing in
magnitude, since charge cannot �ow at the same rate forever
without overshooting zero.

21.8 Series and parallel circuits
Schematics

I see a chess position; Kasparov sees an interesting Ruy Lopez vari-
ation. To the uninitiated a schematic may look as unintelligible as
Mayan hieroglyphs, but even a little bit of eye training can go a long
way toward making its meaning leap o� the page. A schematic is a
stylized and simpli�ed drawing of a circuit. The purpose is to elim-
inate as many irrelevant features as possible, so that the relevant
ones are easier to pick out.

v / 1. Wrong: The shapes of the
wires are irrelevant. 2. Wrong:
Right angles should be used. 3.
Wrong: A simple pattern is made
to look unfamiliar and compli-
cated. 4. Right.

An example of an irrelevant feature is the physical shape, length, and
diameter of a wire. In nearly all circuits, it is a good approximation
to assume that the wires are perfect conductors, so that any piece
of wire uninterrupted by other components has constant voltage
throughout it. Changing the length of the wire, for instance, does
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w / The two shaded areas
shaped like the letter �E� are both
regions of constant voltage.

not change this fact. (Of course if we used miles and miles of wire,
as in a telephone line, the wire’s resistance would start to add up,
and its length would start to matter.) The shapes of the wires
are likewise irrelevant, so we draw them with standardized, stylized
shapes made only of vertical and horizontal lines with right-angle
bends in them. This has the e�ect of making similar circuits look
more alike and helping us to recognize familiar patterns, just as
words in a newspaper are easier to recognize than handwritten ones.
Figure v shows some examples of these concepts.

The most important �rst step in learning to read schematics is to
learn to recognize contiguous pieces of wire which must have con-
stant voltage throughout. In �gure w, for example, the two shaded
E-shaped pieces of wire must each have constant voltage. This fo-
cuses our attention on two of the main unknowns we’d like to be
able to predict: the voltage of the left-hand E and the voltage of
the one on the right.

Parallel resistances and the junction rule

One of the simplest examples to analyze is the parallel resistance
circuit, of which �gure w was an example. In general we may have
unequal resistancesR1 and R2, as in x/1. Since there are only two
constant-voltage areas in the circuit, x/2, all three components have
the same voltage di�erence across them. A battery normally suc-
ceeds in maintaining the voltage di�erences across itself for which it
was designed, so the voltage drops �V1 and � V2 across the resistors
must both equal the voltage of the battery:

� V1 = � V2 = � Vbattery .

Each resistance thus feels the same voltage di�erence as if it was
the only one in the circuit, and Ohm’s law tells us that the amount
of current owing through each one is also the same as it would
have been in a one-resistor circuit. This is why household electrical
circuits are wired in parallel. We want every appliance to work
the same, regardless of whether other appliances are plugged in or
unplugged, turned on or switched o�. (The electric company doesn’t
use batteries of course, but our analysis would be the same for any
device that maintains a constant voltage.)

Of course the electric company can tell when we turn on every light
in the house. How do they know? The answer is that we draw more
current. Each resistance draws a certain amount of current, and
the amount that has to be supplied is the sum of the two individual
currents. The current is like a river that splits in half, x/3, and then
reunites. The total current is

I total = I 1 + I 2.
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x / 1. Two resistors in parallel.
2. There are two constant-voltage
areas. 3. The current that comes
out of the battery splits between
the two resistors, and later re-
unites. 4. The two resistors in
parallel can be treated as a single
resistor with a smaller resistance
value.

This is an example of a general fact called the junction rule:

the junction rule
In any circuit that is not storing or releasing charge, conser-
vation of charge implies that the total current owing out of
any junction must be the same as the total owing in.

Coming back to the analysis of our circuit, we apply Ohm’s law to
each resistance, resulting in

I total = � V=R1 + � V=R2

= � V
�

1
R1

+
1

R2

�
.

As far as the electric company is concerned, your whole house is just
one resistor with some resistanceR, called the equivalent resistance.
They would write Ohm’s law as

I total = � V=R,

from which we can determine the equivalent resistance by compari-
son with the previous expression:

1=R =
1

R1
+

1
R2

R =
�

1
R1

+
1

R2

� � 1

[equivalent resistance of two resistors in parallel]

Two resistors in parallel, x/4, are equivalent to a single resistor with
a value given by the above equation.

Two lamps on the same household circuit example 10
. You turn on two lamps that are on the same household circuit.
Each one has a resistance of 1 ohm. What is the equivalent re-
sistance, and how does the power dissipation compare with the
case of a single lamp?
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. The equivalent resistance of the two lamps in parallel is

R =
�

1
R1

+
1

R2

� � 1

=
�

1
1 


+
1

1 


� � 1

=
�

1 
 � 1 + 1 
 � 1
� � 1

=
�

2 
 � 1
� � 1

= 0.5 


The voltage difference across the whole circuit is always the 110
V set by the electric company (it’s alternating current, but that’s
irrelevant). The resistance of the whole circuit has been cut in
half by turning on the second lamp, so a �xed amount of voltage
will produce twice as much current. Twice the current �owing
across the same voltage difference means twice as much power
dissipation, which makes sense.

The cutting in half of the resistance surprises many students, since
we are \adding more resistance" to the circuit by putting in the
second lamp. Why does the equivalent resistance come out to be
less than the resistance of a single lamp? This is a case where purely
verbal reasoning can be misleading. A resistive circuit element, such
as the �lament of a lightbulb, is neither a perfect insulator nor
a perfect conductor. Instead of analyzing this type of circuit in
terms of \resistors," i.e., partial insulators, we could have spoken of
\conductors." This example would then seem reasonable, since we
\added more conductance," but one would then have the incorrect
expectation about the case of resistors in series, discussed in the
following section.

Perhaps a more productive way of thinking about it is to use me-
chanical intuition. By analogy, your nostrils resist the ow of air
through them, but having two nostrils makes it twice as easy to
breathe.

Three resistors in parallel example 11
. What happens if we have three or more resistors in parallel?

. This is an important example, because the solution involves
an important technique for understanding circuits: breaking them
down into smaller parts and them simplifying those parts. In the
circuit 21.8.2/1, with three resistors in parallel, we can think of
two of the resistors as forming a single resistor, 21.8.2/2, with
equivalent resistance

R12 =
�

1
R1

+
1

R2

� � 1
.
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Example 11.

We can then simplify the circuit as shown in 21.8.2/3, so that it
contains only two resistances. The equivalent resistance of the
whole circuit is then given by

R123 =
�

1
R12

+
1

R3

� � 1
.

Substituting for R12 and simplifying, we �nd the result

R123 =
�

1
R1

+
1

R2
+

1
R3

� � 1
,

which you probably could have guessed. The interesting point
here is the divide-and-conquer concept, not the mathematical re-
sult.

An arbitrary number of identical resistors in parallel example 12
. What is the resistance of N identical resistors in parallel?

. Generalizing the results for two and three resistors, we have

RN =
�

1
R1

+
1

R2
+ : : :

� � 1
,

where �...� means that the sum includes all the resistors. If all the
resistors are identical, this becomes

RN =
�

N
R

� � 1

=
R
N
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Example 13: Uniting four re-
sistors in parallel is equivalent to
making a single resistor with the
same length but four times the
cross-sectional area. The result
is to make a resistor with one
quarter the resistance.

Dependence of resistance on cross-sectional area example 13
We have alluded brie�y to the fact that an object’s electrical re-
sistance depends on its size and shape, but now we are ready
to begin making more mathematical statements about it. As sug-
gested by �gure 13, increasing a resistors’s cross-sectional area
is equivalent to adding more resistors in parallel, which will lead to
an overall decrease in resistance. Any real resistor with straight,
parallel sides can be sliced up into a large number of pieces, each
with cross-sectional area of, say, 1 � m2. The number, N, of such
slices is proportional to the total cross-sectional area of the resis-
tor, and by application of the result of the previous example we
therefore �nd that the resistance of an object is inversely propor-
tional to its cross-sectional area.

A fat pipe has less resistance
than a skinny pipe.

An analogous relationship holds for water pipes, which is why
high-�ow trunk lines have to have large cross-sectional areas. To
make lots of water (current) �ow through a skinny pipe, we’d need
an impractically large pressure (voltage) difference.
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z / A voltmeter is really an
ammeter with an internal resistor.
When we measure the voltage
difference across a resistor, 1, we
are really constructing a parallel
resistance circuit, 2.

Incorrect readings from a voltmeter example 14
A voltmeter is really just an ammeter with an internal resistor, and
we use a voltmeter in parallel with the thing that we’re trying to
measure the voltage difference across. This means that any time
we measure the voltage drop across a resistor, we’re essentially
putting two resistors in parallel. The ammeter inside the voltmeter
can be ignored for the purpose of analyzing how current �ows in
the circuit, since it is essentially just some coiled-up wire with a
very low resistance.

Now if we are carrying out this measurement on a resistor that is
part of a larger circuit, we have changed the behavior of the cir-
cuit through our act of measuring. It is as though we had modi�ed
the circuit by replacing the resistance R with the smaller equiva-
lent resistance of R and Rv in parallel. It is for this reason that
voltmeters are built with the largest possible internal resistance.
As a numerical example, if we use a voltmeter with an internal
resistance of 1 M 
 to measure the voltage drop across a one-
ohm resistor, the equivalent resistance is 0.999999 
 , which is
not different enough to make any difference. But if we tried to use
the same voltmeter to measure the voltage drop across a 2 M 

resistor, we would be reducing the resistance of that part of the
circuit by a factor of three, which would produce a drastic change
in the behavior of the whole circuit.

This is the reason why you can’t use a voltmeter to measure the
voltage di�erence between two di�erent points in mid-air, or between
the ends of a piece of wood. This is by no means a stupid thing to
want to do, since the world around us is not a constant-voltage
environment, the most extreme example being when an electrical
storm is brewing. But it will not work with an ordinary voltmeter
because the resistance of the air or the wood is many gigaohms. The
e�ect of waving a pair of voltmeter probes around in the air is that
we provide a reuniting path for the positive and negative charges
that have been separated | through the voltmeter itself, which is
a good conductor compared to the air. This reduces to zero the
voltage di�erence we were trying to measure.

In general, a voltmeter that has been set up with an open circuit (or
a very large resistance) between its probes is said to be \oating."
An old-fashioned analog voltmeter of the type described here will
read zero when left oating, the same as when it was sitting on the
shelf. A oating digital voltmeter usually shows an error message.

Series resistances

The two basic circuit layouts are parallel and series, so a pair of
resistors in series, aa/1, is another of the most basic circuits we can
make. By conservation of charge, all the current that ows through
one resistor must also ow through the other (as well as through the
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