
f / Some magnetic �elds.

Figure f shows the equations for some of the more commonly en-
countered con�gurations, with illustrations of their �eld patterns.
They all have a factor of k=c2 in front, which shows that magnetism
is just electricity ( k) seen through the lens of relativity (1=c2). A
convenient feature of SI units is that k=c2 has a numerical value of
exactly 10� 7, with units of N =A2.

Field created by a long, straight wire carrying current I:

B =
k
c2 �

2I
r

Here r is the distance from the center of the wire. The �eld vectors
trace circles in planes perpendicular to the wire, going clockwise when
viewed from along the direction of the current.

Field created by a single circular loop of current:
The �eld vectors form a dipole-like pattern, coming through the loop
and back around on the outside. Each oval path traced out by the �eld
vectors appears clockwise if viewed from along the direction the current
is going when it punches through it. There is no simple equation for a
�eld at an arbitrary point in space, but for a point lying along the central
axis perpendicular to the loop, the �eld is

B =
k
c2 � 2� Ib2 �

b2 + z2� � 3=2
,

where b is the radius of the loop and z is the distance of the point from
the plane of the loop.

Field created by a solenoid (cylindrical coil):
The �eld pattern is similar to that of a single loop, but for a long solenoid
the paths of the �eld vectors become very straight on the inside of the
coil and on the outside immediately next to the coil. For a suf�ciently
long solenoid, the interior �eld also becomes very nearly uniform, with
a magnitude of

B =
k
c2 � 4� IN=‘ ,

where N is the number of turns of wire and ‘ is the length of the solenoid.
The �eld near the mouths or outside the coil is not constant, and is
more dif�cult to calculate. For a long solenoid, the exterior �eld is much
smaller than the interior �eld.

Don’t memorize the equations!
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Example 1.

Force on a charge moving through a magnetic �eld

We now know how to calculate magnetic �elds in some typical sit-
uations, but one might also like to be able to calculate magnetic
forces, such as the force of a solenoid on a moving charged particle,
or the force between two parallel current-carrying wires.

We will restrict ourselves to the case of the force on a charged par-
ticle moving through a magnetic �eld, which allows us to calculate
the force between two objects when one is a moving charged parti-
cle and the other is one whose magnetic �eld we know how to �nd.
An example is the use of solenoids inside a TV tube to guide the
electron beam as it paints a picture.

Experiments show that the magnetic force on a moving charged
particle has a magnitude given by

jF j = qjv jjB j sin � ,

where v is the velocity vector of the particle, and � is the angle be-
tween the v and B vectors. Unlike electric and gravitational forces,
magnetic forces do not lie along the same line as the �eld vector.
The force is alwaysperpendicular to both v and B . Given two vec-
tors, there is only one line perpendicular to both of them, so the
force vector points in one of the two possible directions along this
line. For a positively charged particle, the direction of the force
vector can be found as follows. First, position thev and B vectors
with their tails together. The direction of F is such that if you sight
along it, the B vector is clockwise from thev vector; for a nega-
tively charged particle the direction of the force is reversed. Note
that since the force is perpendicular to the particle’s motion, the
magnetic �eld never does work on it.

If we place a moving test charge in a magnetic �eld, we can use the
equation jF j = qjv jjB j sin � and the geometrical relationship dis-
cussed above to indirectly determineB . (More than one measure-
ment will in general be required.) This can also serve as a de�nition
of the magnetic �eld, analogous to the one on p. 641 for the electric
�eld.

Magnetic levitation example 1
In �gure 24.2.2, a small, disk-shaped permanent magnet is stuck
on the side of a battery, and a wire is clasped loosely around the
battery, shorting it. A large current �ows through the wire. The
electrons moving through the wire feel a force from the magnetic
�eld made by the permanent magnet, and this force levitates the
wire.

From the photo, it’s possible to �nd the direction of the magnetic
�eld made by the permanent magnet. The electrons in the copper
wire are negatively charged, so they �ow from the negative (�at)
terminal of the battery to the positive terminal (the one with the
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Example 2.

bump, in front). As the electrons pass by the permanent magnet,
we can imagine that they would experience a �eld either toward
the magnet, or away from it, depending on which way the magnet
was �ipped when it was stuck onto the battery. Imagine sighting
along the upward force vector, which you could do if you were
a tiny bug lying on your back underneath the wire. Since the
electrons are negatively charged, the B vector must be counter-
clockwise from the v vector, which means toward the magnet.

A circular orbit example 2
Magnetic forces cause a beam of electrons to move in a circle.
The beam is created in a vacuum tube, in which a small amount
of hydrogen gas has been left. A few of the electrons strike hy-
drogen molecules, creating light and letting us see the beam. A
magnetic �eld is produced by passing a current (meter) through
the circular coils of wire in front of and behind the tube. In the
bottom �gure, with the magnetic �eld turned on, the force per-
pendicular to the electrons’ direction of motion causes them to
move in a circle.

Nervous-system effects during an MRI scan example 3
During an MRI scan of the head, the patient’s nervous system

is exposed to intense magnetic �elds, and there are ions moving
around in the nerves. The resulting forces on the ions can cause
symptoms such as vertigo.

Energy in the magnetic �eld

On p. 649 I gave equations for the energy stored in the gravitational
and electric �elds. Since a magnetic �eld is essentially an electric
�eld seen in a di�erent frame of reference, we expect the magnetic-
�eld equation to be closely analogous to the electric version, and it
is:

(energy stored in the gravitational �eld per m 3) = �
1

8�G
jgj2

(energy stored in the electric �eld per m3) =
1

8�k
jE j2

(energy stored in the magnetic �eld per m3) =
c2

8�k
jB j2

The idea here is that k=c2 is the magnetic version of the electric
quantity k, the 1=c2 representing the fact that magnetism is a rela-
tivistic e�ect.
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g / If you’ve �own in a jet
plane, you can thank relativity
for helping you to avoid crashing
into a mountain or an ocean. The
�gure shows a standard piece of
navigational equipment called a
ring laser gyroscope. A beam
of light is split into two parts,
sent around the perimeter of the
device, and reunited. Since light
travels at the universal speed c,
which is constant, we expect the
two parts to come back together
at the same time. If they don’t,
it’s evidence that the device has
been rotating. The plane’s com-
puter senses this and notes how
much rotation has accumulated.

Getting killed by a solenoid example 4
Solenoids are very common electrical devices, but they can be a
hazard to someone who is working on them. Imagine a solenoid
that initially has a DC current passing through it. The current cre-
ates a magnetic �eld inside and around it, which contains energy.
Now suppose that we break the circuit. Since there is no longer
a complete circuit, current will quickly stop �owing, and the mag-
netic �eld will collapse very quickly. The �eld had energy stored
in it, and even a small amount of energy can create a danger-
ous power surge if released over a short enough time interval. It
is prudent not to �ddle with a solenoid that has current �owing
through it, since breaking the circuit could be hazardous to your
health.

As a typical numerical estimate, let’s assume a 40 cm � 40 cm
� 40 cm solenoid with an interior magnetic �eld of 1.0 T (quite
a strong �eld). For the sake of this rough estimate, we ignore
the exterior �eld, which is weak, and assume that the solenoid is
cubical in shape. The energy stored in the �eld is

(energy per unit volume)(volume) =
c2

8� k
jBj2V

= 3 � 104 J

That’s a lot of energy!

24.3 The universal speed c
Let’s think a little more about the role of the 45-degree diagonal in
the Lorentz transformation. Slopes on these graphs are interpreted
as velocities. This line has a slope of 1 in relativistic units, but
that slope corresponds toc in ordinary metric units. We already
know that the relativistic distance unit must be extremely large
compared to the relativistic time unit, so c must be extremely large.
Now note what happens when we perform a Lorentz transformation:
this particular line gets stretched, but the new version of the line lies
right on top of the old one, and its slope stays the same. In other
words, if one observer says that something has a velocity equal toc,
every other observer will agree on that velocity as well. (The same
thing happens with � c.)

Velocities don’t simply add and subtract.

This is counterintuitive, since we expect velocities to add and sub-
tract in relative motion. If a dog is running away from me at 5
m/s relative to the sidewalk, and I run after it at 3 m/s, the dog’s
velocity in my frame of reference is 2 m/s. According to everything
we have learned about motion (p. 84), the dog must have di�erent
speeds in the two frames: 5 m/s in the sidewalk’s frame and 2 m/s
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h / A proof that causality im-
poses a universal speed limit. In
the original frame of reference,
represented by the square, event
A happens a little before event B.
In the new frame, shown by the
parallelogram, A happens after
t = 0, but B happens before t = 0;
that is, B happens before A. The
time ordering of the two events
has been reversed. This can only
happen because events A and B
are very close together in time
and fairly far apart in space. The
line segment connecting A and
B has a slope greater than 1,
meaning that if we wanted to be
present at both events, we would
have to travel at a speed greater
than c (which equals 1 in the
units used on this graph). You will
�nd that if you pick any two points
for which the slope of the line
segment connecting them is less
than 1, you can never get them to
straddle the new t = 0 line in this
funny, time-reversed way. Since
different observers disagree on
the time order of events like A
and B, causality requires that
information never travel from
A to B or from B to A; if it did,
then we would have time-travel
paradoxes. The conclusion is that
c is the maximum speed of cause
and effect in relativity.

in mine. But velocities are measured by dividing a distance by a
time, and both distance and time are distorted by relativistic e�ects,
so we actually shouldn’t expect the ordinary arithmetic addition of
velocities to hold in relativity; it’s an approximation that’s valid at
velocities that are small compared toc.

A universal speed limit

For example, suppose Janet takes a trip in a spaceship, and accel-
erates until she is moving at 0.6c relative to the earth. She then
launches a space probe in the forward direction at a speed relative
to her ship of 0.6c. We might think that the probe was then moving
at a velocity of 1.2c, but in fact the answer is still less than c (prob-
lem 1, page 722). This is an example of a more general fact about
relativity, which is that c represents a universal speed limit. This is
required by causality, as shown in �gure h.

Light travels at c.

Now consider a beam of light. We’re used to talking casually about
the \speed of light," but what does that really mean? Motion is
relative, so normally if we want to talk about a velocity, we have to
specify what it’s measured relative to. A sound wave has a certain
speed relative to the air, and a water wave has its own speed relative
to the water. If we want to measure the speed of an ocean wave, for
example, we should make sure to measure it in a frame of reference
at rest relative to the water. But light isn’t a vibration of a physical
medium; it can propagate through the near-perfect vacuum of outer
space, as when rays of sunlight travel to earth. This seems like a
paradox: light is supposed to have a speci�c speed, but there is no
way to decide what frame of reference to measure it in. The way
out of the paradox is that light must travel at a velocity equal to c.
Since all observers agree on a velocity ofc, regardless of their frame
of reference, everything is consistent.

The Michelson-Morley experiment

The constancy of the speed of light had in fact already been observed
when Einstein was an 8-year-old boy, but because nobody could
�gure out how to interpret it, the result was largely ignored. In
1887 Michelson and Morley set up a clever apparatus to measure
any di�erence in the speed of light beams traveling east-west and
north-south. The motion of the earth around the sun at 110,000
km/hour (about 0.01% of the speed of light) is to our west during the
day. Michelson and Morley believed that light was a vibration of a
mysterious medium called the ether, so they expected that the speed
of light would be a �xed value relative to the ether. As the earth
moved through the ether, they thought they would observe an e�ect
on the velocity of light along an east-west line. For instance, if they
released a beam of light in a westward direction during the day, they
expected that it would move away from them at less than the normal
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speed because the earth was chasing it through the ether. They were
surprised when they found that the expected 0.01% change in the
speed of light did not occur.

The Michelson-Morley experiment, shown in photographs, and drawings
from the original 1887 paper. 1. A simpli�ed drawing of the apparatus. A
beam of light from the source, s, is partially re�ected and partially trans-
mitted by the half-silvered mirror h1. The two half-intensity parts of the
beam are re�ected by the mirrors at a and b, reunited, and observed in
the telescope, t. If the earth’s surface was supposed to be moving through
the ether, then the times taken by the two light waves to pass through the
moving ether would be unequal, and the resulting time lag would be de-
tectable by observing the interference between the waves when they were
reunited. 2. In the real apparatus, the light beams were re�ected multi-
ple times. The effective length of each arm was increased to 11 meters,
which greatly improved its sensitivity to the small expected difference in
the speed of light. 3. In an earlier version of the experiment, they had run
into problems with its �extreme sensitiveness to vibration,� which was �so
great that it was impossible to see the interference fringes except at brief
intervals . . . even at two o’clock in the morning.� They therefore mounted
the whole thing on a massive stone �oating in a pool of mercury, which
also made it possible to rotate it easily. 4. A photo of the apparatus.

706 Chapter 24 Electromagnetism



Discussion questions

A The �gure shows a famous thought experiment devised by Einstein.
A train is moving at constant velocity to the right when bolts of lightning
strike the ground near its front and back. Alice, standing on the dirt at
the midpoint of the �ashes, observes that the light from the two �ashes
arrives simultaneously, so she says the two strikes must have occurred
simultaneously. Bob, meanwhile, is sitting aboard the train, at its middle.
He passes by Alice at the moment when Alice later �gures out that the
�ashes happened. Later, he receives �ash 2, and then �ash 1. He infers
that since both �ashes traveled half the length of the train, �ash 2 must
have occurred �rst. How can this be reconciled with Alice’s belief that the
�ashes were simultaneous? Explain using a graph.

B Use a graph to resolve the following relativity paradox. Relativity
says that in one frame of reference, event A could happen before event
B, but in someone else’s frame B would come before A. How can this be?
Obviously the two people could meet up at A and talk as they cruised
past each other. Wouldn’t they have to agree on whether B had already
happened?

C The machine-gunner in the �gure sends out a spray of bullets.
Suppose that the bullets are being shot into outer space, and that the
distances traveled are trillions of miles (so that the human �gure in the
diagram is not to scale). After a long time, the bullets reach the points
shown with dots which are all equally far from the gun. Their arrivals
at those points are events A through E, which happen at different times.
Sketch these events on a position-time graph. The chain of impacts ex-
tends across space at a speed greater than c. Does this violate special
relativity?
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Discussion question C.

D The graph shows three galaxies. The axes are drawn according to
an observer at rest relative to the galaxy 2, so that that galaxy is always at
the same x coordinate. Intelligent species in the three different galaxies
develop radio technology independently, and at some point each begins
to actively send out signals in an attempt to communicate with other civi-
lizations. Events a, b, and c mark the points at which these signals begin
spreading out across the universe at the speed of light. Find the events at
which the inhabitants of galaxy 2 detect the signals from galaxies 1 and
3. According to 2, who developed radio �rst, 1 or 3? On top of the graph,
draw a new pair of position and time axes, for the frame in which galaxy 3
is at rest. According to 3, in what order did events a, b, and c happen?

Discussion question D.
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l / The geometry of induced
�elds. The induced �eld tends to
form a whirlpool pattern around
the change in the vector produc-
ing it. Note how they circulate in
opposite directions.

24.4 Induction
The principle of induction

Physicists of Michelson and Morley’s generation thought that light
was a mechanical vibration of the ether, but we now know that it is a
ripple in the electric and magnetic �elds. With hindsight, relativity
essentially requires this:

1. Relativity requires that changes in any �eld propagate as waves
at a �nite speed (p. 635).

2. Relativity says that if a wave has a �xed speed but is not a
mechanical disturbance in a physical medium, then it must
travel at the universal velocity c (p. 705).

What is less obvious is that there are not two separate kinds of
waves, electric and magnetic. In fact an electric wave can’t exist
without a magnetic one, or a magnetic one without an electric one.
This new fact follows from the principle of induction, which was
discovered experimentally by Faraday in 1831, seventy-�ve years
before Einstein. Let’s state Faraday’s idea �rst, and then see how
something like it must follow inevitably from relativity:

the principle of induction
Any electric �eld that changes over time will produce a mag-
netic �eld in the space around it.

Any magnetic �eld that changes over time will produce an
electric �eld in the space around it.

The induced �eld tends to have a whirlpool pattern, as shown in
�gure l, but the whirlpool image is not to be taken too literally; the
principle of induction really just requires a �eld pattern such that, if
one inserted a paddlewheel in it, the paddlewheel would spin. All of
the �eld patterns shown in �gure m are ones that could be created
by induction; all have a counterclockwise \curl" to them.

m / Three �elds with counter-
clockwise �curls.�
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o / A generator.

p / A transformer.

n / Observer 1 is at rest with respect to the bar magnet, and observes
magnetic �elds that have different strengths at different distances from the
magnet. Observer 2, hanging out in the region to the left of the magnet,
sees the magnet moving toward her, and detects that the magnetic �eld
in that region is getting stronger as time passes.

Figure n shows an example of the fundamental reason why a chang-
ing B �eld must create an E �eld. In section 23.3 we established
that according to relativity, what one observer describes as a purely
magnetic �eld, an observer in a di�erent state of motion describes
as a mixture of magnetic and electric �elds. This is why there must
be both an E and a B in observer 2’s frame. Observer 2 cannot
explain the electric �eld as coming from any charges. In frame 2,
the E can only be explained as an e�ect caused by the changingB .

Observer 1 says, \2 feels a changingB �eld because he’s moving
through a static �eld." Observer 2 says, \I feel a changing B because
the magnet is getting closer."

Although this argument doesn’t prove the \whirlpool" geometry, we
can verify that the �elds I’ve drawn in �gure n are consistent with
it. The � B vector is upward, and the electric �eld has a curliness to
it: a paddlewheel inserted in the electric �eld would spin clockwise
as seen from above, since the clockwise torque made by the strong
electric �eld on the right is greater than the counterclockwise torque
made by the weaker electric �eld on the left.

The generator example 5
A generator, o, consists of a permanent magnet that rotates within
a coil of wire. The magnet is turned by a motor or crank, (not
shown). As it spins, the nearby magnetic �eld changes. Accord-
ing to the principle of induction, this changing magnetic �eld re-
sults in an electric �eld, which has a whirlpool pattern. This elec-
tric �eld pattern creates a current that whips around the coils of
wire, and we can tap this current to light the lightbulb.

self-check A
When you’re driving a car, the engine recharges the battery continu-
ously using a device called an alternator, which is really just a genera-
tor like the one shown on the previous page, except that the coil rotates
while the permanent magnet is �xed in place. Why can’t you use the
alternator to start the engine if your car’s battery is dead? . Answer,
p. 1041

The transformer example 6
In example 18 on p. 607 we discussed the advantages of trans-
mitting power over electrical lines using high voltages and low
currents. However, we don’t want our wall sockets to operate at
10000 volts! For this reason, the electric company uses a device
called a transformer, p, to convert to lower voltages and higher
currents inside your house. The coil on the input side creates a
magnetic �eld. Transformers work with alternating current, so the
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magnetic �eld surrounding the input coil is always changing. This
induces an electric �eld, which drives a current around the output
coil.

If both coils were the same, the arrangement would be symmetric,
and the output would be the same as the input, but an output coil
with a smaller number of coils gives the electric forces a smaller
distance through which to push the electrons. Less mechanical
work per unit charge means a lower voltage. Conservation of en-
ergy, however, guarantees that the amount of power on the output
side must equal the amount put in originally, IinVin = IoutVout , so
this reduced voltage must be accompanied by an increased cur-
rent.

24.5 Electromagnetic waves
The most important consequence of induction is the existence of
electromagnetic waves. Whereas a gravitational wave would consist
of nothing more than a rippling of gravitational �elds, the principle
of induction tells us that there can be no purely electrical or purely
magnetic waves. Instead, we have waves in which there are both
electric and magnetic �elds, such as the sinusoidal one shown in the
�gure. Maxwell proved that such waves were a direct consequence
of his equations, and derived their properties mathematically. The
derivation would be beyond the mathematical level of this book, so
we will just state the results.

An electromagnetic wave.

A sinusoidal electromagnetic wave has the geometry shown above.
The E and B �elds are perpendicular to the direction of motion, and
are also perpendicular to each other. If you look along the direction
of motion of the wave, the B vector is always 90 degrees clockwise
from the E vector. In a plane wave, the magnitudes of the two �elds
are related by jE j = cjB j.

How is an electromagnetic wave created? It could be emitted, for
example, by an electron orbiting an atom or currents going back and
forth in a transmitting antenna. In general any accelerating charge
will create an electromagnetic wave, although only a current that
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r / Example 8. The incident
and re�ected waves are drawn
offset from each other for clar-
ity, but are actually on top of
each other so that their �elds
superpose.

Heinrich Hertz (1857-1894).

varies sinusoidally with time will create a sinusoidal wave. Once
created, the wave spreads out through space without any need for
charges or currents along the way to keep it going. As the electric
�eld oscillates back and forth, it induces the magnetic �eld, and
the oscillating magnetic �eld in turn creates the electric �eld. The
whole wave pattern propagates through empty space at the velocity
c.

Einstein’s motorcycle example 7
As a teenage physics student, Einstein imagined the following
paradox. (See p. 513.) What if he could get on a motorcycle
and ride at speed c, alongside a beam of light? In his frame of
reference, he observes constant electric and magnetic �elds. But
only a changing electric �eld can induce a magnetic �eld, and
only a changing magnetic �eld can induce an electric �eld. The
laws of physics are violated in his frame, and this seems to violate
the principle that all frames of reference are equally valid.

The resolution of the paradox is that c is a universal speed limit,
so the motorcycle can’t be accelerated to c. Observers can never
be at rest relative to a light wave, so no observer can have a frame
of reference in which a light wave is observed to be at rest.

Re�ection example 8
The wave in �gure r hits a silvered mirror. The metal is a good
conductor, so it has constant voltage throughout, and the electric
�eld equals zero inside it: the wave doesn’t penetrate and is 100%
re�ected. If the electric �eld is to be zero at the surface as well,
the re�ected wave must have its electric �eld inverted (p. 525), so
that the incident and re�ected �elds cancel there.

But the magnetic �eld of the re�ected wave is not inverted. This
is because the re�ected wave, when viewed along its leftward
direction of propagation, needs to have its B vector 90 degrees
clockwise from its E vector.

Polarization

Two electromagnetic waves traveling in the same direction through
space can di�er by having their electric and magnetic �elds in dif-
ferent directions, a property of the wave called its polarization.

Light is an electromagnetic wave

Once Maxwell had derived the existence of electromagnetic waves,
he became certain that they were the same phenomenon as light.
Both are transverse waves (i.e., the vibration is perpendicular to
the direction the wave is moving), and the velocity is the same.

Heinrich Hertz (for whom the unit of frequency is named) veri�ed
Maxwell’s ideas experimentally. Hertz was the �rst to succeed in
producing, detecting, and studying electromagnetic waves in detail
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using antennas and electric circuits. To produce the waves, he had
to make electric currents oscillate very rapidly in a circuit. In fact,
there was really no hope of making the current reverse directions
at the frequencies of 1015 Hz possessed by visible light. The fastest
electrical oscillations he could produce were 109 Hz, which would
give a wavelength of about 30 cm. He succeeded in showing that,
just like light, the waves he produced were polarizable, and could be
re
ected and refracted (i.e., bent, as by a lens), and he built devices
such as parabolic mirrors that worked according to the same optical
principles as those employing light. Hertz’s results were convincing
evidence that light and electromagnetic waves were one and the
same.

The electromagnetic spectrum

Today, electromagnetic waves with frequencies in the range em-
ployed by Hertz are known as radio waves. Any remaining doubts
that the \Hertzian waves," as they were then called, were the same
type of wave as light waves were soon dispelled by experiments in
the whole range of frequencies in between, as well as the frequencies
outside that range. In analogy to the spectrum of visible light, we
speak of the entire electromagnetic spectrum, of which the visible
spectrum is one segment.

The terminology for the various parts of the spectrum is worth mem-
orizing, and is most easily learned by recognizing the logical relation-
ships between the wavelengths and the properties of the waves with
which you are already familiar. Radio waves have wavelengths that
are comparable to the size of a radio antenna, i.e., meters to tens
of meters. Microwaves were named that because they have much
shorter wavelengths than radio waves; when food heats unevenly
in a microwave oven, the small distances between neighboring hot
and cold spots is half of one wavelength of the standing wave the
oven creates. The infrared, visible, and ultraviolet obviously have
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Example 9: an electromag-
netic wave that is legal in one
frame of reference is legal in
another. As in �gure e on p. 699,
the each frame of reference is in
motion relative to the other along
the x axis. If the wave’s electric
�eld is aligned with the y axis,
and its magnetic �eld with z, then
x is also the direction in which
the wave is moving, as required
for our example.

much shorter wavelengths, because otherwise the wave nature of
light would have been as obvious to humans as the wave nature of
ocean waves. To remember that ultraviolet, x-rays, and gamma rays
all lie on the short-wavelength side of visible, recall that all three of
these can cause cancer. (As we’ll discuss later in the course, there is
a basic physical reason why the cancer-causing disruption of DNA
can only be caused by very short-wavelength electromagnetic waves.
Contrary to popular belief, microwaves cannot cause cancer, which
is why we have microwave ovens and not x-ray ovens!)

Switching frames of reference example 9
If we switch to a different frame of reference, a legal light wave
should still be legal. Consider the requirement E = cB, in the
case where observer 1 says observer 2 is trying to run away from
the wave. In �gure e on p. 699, we saw that the familiar par-
allelogram graphs described the transformation of electric and
magnetic �elds from one frame of reference to another. These
pictures are intended to be used in units where c = 1, so the
requirement for the �elds becomes E = B, and such a combina-
tion of �elds is represented by a dot on the diagonal, which is the
same line in both frames.

Why the sky is blue example 10
When sunlight enters the upper atmosphere, a particular air mole-
cule �nds itself being washed over by an electromagnetic wave of
frequency f . The molecule’s charged particles (nuclei and elec-
trons) act like oscillators being driven by an oscillating force, and
respond by vibrating at the same frequency f . Energy is sucked
out of the incoming beam of sunlight and converted into the ki-
netic energy of the oscillating particles. However, these particles
are accelerating, so they act like little radio antennas that put the
energy back out as spherical waves of light that spread out in all
directions. An object oscillating at a frequency f has an accel-
eration proportional to f 2, and an accelerating charged particle
creates an electromagnetic wave whose �elds are proportional
to its acceleration, so the �eld of the reradiated spherical wave
is proportional to f 2. The energy of a �eld is proportional to the
square of the �eld, so the energy of the reradiated wave is pro-
portional to f 4. Since blue light has about twice the frequency of
red light, this process is about 24 = 16 times as strong for blue as
for red, and that’s why the sky is blue.
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u / In this scene from Swan
Lake, the choreography has a
symmetry with respect to left and
right.

s / An electromagnetic wave strikes an ohmic surface. The wave’s electric
�eld causes currents to �ow up and down. The wave’s magnetic �eld then
acts on these currents, producing a force in the direction of the wave’s
propagation. This is a pre-relativistic argument that light must possess
inertia.

t / A simpli�ed drawing of the 1903 experiment by Nichols and Hull that
veri�ed the predicted momentum of light waves. Two circular mirrors were
hung from a �ne quartz �ber, inside an evacuated bell jar. A 150 mW
beam of light was shone on one of the mirrors for 6 s, producing a tiny
rotation, which was measurable by an optical lever (not shown). The force
was within 0.6% of the theoretically predicted value (problem 12 on p. 812)
of 0.001 � N. For comparison, a short clipping of a single human hair
weighs � 1 � N.

Momentum of light

Newton de�ned momentum as mv, which would imply that light,
which has no mass, should have no momentum. But Newton’s laws
only work at speeds small compared to the speed of light, and light
travels at the speed of light. In fact, it’s straightforward to show that
electromagnetic waves have momentum. If a light wave strikes an
ohmic surface, as in �gure s, the wave’s electric �eld causes charges
to vibrate back and forth in the surface. These currents then ex-
perience a magnetic force from the wave’s magnetic �eld, and ap-
plication of the geometrical rule on p. 702 shows that the resulting
force is in the direction of propagation of the wave. A light wave
has momentum and inertia. This is explored further in problem 12
on p. 812. Figure t shows an experimental con�rmation.

24.6 ? Symmetry and handedness
Imagine that you establish radio contact with an alien on another
planet. Neither of you even knows where the other one’s planet
is, and you aren’t able to establish any landmarks that you both
recognize. You manage to learn quite a bit of each other’s languages,
but you’re stumped when you try to establish the de�nitions of left
and right (or, equivalently, clockwise and counterclockwise). Is there
any way to do it?

If there was any way to do it without reference to external land-
marks, then it would imply that the laws of physics themselves were
asymmetric, which would be strange. Why should they distinguish
left from right? The gravitational �eld pattern surrounding a star
or planet looks the same in a mirror, and the same goes for electric
�elds. The �eld patterns shown in section 24.2 seem to violate this
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C.S. Wu

v / A graphical representation
of the Lorentz transformation for
a velocity of (3=5)c. The long
diagonal is stretched by a factor
of two, the short one is half its
former length, and the area is the
same as before.

w / The pattern of waves made
by a point source moving to the
right across the water. Note
the shorter wavelength of the
forward-emitted waves and
the longer wavelength of the
backward-going ones.

principle, but do they really? Could you use these patterns to ex-
plain left and right to the alien? In fact, the answer is no. If you
look back at the de�nition of the magnetic �eld in section 24.1, it
also contains a reference to handedness: the counterclockwise direc-
tion of the loop’s current as viewed along the magnetic �eld. The
aliens might have reversed their de�nition of the magnetic �eld, in
which case their drawings of �eld patterns would look like mirror
images of ours.

Until the middle of the twentieth century, physicists assumed that
any reasonable set of physical laws would have to have this kind of
symmetry between left and right. An asymmetry would be grotesque.
Whatever their aesthetic feelings, they had to change their opinions
about reality when experiments by C.S. Wu et al. showed that the
weak nuclear force (section 22.4) violates right-left symmetry! It is
still a mystery why right-left symmetry is observed so scrupulously
in general, but is violated by one particular type of physical process.

24.7 ? Doppler shifts and clock time
Figure v shows our now-familiar method of visualizing a Lorentz
transformation, in a case where the numbers come out to be par-
ticularly simple. This diagram has two geometrical features that
we have referred to before without digging into their physical sig-
ni�cance: the stretch factor of the diagonals, and thearea. In this
section we’ll see that the former can be related to the Doppler e�ect,
and the latter to clock time.

Doppler shifts of light

When Doppler shifts happen to ripples on a pond or the sound waves
from an airplane, they can depend on the relative motion of three
di�erent objects: the source, the receiver, and the medium. But
light waves don’t have a medium. Therefore Doppler shifts of light
can only depend on the relative motion of the source and observer.

One simple case is the one in which the relative motion of the source
and the receiver is perpendicular to the line connecting them. That
is, the motion is transverse. Nonrelativistic Doppler shifts happen
because the distance between the source and receiver is changing,
so in nonrelativistic physics we don’t expect any Doppler shift at
all when the motion is transverse, and this is what is in fact ob-
served to high precision. For example, the photo shows shortened
and lengthened wavelengths to the right and left, along the source’s
line of motion, but an observer above or below the source measures
just the normal, unshifted wavelength and frequency. But relativis-
tically, we have a time dilation e�ect, so for light waves emitted
transversely, there is a Doppler shift of 1=G in frequency (or G in
wavelength).

The other simple case is the one in which the relative motion of the
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x / At event O, the source
and the receiver are on top of
each other, so as the source
emits a wave crest, it is received
without any time delay. At P, the
source emits another wave crest,
and at Q the receiver receives it.

source and receiver is longitudinal, i.e., they are either approaching
or receding from one another. For example, distant galaxies are
receding from our galaxy due to the expansion of the universe, and
this expansion was originally detected because Doppler shifts toward
the red (low-frequency) end of the spectrum were observed.

Nonrelativistically, we would expect the light from such a galaxy
to be Doppler shifted down in frequency by some factor, which
would depend on the relative velocities of three di�erent objects: the
source, the wave’s medium, and the receiver. Relativistically, things
get simpler, because light isn’t a vibration of a physical medium, so
the Doppler shift can only depend on a single velocityv, which is
the rate at which the separation between the source and the receiver
is increasing.

The square in �gure x is the \graph paper" used by someone who
considers the source to be at rest, while the parallelogram plays a
similar role for the receiver. The �gure is drawn for the case where
v = 3=5 (in units where c = 1), and in this case the stretch factor
of the long diagonal is 2. To keep the area the same, the short
diagonal has to be squished to half its original size. But now it’s a
matter of simple geometry to show that OP equals half the width
of the square, and this tells us that the Doppler shift is a factor of
1/2 in frequency. That is, the squish factor of the short diagonal is
interpreted as the Doppler shift. To get this as a general equation for
velocities other than 3/5, one can show by straightforward �ddling
with the result of part c of problem 2 on p. 694 that the Doppler
shift is

D (v) =
r

1 � v
1 + v

.

Here v > 0 is the case where the source and receiver are getting
farther apart, v < 0 the case where they are approaching. (This
is the opposite of the sign convention used in section 19.5. It is
convenient to change conventions here so that we can use positive
values ofv in the case of cosmological red-shifts, which are the most
important application.)

Suppose that Alice stays at home on earth while her twin Betty takes
o� in her rocket ship at 3/5 of the speed of light. When I �rst learned
relativity, the thing that caused me the most pain was understanding
how each observer could say that the other was the one whose time
was slow. It seemed to me that if I could take a pill that would speed
up my mind and my body, then naturally I would see everybodyelse
as beingslow. Shouldn’t the same apply to relativity? But suppose
Alice and Betty get on the radio and try to settle who is the fast
one and who is the slow one. Each twin’s voice sounds slooooowed
doooowwwwn to the other. If Alice claps her hands twice, at a
time interval of one second by her clock, Betty hears the hand-
claps coming over the radio two seconds apart, but the situation is
exactly symmetric, and Alice hears the same thing if Betty claps.
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Each twin analyzes the situation using a diagram identical to x, and
attributes her sister’s observations to a complicated combination of
time distortion, the time taken by the radio signals to propagate,
and the motion of her twin relative to her.

self-check B
Turn your book upside-down and reinterpret �gure x. . Answer, p.
1041

A symmetry property of the Doppler effect example 11
Suppose that A and B are at rest relative to one another, but C is
moving along the line between A and B. A transmits a signal to C,
who then retransmits it to B. The signal accumulates two Doppler
shifts, and the result is their product D(v )D(� v ). But this product
must equal 1, so we must have D(� v )D(v ) = 1, which can be
veri�ed directly from the equation.

The Ives-Stilwell experiment example 12
The result of example 11 was the basis of one of the earliest labo-
ratory tests of special relativity, by Ives and Stilwell in 1938. They
observed the light emitted by excited by a beam of H+

2 and H+
3

ions with speeds of a few tenths of a percent of c. Measuring
the light from both ahead of and behind the beams, they found
that the product of the Doppler shifts D(v )D(� v ) was equal to 1,
as predicted by relativity. If relativity had been false, then one
would have expected the product to differ from 1 by an amount
that would have been detectable in their experiment. In 2003,
Saathoff et al. carried out an extremely precise version of the
Ives-Stilwell technique with Li+ ions moving at 6.4% of c. The
frequencies observed, in units of MHz, were:

fo = 546466918.8 � 0.4
(unshifted frequency)

foD(� v ) = 582490203.44 � .09
(shifted frequency, forward)

foD(v ) = 512671442.9 � 0.5
(shifted frequency, backward)p

foD(� v ) � foD(v ) = 546466918.6 � 0.3

The results show incredibly precise agreement between fo andp
foD(� v ) � foD(v ), as expected relativistically because D(v )D(� v )

is supposed to equal 1. The agreement extends to 9 signi�cant
�gures, whereas if relativity had been false there should have
been a relative disagreement of about v2 = .004, i.e., a discrep-
ancy in the third signi�cant �gure. The spectacular agreement
with theory has made this experiment a lightning rod for anti-
relativity kooks.

We saw on p. 704 that relativistic velocities should not be expected
to be exactly additive, and problem 1 on p. 722 veri�es this in the
special case where A moves relative to B at 0.6c and B relative to
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C at 0.6c | the result not being 1.2c. The relativistic Doppler
shift provides a simple way of deriving a general equation for the
relativistic combination of velocities; problem 21 on p. 727 guides
you through the steps of this derivation.

? Clock time

On p. 679 we proved that the Lorentz transformation doesn’t change
the area of a shape in thex-t plane. We used this only as a stepping
stone toward the Lorentz transformation, but it is natural to wonder
whether this kind of area has any physical interest of its own.

The equal-area result is not relativistic, since the proof never ap-
peals to property 5 on page 675. Cases I and II on page 677 also
have the equal-area property. We can see this clearly in a Galilean
transformation like �gure l on p. 676, where the distortion of the
rectangle could be accomplished by cutting it into vertical slices
and then displacing the slices upward without changing their areas.

But the area does have a nice interpretation in the relativistic case.
Suppose that we have events A (Charles VII is restored to the
throne) and B (Joan of Arc is executed). Now imagine that techno-
logically advanced aliens want to be present at both A and B, but
in the interim they wish to 
y away in their spaceship, be present
at some other event P (perhaps a news conference at which they
give an update on the events taking place on earth), but get back
in time for B. Since nothing can go faster thanc (which we take to
equal 1 in appropriate units), P cannot be too far away. The set
of all possible events P forms a rectangle, �gure y/1, in thex � t
plane that has A and B at opposite corners and whose edges have
slopes equal to� 1. We call this type of rectangle a light-rectangle,
because its sides could represent the motion of rays of light.

y / 1. The gray light-rectangle rep-
resents the set of all events such
as P that could be visited after A
and before B.
2. The rectangle becomes a
square in the frame in which A
and B occur at the same location
in space.
3. The area of the dashed square
is � 2, so the area of the gray
square is � 2=2.The area of this rectangle will be the same regardless of one’s frame

of reference. In particular, we could choose a special frame of ref-
erence, panel 2 of the �gure, such that A and B occur in the same
place. (They do not occur at the same place, for example, in the
sun’s frame, because the earth is spinning and going around the
sun.) Since the speedc, which equals 1 in our units, is the same in
all frames of reference, and the sides of the rectangle had slopes� 1
in frame 1, they must still have slopes� 1 in frame 2. The rectangle
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becomes a square with its diagonals parallel to thex and t axes, and
the length of these diagonals equals the time� elapsed on a clock
that is at rest in frame 2, i.e., a clock that glides through space at
constant velocity from A to B, meeting up with the planet earth at
the appointed time. As shown in panel 3 of the �gure, the area of
the gray regions can be interpreted as half the square of this gliding-
clock time. If events A and B are separated by a distancex and a
time t, then in general t2 � x2 gives the square of the gliding-clock
time.1

When jx j is greater than jt j, events A and B are so far apart in
space and so close together in time that it would be impossible to
have a cause and e�ect relationship between them, sincec = 1 is
the maximum speed of cause and e�ect. In this situation t2 � x2

is negative and cannot be interpreted as a clock time, but it can
be interpreted as minus the square of the distance between A and
B as measured by rulers at rest in a frame in which A and B are
simultaneous.

No matter what, t2 � x2 is the same as measured in all frames of
reference. Geometrically, it plays the same role in thex-t plane
that ruler measurements play in the Euclidean plane. In Euclidean
geometry, the ruler-distance between any two points stays the same
regardless of rotation, i.e., regardless of the angle from which we
view the scene; according to the Pythagorean theorem, the square
of this distance is x2 + y2. In the x-t plane, t2 � x2 stays the same
regardless of the frame of reference.

To avoid overloading the reader with terms to memorize, some com-
monly used terminology is relegated to problem 22 on p. 728.

1Proof: Based on units, the expression must have the form (: : :)t2 + ( : : :)tx +
(: : :)x2 , where each (: : :) represents a unitless constant. The tx coe�cient must
be zero by property 2 on p. 675. For consistency with �gure y/3, the t2 coe�cient
must equal 1. Since the area vanishes forx = t , the x2 coe�cient must equal
� 1.
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Summary
Selected vocabulary
magnetic �eld . . a �eld of force, de�ned in terms of the torque

exerted on a test dipole
magnetic dipole . an object, such as a current loop, an atom,

or a bar magnet, that experiences torques due
to magnetic forces; the strength of magnetic
dipoles is measured by comparison with a stan-
dard dipole consisting of a square loop of wire
of a given size and carrying a given amount of
current

induction . . . . . the production of an electric �eld by a chang-
ing magnetic �eld, or vice-versa

Notation
B . . . . . . . . . the magnetic �eld
Dm . . . . . . . . magnetic dipole moment

Summary

The magnetic �eld is de�ned in terms of the torque on a magnetic
test dipole. It has no sources or sinks; magnetic �eld patterns never
converge on or diverge from a point.

Relativity dictates a maximum speed limit c for cause and e�ect.
This speed is the same in all frames of reference.

Relativity requires that the magnetic and electric �elds be intimately
related. The principle of induction states that any changing electric
�eld produces a magnetic �eld in the surrounding space, and vice-
versa. These induced �elds tend to form whirlpool patterns.

The most important consequence of the principle of induction is
that there are no purely magnetic or purely electric waves. Elec-
tromagnetic disturbances propagate outward atc as combined mag-
netic and electric waves, with a well-de�ned relationship between
the magnitudes and directions of the electric and magnetic �elds.
These electromagnetic waves are what light is made of, but other
forms of electromagnetic waves exist besides visible light, including
radio waves, x-rays, and gamma rays.
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Problems
Keyp

A computerized answer check is available online.R
A problem that requires calculus.

? A di�cult problem.

1 The �gure illustrates a Lorentz transformation using the
conventions employed in section 23.2. For simplicity, the transfor-
mation chosen is one that lengthens one diagonal by a factor of 2.
Since Lorentz transformations preserve area, the other diagonal is
shortened by a factor of 2. Let the original frame of reference, de-
picted with the square, be A, and the new one B. (a) By measuring
with a ruler on the �gure, show that the velocity of frame B rela-
tive to frame A is 0.6c. (b) Print out a copy of the page. With a
ruler, draw a third parallelogram that represents a second succes-
sive Lorentz transformation, one that lengthens the long diagonal
by another factor of 2. Call this third frame C. Use measurements
with a ruler to determine frame C’s velocity relative to frame A.
Does it equal double the velocity found in part a? Explain why it
should be expected to turn out the way it does.

p
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Problem 4.

2 (a) In this chapter we’ve represented Lorentz transformations
as distortions of a square into various parallelograms, with the de-
gree of distortion depending on the velocity of one frame of reference
relative to another. Suppose that one frame of reference was mov-
ing at c relative to another. Discuss what would happen in terms
of distortion of a square, and show that this is impossible by using
an argument similar to the one used to rule out transformations like
the one in �gure m on page 676.
(b) Resolve the following paradox. Two pen-pointer lasers are placed
side by side and aimed in parallel directions. Their beams both
travel at c relative to the hardware, but each beam has a velocity of
zero relative to the neighboring beam. But the speed of light can’t
be zero; it’s supposed to be the same in all frames of reference.

3 Consider two solenoids, one of which is smaller so that it can
be put inside the other. Assume they are long enough so that each
one only contributes signi�cantly to the �eld inside itself, and the
interior �elds are nearly uniform. Consider the con�guration where
the small one is inside the big one with their currents circulating in
the same direction, and a second con�guration in which the currents
circulate in opposite directions. Compare the energies of these con-
�gurations with the energy when the solenoids are far apart. Based
on this reasoning, which con�guration is stable, and in which con-
�guration will the little solenoid tend to get twisted around or spit
out? . Hint, p. 1030

4 The �gure shows a nested pair of circular wire loops used
to create magnetic �elds. (The twisting of the leads is a practical
trick for reducing the magnetic �elds they contribute, so the �elds
are very nearly what we would expect for an ideal circular current
loop.) The coordinate system below is to make it easier to discuss
directions in space. One loop is in they � z plane, the other in the
x � y plane. Each of the loops has a radius of 1.0 cm, and carries
1.0 A in the direction indicated by the arrow.
(a) Using the equation in optional section 24.2, calculate the mag-
netic �eld that would be produced by one such loop, at its center.

p

(b) Describe the direction of the magnetic �eld that would be pro-
duced, at its center, by the loop in the x � y plane alone.
(c) Do the same for the other loop.
(d) Calculate the magnitude of the magnetic �eld produced by the
two loops in combination, at their common center. Describe its
direction.

p
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5 One model of the hydrogen atom has the electron circling
around the proton at a speed of 2.2� 106 m/s, in an orbit with a
radius of 0.05 nm. (Although the electron and proton really orbit
around their common center of mass, the center of mass is very close
to the proton, since it is 2000 times more massive. For this problem,
assume the proton is stationary.) In homework problem 19, p. 619,
you calculated the electric current created.
(a) Now estimate the magnetic �eld created at the center of the
atom by the electron. We are treating the circling electron as a cur-
rent loop, even though it’s only a single particle.

p

(b) Does the proton experience a nonzero force from the electron’s
magnetic �eld? Explain.
(c) Does the electron experience a magnetic �eld from the proton?
Explain.
(d) Does the electron experience a magnetic �eld created by its own
current? Explain.
(e) Is there an electric force acting between the proton and electron?
If so, calculate it.

p

(f) Is there a gravitational force acting between the proton and elec-
tron? If so, calculate it.
(g) An inward force is required to keep the electron in its orbit {
otherwise it would obey Newton’s �rst law and go straight, leaving
the atom. Based on your answers to the previous parts, which force
or forces (electric, magnetic and gravitational) contributes signi�-
cantly to this inward force?
[Based on a problem by Arnold Arons.]

6 Suppose a charged particle is moving through a region of
space in which there is an electric �eld perpendicular to its velocity
vector, and also a magnetic �eld perpendicular to both the particle’s
velocity vector and the electric �eld. Show that there will be one
particular velocity at which the particle can be moving that results
in a total force of zero on it; this requires that you analyze both
the magnitudes and the directions of the forces compared to one
another. Relate this velocity to the magnitudes of the electric and
magnetic �elds. (Such an arrangement, called a velocity �lter, is
one way of determining the speed of an unknown particle.)

7 If you put four times more current through a solenoid, how
many times more energy is stored in its magnetic �eld?

p

8 Suppose we are given a permanent magnet with a complicated,
asymmetric shape. Describe how a series of measurements with
a magnetic compass could be used to determine the strength and
direction of its magnetic �eld at some point of interest. Assume that
you are only able to see the direction to which the compass needle
settles; you cannot measure the torque acting on it. ?
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9 Consider two solenoids, one of which is smaller so that it
can be put inside the other. Assume they are long enough to act
like ideal solenoids, so that each one only contributes signi�cantly
to the �eld inside itself, and the interior �elds are nearly uniform.
Consider the con�guration where the small one is partly inside and
partly hanging out of the big one, with their currents circulating in
the same direction. Their axes are constrained to coincide.
(a) Find the di�erence in the magnetic energy between the con�gu-
ration where the solenoids are separate and the con�guration where
the small one is inserted into the big one. Your equation will in-
clude the length x of the part of the small solenoid that is inside
the big one, as well as other relevant variables describing the two
solenoids.

p

(b) Based on your answer to part a, �nd the force acting

Problem 10.

10 Four long wires are arranged, as shown, so that their cross-
section forms a square, with connections at the ends so that current

ows through all four before exiting. Note that the current is to the
right in the two back wires, but to the left in the front wires. If the
dimensions of the cross-sectional square (height and front-to-back)
are b, �nd the magnetic �eld (magnitude and direction) along the
long central axis.

p

11 The purpose of this problem is to �nd the force experienced by
a straight, current-carrying wire running perpendicular to a uniform
magnetic �eld. (a) Let A be the cross-sectional area of the wire,n
the number of free charged particles per unit volume,q the charge
per particle, and v the average velocity of the particles. Show that
the current is I = Avnq. (b) Show that the magnetic force per unit
length is AvnqB . (c) Combining these results, show that the force
on the wire per unit length is equal to IB . . Solution, p. 1031

12 Suppose two long, parallel wires are carrying currentI 1 and
I 2. The currents may be either in the same direction or in oppo-
site directions. (a) Using the information from section 24.2, de-
termine under what conditions the force is attractive, and under
what conditions it is repulsive. Note that, because of the di�cul-
ties explored in problem 14, it’s possible to get yourself tied up in
knots if you use the energy approach of section 22.4. (b) Starting
from the result of problem 11, calculate the force per unit length.

. Solution, p. 1031
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Problem 15.

13 Section 24.2 states the following rule:

For a positively charged particle, the direction of the F vector is the
one such that if you sight along it, the B vector is clockwise from
the v vector.

Make a three-dimensional model of the three vectors using pencils
or rolled-up pieces of paper to represent the vectors assembled with
their tails together. Now write down every possible way in which
the rule could be rewritten by scrambling up the three symbolsF ,
B , and v. Referring to your model, which are correct and which are
incorrect?

14 Prove that any two planar current loops with the same value
of IA will experience the same torque in a magnetic �eld, regardless
of their shapes. In other words, the dipole moment of a current loop
can be de�ned as IA , regardless of whether its shape is a square.

?

15 A Helmholtz coil is de�ned as a pair of identical circular
coils lying in parallel planes and separated by a distance,h, equal
to their radius, b. (Each coil may have more than one turn of wire.)
Current circulates in the same direction in each coil, so the �elds
tend to reinforce each other in the interior region. This con�guration
has the advantage of being fairly open, so that other apparatus can
be easily placed inside and subjected to the �eld while remaining
visible from the outside. The choice ofh = b results in the most
uniform possible �eld near the center. A photograph of a Helmholtz
coil is shown in example 2 on page 703.
(a) Find the percentage drop in the �eld at the center of one coil,
compared to the full strength at the center of the whole apparatus.p

(b) What value of h (not equal to b) would make this di�erence
equal to zero?

p

16 (a) In the photo of the vacuum tube apparatus in �gure
24.2.2 on p. 703, infer the direction of the magnetic �eld from the
motion of the electron beam. (b) Based on your answer to a, �nd
the direction of the currents in the coils. (c) What direction are
the electrons in the coils going? (d) Are the currents in the coils
repelling or attracting the currents consisting of the beam inside the
tube? Compare with �gure ai on p. 691. . Solution, p. 1032

17 In the photo of the vacuum tube apparatus in section 24.2,
an approximately uniform magnetic �eld caused circular motion. Is
there any other possibility besides a circle? What can happen in
general? ?
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18 This problem is now problem 16 on p. 665.

19 In section 24.2 I gave an equation for the magnetic �eld in
the interior of a solenoid, but that equation doesn’t give the right
answer near the mouths or on the outside. Although in general the
computation of the �eld in these other regions is complicated, it is
possible to �nd a precise, simple result for the �eld at the center of
one of the mouths, using only symmetry and vector addition. What
is it? . Solution, p. 1032 ?

20 Prove that in an electromagnetic plane wave, half the energy
is in the electric �eld and half in the magnetic �eld.

21 As promised in section 24.7, this problem will lead you
through the steps of �nding an equation for the combination of
velocities in relativity, generalizing the numerical result found in
problem 1. Suppose that A moves relative to B at velocityu, and
B relative to C at v. We want to �nd A’s velocity w relative to
C, in terms of u and v. Suppose that A emits light with a certain
frequency. This will be observed by B with a Doppler shift D (u).
C detects a further shift of D (v) relative to B. We therefore expect
the Doppler shifts to multiply, D (w) = D (u)D (v), and this provides
an implicit rule for determining w if u and v are known. (a) Using
the expression forD given in section 24.7.1, write down an equation
relating u, v, and w. (b) Solve for w in terms of u and v. (c) Show
that your answer to part b satis�es the correspondence principle.

. Solution, p. 1032
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Problem 22.

22 On p. 719, we de�ned a quantity t2 � x2, which is often
referred to as the spacetime interval. Let’s notate it asI (cursive
letter \I"). The only reason this quantity is interesting is that it
stays the same in all frames of reference, but to de�ne it, we �rst
had to pick a frame of reference in order to de�ne anx � t plane, and
then turn around and prove that it didn’t matter what frame had
been chosen. It might thus be nicer simply to de�ne it as the square
of the gliding-clock time, in the case where B can be reached from
A. Since this de�nition never refers to any coordinates or frame of
reference, we know automatically that it is frame-independent. In
this case whereI > 0, we say that the relationship between A and
B is timelike; there is enough time for cause and e�ect to propagate
between A and B. An interval I < 0 is called spacelike.

In the spacelike case, we can de�neI using rulers, as on p. 720,
but it’s awkward to have to introduce an entirely new measuring
instrument in order to complete the de�nition. Geroch 2 suggests
a cute alternative in which this case as well can be treated using
clocks. Let observer O move inertially (i.e., without accelerating),
and let her initial position and state of motion be chosen such that
she will be present at event A. Before A, she emits a ray of light,
choosing to emit it at the correct time and in the correct direction
so that it will reach B. At B, we arrange to have the ray re
ected so
that O can receive the re
ection at some later time. Let t1 be the
time elapsed on O’s clock from emission of the �rst ray until event A,
and let t2 be the time from A until she receives the second ray. The
goal of this problem is to show that if we de�ne I as � t1t2, we obtain
the same result as with the previous de�nition. Since t1 are t2 are
simply clock readings, not coordinates de�ned in an arbitrary frame
of reference, this de�nition is automatically frame-independent.

(a) Show that I , as originally de�ned on p. 719, has the same units
as the expression� t1t2.
(b) Pick an event in the x � t plane, and sketch the regions that are
timelike and spacelike in relation to it.
(c) The special case ofI = 0 is called a lightlike interval. Such
events lie on a cone in the diagram drawn in part b, and this cone
is called the light cone. Verify that the two de�nitions of I agree on
the light cone.
(d) Prove that the two de�nitions agree on I in the spacelike case.
(e) What goes wrong if O doesn’t move inertially?

23 Can a �eld that is purely electrical in one frame of reference
be purely magnetic in some other frame? Use �gure e on p. 699.

2Robert Geroch, General Relativity from A to B , University of Chicago Press,
1978
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Exercise 24A: Polarization
Apparatus:

calcite (Iceland spar) crystal

polaroid �lm

1. Lay the crystal on a piece of paper that has print on it. You will observe a double image.
See what happens if you rotate the crystal.

Evidently the crystal does something to the light that passes through it on the way from the
page to your eye. One beam of light enters the crystal from underneath, but two emerge from
the top; by conservation of energy the energy of the original beam must be shared between
them. Consider the following three possible interpretations of what you have observed:

(a) The two new beams di�er from each other, and from the original beam, only in energy.
Their other properties are the same.

(b) The crystal adds to the light some mysterious new property (not energy), which comes in
two 
avors, X and Y. Ordinary light doesn’t have any of either. One beam that emerges from
the crystal has some X added to it, and the other beam has Y.

(c) There is some mysterious new property that is possessed by all light. It comes in two 
avors,
X and Y, and most ordinary light sources make an equal mixture of type X and type Y light.
The original beam is an even mixture of both types, and this mixture is then split up by the
crystal into the two puri�ed forms.

In parts 2 and 3 you’ll make observations that will allow you to �gure out which of these is
correct.

2. Now place a polaroid �lm over the crystal and see what you observe. What happens when
you rotate the �lm in the horizontal plane? Does this observation allow you to rule out any of
the three interpretations?

3. Now put the polaroid �lm under the crystal and try the same thing. Putting together all
your observations, which interpretation do you think is correct?

4. Look at an overhead light �xture through the polaroid, and try rotating it. What do you
observe? What does this tell you about the light emitted by the lightbulb?

5. Now position yourself with your head under a light �xture and directly over a shiny surface,
such as a glossy tabletop. You’ll see the lamp’s re
ection, and the light coming from the lamp
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to your eye will have undergone a re
ection through roughly a 180-degree angle (i.e. it very
nearly reversed its direction). Observe this re
ection through the polaroid, and try rotating it.
Finally, position yourself so that you are seeing glancing re
ections, and try the same thing.
Summarize what happens to light with properties X and Y when it is re
ected. (This is the
principle behind polarizing sunglasses.)

730 Chapter 24 Electromagnetism



Exercise 24B: Events and spacetime
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Chapter 25

Capacitance and
Inductance

The long road leading from the light bulb to the computer started
with one very important step: the introduction of feedback into
electronic circuits. Although the principle of feedback has been un-
derstood and and applied to mechanical systems for centuries, and
to electrical ones since the early twentieth century, for most of us
the word evokes an image of Jimi Hendrix (or some more recent
guitar hero) intentionally creating earsplitting screeches, or of the
school principal doing the same inadvertently in the auditorium. In
the guitar example, the musician stands in front of the amp and
turns it up so high that the sound waves coming from the speaker
come back to the guitar string and make it shake harder. This is
an example ofpositive feedback: the harder the string vibrates, the
stronger the sound waves, and the stronger the sound waves, the
harder the string vibrates. The only limit is the power-handling
ability of the ampli�er.

Negative feedback is equally important. Your thermostat, for exam-
ple, provides negative feedback by kicking the heater o� when the
house gets warm enough, and by �ring it up again when it gets too
cold. This causes the house’s temperature to oscillate back and forth
within a certain range. Just as out-of-control exponential freak-outs
are a characteristic behavior of positive-feedback systems, oscillation
is typical in cases of negative feedback. You have already studied
negative feedback extensively in ch. 17 in the case of a mechanical
system, although we didn’t call it that.

25.1 Capacitance and inductance
In a mechanical oscillation, energy is exchanged repetitively between
potential and kinetic forms, and may also be siphoned o� in the
form of heat dissipated by friction. In an electrical circuit, resistors
are the circuit elements that dissipate heat. What are the electrical
analogs of storing and releasing the potential and kinetic energy of a
vibrating object? When you think of energy storage in an electrical
circuit, you are likely to imagine a battery, but even rechargeable
batteries can only go through 10 or 100 cycles before they wear out.
In addition, batteries are not able to exchange energy on a short
enough time scale for most applications. The circuit in a musical
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a / The symbol for a capaci-
tor.

b / Some capacitors.

c / Two common geometries
for inductors. The cylindrical
shape on the left is called a
solenoid.

d / The symbol for an induc-
tor.

e / Some inductors.

synthesizer may be called upon to oscillate thousands of times a
second, and your microwave oven operates at gigahertz frequencies.
Instead of batteries, we generally use capacitors and inductors to
store energy in oscillating circuits. Capacitors, which you’ve already
encountered, store energy in electric �elds. An inductor does the
same with magnetic �elds.

Capacitors

A capacitor’s energy exists in its surrounding electric �elds. It is
proportional to the square of the �eld strength, which is proportional
to the charges on the plates. If we assume the plates carry charges
that are the same in magnitude, +q and � q, then the energy stored
in the capacitor must be proportional to q2. For historical reasons,
we write the constant of proportionality as 1=2C,

EC =
1

2C
q2.

The constant C is a geometrical property of the capacitor, called its
capacitance.

Based on this de�nition, the units of capacitance must be coulombs
squared per joule, and this combination is more conveniently abbre-
viated as the farad, 1 F = 1 C2=J. \Condenser" is a less formal
term for a capacitor. Note that the labels printed on capacitors
often use MF to mean � F, even though MF should really be the
symbol for megafarads, not microfarads. Confusion doesn’t result
from this nonstandard notation, since picofarad and microfarad val-
ues are the most common, and it wasn’t until the 1990’s that even
millifarad and farad values became available in practical physical
sizes. Figure a shows the symbol used in schematics to represent a
capacitor.

Inductors

Any current will create a magnetic �eld, so in fact every current-
carrying wire in a circuit acts as an inductor! However, this type
of \stray" inductance is typically negligible, just as we can usually
ignore the stray resistance of our wires and only take into account
the actual resistors. To store any appreciable amount of magnetic
energy, one usually uses a coil of wire designed speci�cally to be
an inductor. All the loops’ contribution to the magnetic �eld add
together to make a stronger �eld. Unlike capacitors and resistors,
practical inductors are easy to make by hand. One can for instance
spool some wire around a short wooden dowel, put the spool inside
a plastic aspirin bottle with the leads hanging out, and �ll the bottle
with epoxy to make the whole thing rugged. An inductor like this,
in the form cylindrical coil of wire, is called a solenoid, c, and a
stylized solenoid, d, is the symbol used to represent an inductor in
a circuit regardless of its actual geometry.

How much energy does an inductor store? The energy density is
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f / Inductances in series add.

g / Capacitances in parallel
add.

h / A variable capacitor.

proportional to the square of the magnetic �eld strength, which is
in turn proportional to the current 
owing through the coiled wire,
so the energy stored in the inductor must be proportional toI 2. We
write L=2 for the constant of proportionality, giving

EL =
L
2

I 2.

As in the de�nition of capacitance, we have a factor of 1/2, which
is purely a matter of de�nition. The quantity L is called the induc-
tance of the inductor, and we see that its units must be joules per
ampere squared. This clumsy combination of units is more com-
monly abbreviated as the henry, 1 henry = 1 J=A2. Rather than
memorizing this de�nition, it makes more sense to derive it when
needed from the de�nition of inductance. Many people know in-
ductors simply as \coils," or \chokes," and will not understand you
if you refer to an \inductor," but they will still refer to L as the
\inductance," not the \coilance" or \chokeance!"

Identical inductances in series example 1
If two inductors are placed in series, any current that passes
through the combined double inductor must pass through both
its parts. Thus by the de�nition of inductance, the inductance is
doubled as well. In general, inductances in series add, just like
resistances. The same kind of reasoning also shows that the in-
ductance of a solenoid is approximately proportional to its length,
assuming the number of turns per unit length is kept constant.

Identical capacitances in parallel example 2
When two identical capacitances are placed in parallel, any charge
deposited at the terminals of the combined double capacitor will
divide itself evenly between the two parts. The electric �elds sur-
rounding each capacitor will be half the intensity, and therefore
store one quarter the energy. Two capacitors, each storing one
quarter the energy, give half the total energy storage. Since ca-
pacitance is inversely related to energy storage, this implies that
identical capacitances in parallel give double the capacitance. In
general, capacitances in parallel add. This is unlike the behav-
ior of inductors and resistors, for which series con�gurations give
addition.

This is consistent with the fact that the capacitance of a single
parallel-plate capacitor proportional to the area of the plates. If
we have two parallel-plate capacitors, and we combine them in
parallel and bring them very close together side by side, we have
produced a single capacitor with plates of double the area, and it
has approximately double the capacitance.

Inductances in parallel and capacitances in series are explored in
homework problems 4 and 6.
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i / Discussion question B.

j / A series LRC circuit.

k / A mechanical analogy for
the LRC circuit.

A variable capacitor example 3
Figure h/1 shows the construction of a variable capacitor out of
two parallel semicircles of metal. One plate is �xed, while the
other can be rotated about their common axis with a knob. The
opposite charges on the two plates are attracted to one another,
and therefore tend to gather in the overlapping area. This over-
lapping area, then, is the only area that effectively contributes to
the capacitance, and turning the knob changes the capacitance.
The simple design can only provide very small capacitance val-
ues, so in practice one usually uses a bank of capacitors, wired
in parallel, with all the moving parts on the same shaft.

Discussion questions

A Suppose that two parallel-plate capacitors are wired in parallel, and
are placed very close together, side by side, so that their �elds overlap.
Will the resulting capacitance be too small, or too big? Could you twist
the circuit into a different shape and make the effect be the other way
around, or make the effect vanish? How about the case of two inductors
in series?

B Most practical capacitors do not have an air gap or vacuum gap
between the plates; instead, they have an insulating substance called a
dielectric. We can think of the molecules in this substance as dipoles that
are free to rotate (at least a little), but that are not free to move around,
since it is a solid. The �gure shows a highly stylized and unrealistic way
of visualizing this. We imagine that all the dipoles are intially turned side-
ways, (1), and that as the capacitor is charged, they all respond by turning
through a certain angle, (2). (In reality, the scene might be much more
random, and the alignment effect much weaker.)

For simplicity, imagine inserting just one electric dipole into the vacuum
gap. For a given amount of charge on the plates, how does this affect
the amount of energy stored in the electric �eld? How does this affect the
capacitance?

Now redo the analysis in terms of the mechanical work needed in order
to charge up the plates.

25.2 Oscillations
Figure j shows the simplest possible oscillating circuit. For any use-
ful application it would actually need to include more components.
For example, if it was a radio tuner, it would need to be connected to
an antenna and an ampli�er. Nevertheless, all the essential physics
is there.
We can analyze it without any sweat or tears whatsoever, simply by
constructing an analogy with a mechanical system. In a mechanical
oscillator, k, we have two forms of stored energy,

Espring =
1
2

kx2 (1)

K =
1
2

mv2. (2)
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In the case of a mechanical oscillator, we have usually assumed a
friction force of the form that turns out to give the nicest mathe-
matical results, F = � bv. In the circuit, the dissipation of energy
into heat occurs via the resistor, with no mechanical force involved,
so in order to make the analogy, we need to restate the role of the
friction force in terms of energy. The power dissipated by friction
equals the mechanical work it does in a time interval � t, divided by
� t, P = W=� t = F � x=� t = F v = � bv2, so

rate of heat dissipation = � bv2. (3)

self-check A
Equation (1) has x squared, and equations (2) and (3) have v squared.
Because they’re squared, the results don’t depend on whether these
variables are positive or negative. Does this make physical sense? .
Answer, p. 1041

In the circuit, the stored forms of energy are

EC =
1

2C
q2 (10)

EL =
1
2

LI 2, (20)

and the rate of heat dissipation in the resistor is

rate of heat dissipation = � RI 2. (30)

Comparing the two sets of equations, we �rst form analogies between
quantities that represent the state of the system at some moment
in time:

x $ q
v $ I

self-check B
How is v related mathematically to x? How is I connected to q? Are the
two relationships analogous? . Answer, p. 1042

Next we relate the ones that describe the system’s permanent char-
acteristics:

k $ 1=C
m $ L
b $ R

Since the mechanical system naturally oscillates with a periodT =
2�

p
m=k , we can immediately solve the electrical version by anal-

ogy, giving
T = 2 �

p
LC .
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Rather than period, T , and frequency, f , it turns out to be more
convenient if we work with the quantity ! = 2 �f , which can be
interpreted as the number of radians per second. Then

! =
1

p
LC

.

Since the resistanceR is analogous to b in the mechanical case,
we �nd that the Q (quality factor, not charge) of the resonance
is inversely proportional to R, and the width of the resonance is
directly proportional to R.

Tuning a radio receiver example 4
A radio receiver uses this kind of circuit to pick out the desired
station. Since the receiver resonates at a particular frequency,
stations whose frequencies are far off will not excite any response
in the circuit. The value of R has to be small enough so that only
one station at a time is picked up, but big enough so that the
tuner isn’t too touchy. The resonant frequency can be tuned by
adjusting either L or C, but variable capacitors are easier to build
than variable inductors.

A numerical calculation example 5
The phone company sends more than one conversation at a time
over the same wire, which is accomplished by shifting each voice
signal into different range of frequencies during transmission. The
number of signals per wire can be maximized by making each
range of frequencies (known as a bandwidth) as small as possi-
ble. It turns out that only a relatively narrow range of frequencies
is necessary in order to make a human voice intelligible, so the
phone company �lters out all the extreme highs and lows. (This is
why your phone voice sounds different from your normal voice.)

. If the �lter consists of an LRC circuit with a broad resonance
centered around 1.0 kHz, and the capacitor is 1 � F (microfarad),
what inductance value must be used?

. Solving for L, we have

L =
1

C! 2

=
1

(10� 6 F)(2� � 103 s� 1)2

= 2.5 � 10� 3 F� 1s2

Checking that these really are the same units as henries is a little
tedious, but it builds character:

F� 1s2 = (C2=J)� 1s2

= J � C� 2s2

= J=A2

= H
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The result is 25 mH (millihenries).

This is actually quite a large inductance value, and would require
a big, heavy, expensive coil. In fact, there is a trick for making
this kind of circuit small and cheap. There is a kind of silicon
chip called an op-amp, which, among other things, can be used
to simulate the behavior of an inductor. The main limitation of the
op-amp is that it is restricted to low-power applications.

25.3 Voltage and current
What is physically happening in one of these oscillating circuits?
Let’s �rst look at the mechanical case, and then draw the analogy
to the circuit. For simplicity, let’s ignore the existence of damping,
so there is no friction in the mechanical oscillator, and no resistance
in the electrical one.

Suppose we take the mechanical oscillator and pull the mass away
from equilibrium, then release it. Since friction tends to resist the
spring’s force, we might naively expect that having zero friction
would allow the mass to leap instantaneously to the equilibrium
position. This can’t happen, however, because the mass would have
to have in�nite velocity in order to make such an instantaneous leap.
In�nite velocity would require in�nite kinetic energy, but the only
kind of energy that is available for conversion to kinetic is the energy
stored in the spring, and that is �nite, not in�nite. At each step on
its way back to equilibrium, the mass’s velocity is controlled exactly
by the amount of the spring’s energy that has so far been converted
into kinetic energy. After the mass reaches equilibrium, it overshoots
due to its own momentum. It performs identical oscillations on both
sides of equilibrium, and it never loses amplitude because friction is
not available to convert mechanical energy into heat.

Now with the electrical oscillator, the analog of position is charge.
Pulling the mass away from equilibrium is like depositing charges
+ q and � q on the plates of the capacitor. Since resistance tends
to resist the 
ow of charge, we might imagine that with no friction
present, the charge would instantly 
ow through the inductor (which
is, after all, just a piece of wire), and the capacitor would discharge
instantly. However, such an instant discharge is impossible, because
it would require in�nite current for one instant. In�nite current
would create in�nite magnetic �elds surrounding the inductor, and
these �elds would have in�nite energy. Instead, the rate of 
ow
of current is controlled at each instant by the relationship between
the amount of energy stored in the magnetic �eld and the amount of
current that must exist in order to have that strong a �eld. After the
capacitor reachesq = 0, it overshoots. The circuit has its own kind
of electrical \inertia," because if charge was to stop 
owing, there
would have to be zero current through the inductor. But the current
in the inductor must be related to the amount of energy stored in

Section 25.3 Voltage and current 741



l / The inductor releases en-
ergy and gives it to the black box.

its magnetic �elds. When the capacitor is at q = 0, all the circuit’s
energy is in the inductor, so it must therefore have strong magnetic
�elds surrounding it and quite a bit of current going through it.

The only thing that might seem spooky here is that we used to
speak as if the current in the inductor caused the magnetic �eld,
but now it sounds as if the �eld causes the current. Actually this is
symptomatic of the elusive nature of cause and e�ect in physics. It’s
equally valid to think of the cause and e�ect relationship in either
way. This may seem unsatisfying, however, and for example does not
really get at the question of what brings about a voltage di�erence
across the resistor (in the case where the resistance is �nite); there
must be such a voltage di�erence, because without one, Ohm’s law
would predict zero current through the resistor.

Voltage, then, is what is really missing from our story so far.

Let’s start by studying the voltage across a capacitor. Voltage is
electrical potential energy per unit charge, so the voltage di�erence
between the two plates of the capacitor is related to the amount by
which its energy would increase if we increased the absolute values
of the charges on the plates fromq to q + � q:

VC = ( Eq+� q � Eq)=� q

=
� EC

� q

=
�
� q

�
1

2C
q2

�

=
q
C

Many books use this as the de�nition of capacitance. This equation,
by the way, probably explains the historical reason whyC was de-
�ned so that the energy was inversely proportional to C for a given
value of q: the people who invented the de�nition were thinking of a
capacitor as a device for storing charge rather than energy, and the
amount of charge stored for a �xed voltage (the charge \capacity")
is proportional to C.

In the case of an inductor, we know that if there is a steady, con-
stant current 
owing through it, then the magnetic �eld is constant,
and so is the amount of energy stored; no energy is being exchanged
between the inductor and any other circuit element. But what if
the current is changing? The magnetic �eld is proportional to the
current, so a change in one implies a change in the other. For con-
creteness, let’s imagine that the magnetic �eld and the current are
both decreasing. The energy stored in the magnetic �eld is there-
fore decreasing, and by conservation of energy, this energy can’t just
go away | some other circuit element must be taking energy from
the inductor. The simplest example, shown in �gure l, is a series
circuit consisting of the inductor plus one other circuit element. It
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doesn’t matter what this other circuit element is, so we just call it a
black box, but if you like, we can think of it as a resistor, in which
case the energy lost by the inductor is being turned into heat by
the resistor. The junction rule tells us that both circuit elements
have the same current through them, soI could refer to either one,
and likewise the loop rule tells usVinductor + Vblack box = 0, so the
two voltage drops have the same absolute value, which we can refer
to as V . Whatever the black box is, the rate at which it is taking
energy from the inductor is given by jP j = jIV j, so

jIV j =
����
� EL

� t

����

=
����

�
� t

�
1
2

LI 2
� ����

=
����LI

� I
� t

���� ,

or

jV j =
����L

� I
� t

���� ,

which in many books is taken to be the de�nition of inductance.
The direction of the voltage drop (plus or minus sign) is such that
the inductor resists the change in current.

There’s one very intriguing thing about this result. Suppose, for
concreteness, that the black box in �gure l is a resistor, and that
the inductor’s energy is decreasing, and being converted into heat
in the resistor. The voltage drop across the resistor indicates that it
has an electric �eld across it, which is driving the current. But where
is this electric �eld coming from? There are no charges anywhere
that could be creating it! What we’ve discovered is one special case
of a more general principle, the principle of induction: a changing
magnetic �eld creates an electric �eld, which is in addition to any
electric �eld created by charges. (The reverse is also true: any elec-
tric �eld that changes over time creates a magnetic �eld.) Induction
forms the basis for such technologies as the generator and the trans-
former, and ultimately it leads to the existence of light, which is a
wave pattern in the electric and magnetic �elds. These are all topics
for chapter 24, but it’s truly remarkable that we could come to this
conclusion without yet having learned any details about magnetism.

The cartoons in �gure m compares electric �elds made by charges,
1, to electric �elds made by changing magnetic �elds, 2-3. In m/1,
two physicists are in a room whose ceiling is positively charged and
whose 
oor is negatively charged. The physicist on the bottom
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m / Electric �elds made by charges, 1, and by changing magnetic �elds, 2 and 3.

throws a positively charged bowling ball into the curved pipe. The
physicist at the top uses a radar gun to measure the speed of the ball
as it comes out of the pipe. They �nd that the ball has slowed down
by the time it gets to the top. By measuring the change in the ball’s
kinetic energy, the two physicists are acting just like a voltmeter.
They conclude that the top of the tube is at a higher voltage than
the bottom of the pipe. A di�erence in voltage indicates an electric
�eld, and this �eld is clearly being caused by the charges in the 
oor
and ceiling.

In m/2, there are no charges anywhere in the room except for the
charged bowling ball. Moving charges make magnetic �elds, so there
is a magnetic �eld surrounding the helical pipe while the ball is
moving through it. A magnetic �eld has been created where there
was none before, and that �eld has energy. Where could the energy
have come from? It can only have come from the ball itself, so
the ball must be losing kinetic energy. The two physicists working
together are again acting as a voltmeter, and again they conclude
that there is a voltage di�erence between the top and bottom of
the pipe. This indicates an electric �eld, but this electric �eld can’t
have been created by any charges, because there aren’t any in the
room. This electric �eld was created by the change in the magnetic
�eld.

The bottom physicist keeps on throwing balls into the pipe, until the
pipe is full of balls, m/3, and �nally a steady current is established.
While the pipe was �lling up with balls, the energy in the magnetic
�eld was steadily increasing, and that energy was being stolen from
the balls’ kinetic energy. But once a steady current is established,
the energy in the magnetic �eld is no longer changing. The balls
no longer have to give up energy in order to build up the �eld, and
the physicist at the top �nds that the balls are exiting the pipe at
full speed again. There is no voltage di�erence any more. Although
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n / An RC circuit.

there is a current, � I= � t is zero.

Discussion question

A What happens when the physicist at the bottom in �gure m/3 starts
getting tired, and decreases the current?

25.4 Decay
Up until now I’ve soft-pedaled the fact that by changing the char-
acteristics of an oscillator, it is possible to produce non-oscillatory
behavior. For example, imagine taking the mass-on-a-spring system
and making the spring weaker and weaker. In the limit of small
k, it’s as though there was no spring whatsoever, and the behavior
of the system is that if you kick the mass, it simply starts slowing
down. For friction proportional to v, as we’ve been assuming, the re-
sult is that the velocity approaches zero, but never actually reaches
zero. This is unrealistic for the mechanical oscillator, which will not
have vanishing friction at low velocities, but it is quite realistic in
the case of an electrical circuit, for which the voltage drop across the
resistor really does approach zero as the current approaches zero.

Electrical circuits can exhibit all the same behavior. For simplicity
we will analyze only the cases of LRC circuits withL = 0 or C = 0.

The RC circuit

We �rst analyze the RC circuit, n. In reality one would have to
\kick" the circuit, for example by brie
y inserting a battery, in
order to get any interesting behavior. We start with Ohm’s law and
the equation for the voltage across a capacitor:

VR = IR
VC = q=C

The loop rule tells us
VR + VC = 0,

and combining the three equations results in a relationship between
q and I :

I = �
1

RC
q

The negative sign tells us that the current tends to reduce the charge
on the capacitor, i.e. to discharge it. It makes sense that the current
is proportional to q: if q is large, then the attractive forces between
the + q and � q charges on the plates of the capacitor are large,
and charges will 
ow more quickly through the resistor in order to
reunite. If there was zero charge on the capacitor plates, there would
be no reason for current to 
ow. Since amperes, the unit of current,
are the same as coulombs per second, it appears that the quantity
RC must have units of seconds, and you can check for yourself that
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o / Over a time interval RC,
the charge on the capacitor is
reduced by a factor of e.

p / An RL circuit.

this is correct. RC is therefore referred to as the time constant of
the circuit.

How exactly do I and q vary with time? Rewriting I as � q=� t, we
have

� q
� t

= �
1

RC
q.

This equation describes a functionq(t) that always gets smaller over
time, and whose rate of decrease is big at �rst, whenq is big, but
gets smaller and smaller asq approaches zero. As an example of
this type of mathematical behavior, we could imagine a man who
has 1024 weeds in his backyard, and resolves to pull out half of
them every day. On the �rst day, he pulls out half, and has 512
left. The next day, he pulls out half of the remaining ones, leaving
256. The sequence continues exponentially: 128, 64, 32, 16, 8, 4, 2,
1. Returning to our electrical example, the function q(t) apparently
needs to be an exponential, which we can write in the formaebt,
where e = 2.718... is the base of natural logarithms. We could have
written it with base 2, as in the story of the weeds, rather than
base e, but the math later on turns out simpler if we use e. It
doesn’t make sense to plug a number that has units into a function
like an exponential, so bt must be unitless, and b must therefore
have units of inverse seconds. The numberb quanti�es how fast the
exponential decay is. The only physical parameters of the circuit
on which b could possibly depend areR and C, and the only way
to put units of ohms and farads together to make units of inverse
seconds is by computing 1=RC. Well, actually we could use 7=RC
or 3�=RC , or any other unitless number divided by RC , but this
is where the use of basee comes in handy: for basee, it turns out
that the correct unitless constant is 1. Thus our solution is

q = qo exp
�

�
t

RC

�
.

The number RC , with units of seconds, is called the RC time con-
stant of the circuit, and it tells us how long we have to wait if we
want the charge to fall o� by a factor of 1 =e.

The RL circuit

The RL circuit, p, can be attacked by similar methods, and it can
easily be shown that it gives

I = I o exp
�

�
R
L

t
�

.

The RL time constant equals L=R .
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Death by solenoid; spark plugs example 6
When we suddenly break an RL circuit, what will happen? It might
seem that we’re faced with a paradox, since we only have two
forms of energy, magnetic energy and heat, and if the current
stops suddenly, the magnetic �eld must collapse suddenly. But
where does the lost magnetic energy go? It can’t go into resistive
heating of the resistor, because the circuit has now been broken,
and current can’t �ow!

The way out of this conundrum is to recognize that the open gap
in the circuit has a resistance which is large, but not in�nite. This
large resistance causes the RL time constant L=R to be very
small. The current thus continues to �ow for a very brief time,
and �ows straight across the air gap where the circuit has been
opened. In other words, there is a spark!

We can determine based on several different lines of reasoning
that the voltage drop from one end of the spark to the other must
be very large. First, the air’s resistance is large, so V = IR re-
quires a large voltage. We can also reason that all the energy
in the magnetic �eld is being dissipated in a short time, so the
power dissipated in the spark, P = IV , is large, and this requires
a large value of V . (I isn’t large � it is decreasing from its initial
value.) Yet a third way to reach the same result is to consider the
equation VL = � I=� t : since the time constant is short, the time
derivative � I=� t is large.

This is exactly how a car’s spark plugs work. Another application
is to electrical safety: it can be dangerous to break an inductive
circuit suddenly, because so much energy is released in a short
time. There is also no guarantee that the spark will discharge
across the air gap; it might go through your body instead, since
your body might have a lower resistance.

Discussion question

A A gopher gnaws through one of the wires in the DC lighting system
in your front yard, and the lights turn off. At the instant when the circuit
becomes open, we can consider the bare ends of the wire to be like the
plates of a capacitor, with an air gap (or gopher gap) between them. What
kind of capacitance value are we talking about here? What would this tell
you about the RC time constant?
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q / In a capacitor, the current
is 90� ahead of the voltage in
phase.

25.5 Impedance
So far we have been thinking in terms of the free oscillations of a
circuit. This is like a mechanical oscillator that has been kicked but
then left to oscillate on its own without any external force to keep
the vibrations from dying out. Suppose an LRC circuit is driven
with a sinusoidally varying voltage, such as will occur when a radio
tuner is hooked up to a receiving antenna. We know that a current
will 
ow in the circuit, and we know that there will be resonant
behavior, but it is not necessarily simple to relate current to voltage
in the most general case. Let’s start instead with the special cases
of LRC circuits consisting of only a resistance, only a capacitance,
or only an inductance. We are interested only in the steady-state
response.

The purely resistive case is easy. Ohm’s law gives

I =
V
R

.

In the purely capacitive case, the relationV = q=C lets us calculate

I =
� q
� t

= C
� V
� t

.

If the voltage varies as, for example,V (t) = ~V sin(!t ), then it can be
shown using calculus that the current will be I (t) = !C ~V cos(!t ),
so the maximum current is ~I = !C ~V . By analogy with Ohm’s law,
we can then write

~I =
~V

ZC
,

where the quantity

ZC =
1

!C
, [impedance of a capacitor]

having units of ohms, is called the impedance of the capacitor at
this frequency. Note that it is only the maximum current, ~I , that
is proportional to the maximum voltage, ~V , so the capacitor is not
behaving like a resistor. The maxima ofV and I occur at di�er-
ent times, as shown in �gure q. It makes sense that the impedance
becomes in�nite at zero frequency. Zero frequency means that it
would take an in�nite time before the voltage would change by any
amount. In other words, this is like a situation where the capaci-
tor has been connected across the terminals of a battery and been
allowed to settle down to a state where there is constant charge
on both terminals. Since the electric �elds between the plates are
constant, there is no energy being added to or taken out of the
�eld. A capacitor that can’t exchange energy with any other circuit
component is nothing more than a broken (open) circuit.
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r / The current through an in-
ductor lags behind the voltage by
a phase angle of 90� .

self-check C
Why can’t a capacitor have its impedance printed on it along with its
capacitance? . Answer, p. 1042

Similar math gives

ZL = !L [impedance of an inductor]

for an inductor. It makes sense that the inductor has lower impedance
at lower frequencies, since at zero frequency there is no change in
the magnetic �eld over time. No energy is added to or released
from the magnetic �eld, so there are no induction e�ects, and the
inductor acts just like a piece of wire with negligible resistance. The
term \choke" for an inductor refers to its ability to \choke out" high
frequencies.

The phase relationships shown in �gures q and r can be remembered
using my own mnemonic, \eVIL," which shows that the voltage (V)
leads the current (I) in an inductive circuit, while the opposite is
true in a capacitive one. A more traditional mnemonic is \ELI the
ICE man," which uses the notation E for emf, a concept closely
related to voltage.

Low-pass and high-pass �lters example 7
An LRC circuit only responds to a certain range (band) of fre-
quencies centered around its resonant frequency. As a �lter, this
is known as a bandpass �lter. If you turn down both the bass and
the treble on your stereo, you have created a bandpass �lter.

To create a high-pass or low-pass �lter, we only need to insert
a capacitor or inductor, respectively, in series. For instance, a
very basic surge protector for a computer could be constructed
by inserting an inductor in series with the computer. The desired
60 Hz power from the wall is relatively low in frequency, while the
surges that can damage your computer show much more rapid
time variation. Even if the surges are not sinusoidal signals, we
can think of a rapid �spike� qualitatively as if it was very high in
frequency � like a high-frequency sine wave, it changes very
rapidly.

Inductors tend to be big, heavy, expensive circuit elements, so a
simple surge protector would be more likely to consist of a capac-
itor in parallel with the computer. (In fact one would normally just
connect one side of the power circuit to ground via a capacitor.)
The capacitor has a very high impedance at the low frequency of
the desired 60 Hz signal, so it siphons off very little of the current.
But for a high-frequency signal, the capacitor’s impedance is very
small, and it acts like a zero-impedance, easy path into which the
current is diverted.

The main things to be careful about with impedance are that (1) the
concept only applies to a circuit that is being driven sinusoidally, (2)
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the impedance of an inductor or capacitor is frequency-dependent,
and (3) impedances in parallel and series don’t combine according
to the same rules as resistances. It is possible, however, to get get
around the third limitation, as discussed in subsection .

Discussion questions

A Figure q on page 748 shows the voltage and current for a capacitor.
Sketch the q-t graph, and use it to give a physical explanation of the
phase relationship between the voltage and current. For example, why is
the current zero when the voltage is at a maximum or minimum?

B Relate the features of the graph in �gure r on page 749 to the story
told in cartoons in �gure m/2-3 on page 744.
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