
23 Astronomers calculating orbits of planets often work in a
nonmetric system of units, in which the unit of time is the year,
the unit of mass is the sun’s mass, and the unit of distance is the
astronomical unit (A.U.), de�ned as half the long axis of the earth’s
orbit. In these units, �nd an exact expression for the gravitational
constant, G.

p

24 Suppose that we inhabited a universe in which, instead of
Newton’s law of gravity, we had F = k

p
m1m2=r2, where k is some

constant with di�erent units than G. (The force is still attrac-
tive.) However, we assume thata = F=m and the rest of Newtonian
physics remains true, and we usea = F=m to de�ne our mass scale,
so that, e.g., a mass of 2 kg is one which exhibits half the accelera-
tion when the same force is applied to it as to a 1 kg mass.
(a) Is this new law of gravity consistent with Newton’s third law?
(b) Suppose you lived in such a universe, and you dropped two un-
equal masses side by side. What would happen?
(c) Numerically, suppose a 1.0-kg object falls with an acceleration
of 10 m=s2. What would be the acceleration of a rain drop with a
mass of 0.1 g? Would you want to go out in the rain?
(d) If a falling object broke into two unequal pieces while it fell,
what would happen?
(e) Invent a law of gravity that results in behavior that is the op-
posite of what you found in part b. [Based on a problem by Arnold
Arons.]

25 The structures that we see in the universe, such as solar
systems, galaxies, and clusters of galaxies, are believed to have con-
densed from clumps that formed, due to gravitational attraction,
in preexisting clouds of gas and dust. Observations of the cosmic
microwave background radiation (p. 292) suggest that the mixture
of hot hydrogen and helium that existed soon after the Big Bang
was extremely uniform, but not perfectly so. We can imagine that
any region that started out a little more dense would form a natural
center for the collapse of a clump. Suppose that we have a spheri-
cal region with density � and radius r , and for simplicity let’s just
assume that it’s surrounded by vacuum. (a) Find the acceleration
of the material at the edge of the cloud. To what power ofr is it
proportional?

p

(b) The cloud will take a time t to collapse to some fraction of its
original size. Show that t is independent ofr .
Remark: This result suggests that structures would get a chance to form at all
scales in the universe. That is, solar systems would not form before galaxies got
to, or vice versa. It is therefore physically natural that when we look at the
universe at essentially all scales less than a billion light-years, we see structure.

?
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26 You have a �xed amount of material with a �xed density. If
the material is formed into some shapeS, then there will be some
point in space at which the resulting gravitational �eld attains its
maximum value gS. What shape maximizesgS? ?

27 Complete the proof of the shell theorem in section 10.7 by
�lling in the case where m is inside the shell.

28 The shell theorem was proved in section 10.7.Prove that the
theorem fails if the exponent of r in Newton’s law of gravity di�ers
from � 2.

29 The shell theorem describes two cases, inside and outside.
Show that for an alternative law of gravity F = GMmr (with r 1

rather than r � 2), the outside case still holds.

30 On an airless body such as the moon, there is no atmospheric
friction, so it should be possible for a satellite to orbit at a very low
altitude, just high enough to keep from hitting the mountains. (a)
Suppose that such a body is a smooth sphere of uniform density
� and radius r . Find the velocity required for a ground-skimming
orbit.

p

(b) A typical asteroid has a density of about 2 g=cm3, i.e., twice that
of water. (This is a lot lower than the density of the earth’s crust,
probably indicating that the low gravity is not enough to compact
the material very tightly, leaving lots of empty space inside.) Sup-
pose that it is possible for an astronaut in a spacesuit to jump at
2 m=s. Find the radius of the largest asteroid on which it would be
possible to jump into a ground-skimming orbit.

p

302 Chapter 10 Gravity



31 The �gure shows a region of outer space in which two stars
have exploded, leaving behind two overlapping spherical shells of
gas, which we assume to remain at rest. The �gure is a cross-
section in a plane containing the shells’ centers. A space probe is
released with a very small initial speed at the point indicated by
the arrow, initially moving in the direction indicated by the dashed
line. Without any further information, predict as much as possible
about the path followed by the probe and its changes in speed along
that path. ?

Problem 31.

32 Approximate the earth’s density as being constant. (a) Find
the gravitational �eld at a point P inside the earth and half-way
between the center and the surface. Express your result as a ratio
gP =gS relative to the �eld we experience at the surface. (b) As a
check on your answer, make sure that the same reasoning leads to
a reasonable result when the fraction 1/2 is replaced by the value 0
(P being the earth’s center) or the value 1 (P being a point on the
surface).
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Problem 34.

33 The earth is divided into solid inner core, a liquid outer core,
and a plastic mantle. Physical properties such as density change
discontinuously at the boundaries between one layer and the next.
Although the density is not completely constant within each region,
we will approximate it as being so for the purposes of this problem.
(We neglect the crust as well.) Let R be the radius of the earth
as a whole andM its mass. The following table gives a model of
some properties of the three layers, as determined by methods such
as the observation of earthquake waves that have propagated from
one side of the planet to the other.

region outer radius/R mass/M
mantle 1 0.69
outer core 0.55 0.29
inner core 0.19 0.017

The boundary between the mantle and the outer core is referred to
as the Gutenberg discontinuity. Let gs be the strength of the earth’s
gravitational �eld at its surface and gG its value at the Gutenberg
discontinuity. Find gG=gs.

p

34 The �gure shows the International Space Station (ISS). The
ISS orbits the earth once every 92.6 minutes. It is desirable to keep
the same side of the station always oriented toward the earth, which
means that the station has to rotate with the same period. In the
photo, the direction of orbital motion is left or right on the page, so
the rotation is about the axis shown as up and down on the page.
The greatest distance of any pressurized compartment from the axis
of rotation is 36.5 meters. Find the acceleration, and the apparent
weight of a 60 kg astronaut at that location.

p

304 Chapter 10 Gravity



Exercise 10: The shell theorem
This exercise is an approximate numerical test of the shell theorem. There are seven masses
A-G, each being one kilogram. Masses A-F, each one meter from the center, form a shape like
two Egyptian pyramids joined at their bases; this is a rough approximation to a six-kilogram
spherical shell of mass. Mass G is �ve meters from the center of the main group. The class will
divide into six groups and split up the work required in order to calculate the vector sum of the
six gravitational forces exerted on mass G. Depending on the size of the class, more than one
group may be assigned to deal with the contribution of the same mass to the total force, and
the redundant groups can check each other’s results.

1. Discuss as a class what can be done to simplify the task of calculating the vector sum, and
how to organize things so that each group can work in parallel with the others.

2. Each group should write its results on the board in units of piconewtons, retaining �ve
signi�cant �gures of precision. Everyone will need to use the same value for the gravitational
constant, G = 6.6743 � 10� 11 N �m2=kg2.

3. The class will determine the vector sum and compare with the result that would be obtained
with the shell theorem.
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In July of 1994, Comet Shoemaker-Levy struck the planet Jupiter, de-
positing 7 � 1022 joules of energy, and incidentally giving rise to a series
of Hollywood movies in which our own planet is threatened by an impact
by a comet or asteroid. There is evidence that such an impact caused
the extinction of the dinosaurs. Left: Jupiter’s gravitational force on the
near side of the comet was greater than on the far side, and this differ-
ence in force tore up the comet into a string of fragments. Two separate
telescope images have been combined to create the illusion of a point of
view just behind the comet. (The colored fringes at the edges of Jupiter
are artifacts of the imaging system.) Top: A series of images of the plume
of superheated gas kicked up by the impact of one of the fragments. The
plume is about the size of North America. Bottom: An image after all the
impacts were over, showing the damage done.

Chapter 11

Conservation of energy

11.1 The search for a perpetual motion
machine

Don’t underestimate greed and laziness as forces for progress. Mod-
ern chemistry was born from the collision of lust for gold with dis-
taste for the hard work of �nding it and digging it up. Failed e�orts
by generations of alchemists to turn lead into gold led �nally to the
conclusion that it could not be done: certain substances, the chem-
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a / The magnet draws the
ball to the top of the ramp, where
it falls through the hole and rolls
back to the bottom.

b / As the wheel spins clock-
wise, the �exible arms sweep
around and bend and unbend. By
dropping off its ball on the ramp,
the arm is supposed to make
itself lighter and easier to lift over
the top. Picking its own ball back
up again on the right, it helps to
pull the right side down.

ical elements, are fundamental, and chemical reactions can neither
increase nor decrease the amount of an element such as gold.

Now ash forward to the early industrial age. Greed and laziness
have created the factory, the train, and the ocean liner, but in each
of these is a boiler room where someone gets sweaty shoveling the
coal to fuel the steam engine. Generations of inventors have tried to
create a machine, called a perpetual motion machine, that would run
forever without fuel. Such a machine is not forbidden by Newton’s
laws of motion, which are built around the concepts of force and
inertia. Force is free, and can be multiplied inde�nitely with pulleys,
gears, or levers. The principle of inertia seems even to encourage
the belief that a cleverly constructed machine might not ever run
down.

Figures a and b show two of the innumerable perpetual motion
machines that have been proposed. The reason these two examples
don’t work is not much di�erent from the reason all the others have
failed. Consider machine a. Even if we assume that a properly
shaped ramp would keep the ball rolling smoothly through each
cycle, friction would always be at work. The designer imagined that
the machine would repeat the same motion over and over again, so
that every time it reached a given point its speed would be exactly
the same as the last time. But because of friction, the speed would
actually be reduced a little with each cycle, until �nally the ball
would no longer be able to make it over the top.

Friction has a way of creeping into all moving systems. The
rotating earth might seem like a perfect perpetual motion machine,
since it is isolated in the vacuum of outer space with nothing to exert
frictional forces on it. But in fact our planet’s rotation has slowed
drastically since it �rst formed, and the earth continues to slow
its rotation, making today just a little longer than yesterday. The
very subtle source of friction is the tides. The moon’s gravity raises
bulges in the earth’s oceans, and as the earth rotates the bulges
progress around the planet. Where the bulges encounter land, there
is friction, which slows the earth’s rotation very gradually.

11.2 Energy
The analysis based on friction is somewhat super�cial, however. One
could understand friction perfectly well and yet imagine the follow-
ing situation. Astronauts bring back a piece of magnetic ore from
the moon which does not behave like ordinary magnets. A normal
bar magnet, c/1, attracts a piece of iron essentially directly toward
it, and has no left- or right-handedness. The moon rock, however,
exerts forces that form a whirlpool pattern around it, 2. NASA
goes to a machine shop and has the moon rock put in a lathe and
machined down to a smooth cylinder, 3. If we now release a ball
bearing on the surface of the cylinder, the magnetic force whips it
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c / A mysterious moon rock
makes a perpetual motion
machine.

d / Example 1.

around and around at ever higher speeds. Of course there is some
friction, but there is a net gain in speed with each revolution.

Physicists would lay long odds against the discovery of such a
moon rock, not just because it breaks the rules that magnets nor-
mally obey but because, like the alchemists, they have discovered
a very deep and fundamental principle of nature which forbids cer-
tain things from happening. The �rst alchemist who deserved to
be called a chemist was the one who realized one day, \In all these
attempts to create gold where there was none before, all I’ve been
doing is shu�ing the same atoms back and forth among di�erent
test tubes. The only way to increase the amount of gold in my lab-
oratory is to bring some in through the door." It was like having
some of your money in a checking account and some in a savings ac-
count. Transferring money from one account into the other doesn’t
change the total amount.

We say that the number of grams of gold is aconservedquan-
tity. In this context, the word \conserve" does not have its usual
meaning of trying not to waste something. In physics, a conserved
quantity is something that you wouldn’t be able to get rid of even
if you wanted to. Conservation laws in physics always refer to a
closed system, meaning a region of space with boundaries through
which the quantity in question is not passing. In our example, the
alchemist’s laboratory is a closed system because no gold is coming
in or out through the doors.

Conservation of mass example 1
In �gure d, the stream of water is fatter near the mouth of the
faucet, and skinnier lower down. This is because the water speeds
up as it falls. If the cross-sectional area of the stream was equal
all along its length, then the rate of �ow through a lower cross-
section would be greater than the rate of �ow through a cross-
section higher up. Since the �ow is steady, the amount of wa-
ter between the two cross-sections stays constant. The cross-
sectional area of the stream must therefore shrink in inverse pro-
portion to the increasing speed of the falling water. This is an
example of conservation of mass.

In general, the amount of any particular substance is not con-
served. Chemical reactions can change one substance into another,
and nuclear reactions can even change one element into another.
The total mass of all substances is however conserved:

the law of conservation of mass
The total mass of a closed system always remains constant. Mass
cannot be created or destroyed, but only transferred from one system
to another.

A similar lightbulb eventually lit up in the heads of the people
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who had been frustrated trying to build a perpetual motion machine.
In perpetual motion machine a, consider the motion of one of the
balls. It performs a cycle of rising and falling. On the way down it
gains speed, and coming up it slows back down. Having a greater
speed is like having more money in your checking account, and being
high up is like having more in your savings account. The device is
simply shu�ing funds back and forth between the two. Having more
balls doesn’t change anything fundamentally. Not only that, but
friction is always draining o� money into a third \bank account:"
heat. The reason we rub our hands together when we’re cold is that
kinetic friction heats things up. The continual buildup in the \heat
account" leaves less and less for the \motion account" and \height
account," causing the machine eventually to run down.

These insights can be distilled into the following basic principle
of physics:

the law of conservation of energy
It is possible to give a numerical rating, called energy, to the state
of a physical system. The total energy is found by adding up contri-
butions from characteristics of the system such as motion of objects
in it, heating of the objects, and the relative positions of objects
that interact via forces. The total energy of a closed system always
remains constant. Energy cannot be created or destroyed, but only
transferred from one system to another.

The moon rock story violates conservation of energy because the
rock-cylinder and the ball together constitute a closed system. Once
the ball has made one revolution around the cylinder, its position
relative to the cylinder is exactly the same as before, so the numer-
ical energy rating associated with its position is the same as before.
Since the total amount of energy must remain constant, it is im-
possible for the ball to have a greater speed after one revolution. If
it had picked up speed, it would have more energy associated with
motion, the same amount of energy associated with position, and a
little more energy associated with heating through friction. There
cannot be a net increase in energy.

Converting one form of energy to another example 2
Dropping a rock: The rock loses energy because of its changing
position with respect to the earth. Nearly all that energy is trans-
formed into energy of motion, except for a small amount lost to
heat created by air friction.

Sliding in to home base: The runner’s energy of motion is nearly
all converted into heat via friction with the ground.

Accelerating a car: The gasoline has energy stored in it, which
is released as heat by burning it inside the engine. Perhaps 10%
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e / Example 3.

of this heat energy is converted into the car’s energy of motion.
The rest remains in the form of heat, which is carried away by the
exhaust.

Cruising in a car: As you cruise at constant speed in your car, all
the energy of the burning gas is being converted into heat. The
tires and engine get hot, and heat is also dissipated into the air
through the radiator and the exhaust.

Stepping on the brakes: All the energy of the car’s motion is con-
verted into heat in the brake shoes.

Stevin’s machine example 3
The Dutch mathematician and engineer Simon Stevin proposed

the imaginary machine shown in �gure e, which he had inscribed
on his tombstone. This is an interesting example, because it
shows a link between the force concept used earlier in this course,
and the energy concept being developed now.

The point of the imaginary machine is to show the mechanical
advantage of an inclined plane. In this example, the triangle has
the proportions 3-4-5, but the argument works for any right trian-
gle. We imagine that the chain of balls slides without friction, so
that no energy is ever converted into heat. If we were to slide
the chain clockwise by one step, then each ball would take the
place of the one in front of it, and the over all con�guration would
be exactly the same. Since energy is something that only de-
pends on the state of the system, the energy would have to be
the same. Similarly for a counterclockwise rotation, no energy of
position would be released by gravity. This means that if we place
the chain on the triangle, and release it at rest, it can’t start mov-
ing, because there would be no way for it to convert energy of
position into energy of motion. Thus the chain must be perfectly
balanced. Now by symmetry, the arc of the chain hanging under-
neath the triangle has equal tension at both ends, so removing
this arc wouldn’t affect the balance of the rest of the chain. This
means that a weight of three units hanging vertically balances a
weight of �ve units hanging diagonally along the hypotenuse.

The mechanical advantage of the inclined plane is therefore 5=3,
which is exactly the same as the result, 1=sin � , that we got
on p. 240 by analyzing force vectors. What this shows is that
Newton’s laws and conservation laws are not logically separate,
but rather are very closely related descriptions of nature. In the
cases where Newton’s laws are true, they give the same answers
as the conservation laws. This is an example of a more gen-
eral idea, called the correspondence principle, about how science
progresses over time. When a newer, more general theory is pro-
posed to replace an older theory, the new theory must agree with
the old one in the realm of applicability of the old theory, since the
old theory only became accepted as a valid theory by being ver-
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Discussion question A. The
water behind the Hoover Dam
has energy because of its posi-
tion relative to the planet earth,
which is attracting it with a gravi-
tational force. Letting water down
to the bottom of the dam converts
that energy into energy of motion.
When the water reaches the
bottom of the dam, it hits turbine
blades that drive generators, and
its energy of motion is converted
into electrical energy.

i�ed experimentally in a variety of experiments. In other words,
the new theory must be backward-compatible with the old one.
Even though conservation laws can prove things that Newton’s
laws can’t (that perpetual motion is impossible, for example), they
aren’t going to disprove Newton’s laws when applied to mechani-
cal systems where we already knew Newton’s laws were valid.

Discussion question

A Hydroelectric power (water �owing over a dam to spin turbines)
appears to be completely free. Does this violate conservation of energy?
If not, then what is the ultimate source of the electrical energy produced
by a hydroelectric plant?

B How does the proof in example 3 fail if the assumption of a frictionless
surface doesn’t hold?

11.3 A numerical scale of energy
Energy comes in a variety of forms, and physicists didn’t discover all
of them right away. They had to start somewhere, so they picked
one form of energy to use as a standard for creating a numerical
energy scale. (In fact the history is complicated, and several di�erent
energy units were de�ned before it was realized that there was a
single general energy concept that deserved a single consistent unit
of measurement.) One practical approach is to de�ne an energy
unit based on heating water. The SI unit of energy is the joule,
J, (rhymes with \cool"), named after the British physicist James
Joule. One Joule is the amount of energy required in order to heat
0.24 g of water by 1� C. The number 0.24 is not worth memorizing.
A convenient way of restating this de�nition is that when heating
water, heat = cm� T , where � T is the change in temperature in
� C, m is the mass, and we have de�ned the joule by de�ning the
constant c, called the speci�c heat capacity of water, to have the
value 4.2� 103 J=kg� � C.

Note that heat, which is a form of energy, is completely di�er-
ent from temperature, which is not. Twice as much heat energy
is required to prepare two cups of co�ee as to make one, but two
cups of co�ee mixed together don’t have double the temperature.
In other words, the temperature of an object tells us how hot it is,
but the heat energy contained in an object also takes into account
the object’s mass and what it is made of.1

Later we will encounter other quantities that are conserved in
physics, such as momentum and angular momentum, and the method
for de�ning them will be similar to the one we have used for energy:

1 In standard, formal terminology, there is another, �ner distinction. The
word \heat" is used only to indicate an amount of energy that is transferred,
whereas \thermal energy" indicates an amount of energy contained in an object.
I’m informal on this point, and refer to both as heat, but you should be aware
of the distinction.
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pick some standard form of it, and then measure other forms by
comparison with this standard. The exible and adaptable nature
of this procedure is part of what has made conservation laws such a
durable basis for the evolution of physics.

Heating a swimming pool example 4
. If electricity costs 3.9 cents per MJ (1 MJ = 1 megajoule = 106

J), how much does it cost to heat a 26000-gallon swimming pool
from 10� C to 18� C?

. Converting gallons to cm3 gives

26000 gallons �
3780 cm3

1 gallon
= 9.8 � 107 cm3.

Water has a density of 1 gram per cubic centimeter, so the mass
of the water is 9.8 � 104 kg. The energy needed to heat the
swimming pool is

mc� T = 3.3 � 103 MJ.

The cost of the electricity is (3.3 � 103 MJ)($0.039/MJ)=$130.

Irish coffee example 5
. You make a cup of Irish coffee out of 300 g of coffee at 100� C
and 30 g of pure ethyl alcohol at 20� C. The speci�c heat capacity
of ethanol is 2.4 � 103 J=kg�� C (i.e., alcohol is easier to heat than
water). What temperature is the �nal mixture?

. Adding up all the energy after mixing has to give the same result
as the total before mixing. We let the subscript i stand for the
initial situation, before mixing, and f for the �nal situation, and use
subscripts c for the coffee and a for the alcohol. In this notation,
we have

total initial energy = total �nal energy
Eci + Eai = Ecf + Eaf .

We assume coffee has the same heat-carrying properties as wa-
ter. Our information about the heat-carrying properties of the two
substances is stated in terms of the change in energy required for
a certain change in temperature, so we rearrange the equation to
express everything in terms of energy differences:

Eaf � Eai = Eci � Ecf .

Using the heat capacities cc for coffee (water) and ca for alcohol,
we have

Eci � Ecf = (Tci � Tcf )mccc and
Eaf � Eai = (Taf � Tai )maca.

Section 11.3 A numerical scale of energy 315



Setting these two quantities to be equal, we have

(Taf � Tai )maca = (Tci � Tcf )mccc .

In the �nal mixture the two substances must be at the same tem-
perature, so we can use a single symbol Tf = Tcf = Taf for the
two quantities previously represented by two different symbols,

(Tf � Tai )maca = (Tci � Tf )mccc .

Solving for Tf gives

Tf =
Tcimccc + Taimaca

mccc + maca

= 96� C.

Once a numerical scale of energy has been established for some
form of energy such as heat, it can easily be extended to other types
of energy. For instance, the energy stored in one gallon of gasoline
can be determined by putting some gasoline and some water in an
insulated chamber, igniting the gas, and measuring the rise in the
water’s temperature. (The fact that the apparatus is known as a
\bomb calorimeter" will give you some idea of how dangerous these
experiments are if you don’t take the right safety precautions.) Here
are some examples of other types of energy that can be measured
using the same units of joules:

type of energy example
chemical energy
released by burning

About 50 MJ are released by burning
a kg of gasoline.

energy required to
break an object

When a person su�ers a spiral frac-
ture of the thighbone (a common
type in skiing accidents), about 2 J
of energy go into breaking the bone.

energy required to
melt a solid substance

7 MJ are required to melt 1 kg of tin.

chemical energy
released by digesting
food

A bowl of Cheeries with milk provides
us with about 800 kJ of usable en-
ergy.

raising a mass against
the force of gravity

Lifting 1.0 kg through a height of 1.0
m requires 9.8 J.

nuclear energy
released in �ssion

1 kg of uranium oxide fuel consumed
by a reactor releases 2� 1012 J of
stored nuclear energy.

It is interesting to note the disproportion between the megajoule
energies we consume as food and the joule-sized energies we expend
in physical activities. If we could perceive the ow of energy around
us the way we perceive the ow of water, eating a bowl of cereal
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f / Example 6.

would be like swallowing a bathtub’s worth of energy, the continual
loss of body heat to one’s environment would be like an energy-hose
left on all day, and lifting a bag of cement would be like icking
it with a few tiny energy-drops. The human body is tremendously
ine�cient. The calories we \burn" in heavy exercise are almost all
dissipated directly as body heat.

You take the high road and I’ll take the low road. example 6
. Figure f shows two ramps which two balls will roll down. Com-
pare their �nal speeds, when they reach point B. Assume friction
is negligible.

. Each ball loses some energy because of its decreasing height
above the earth, and conservation of energy says that it must gain
an equal amount of energy of motion (minus a little heat created
by friction). The balls lose the same amount of height, so their
�nal speeds must be equal.

It’s impressive to note the complete impossibility of solving this
problem using only Newton’s laws. Even if the shape of the track
had been given mathematically, it would have been a formidable
task to compute the balls’ �nal speed based on vector addition of
the normal force and gravitational force at each point along the way.

How new forms of energy are discovered

Textbooks often give the impression that a sophisticated physics
concept was created by one person who had an inspiration one day,
but in reality it is more in the nature of science to rough out an idea
and then gradually re�ne it over many years. The idea of energy
was tinkered with from the early 1800’s on, and new types of energy
kept getting added to the list.

To establish the existence of a new form of energy, a physicist
has to

(1) show that it could be converted to and from other forms of
energy; and

(2) show that it related to some de�nite measurable property of
the object, for example its temperature, motion, position relative to
another object, or being in a solid or liquid state.

For example, energy is released when a piece of iron is soaked in
water, so apparently there is some form of energy already stored in
the iron. The release of this energy can also be related to a de�nite
measurable property of the chunk of metal: it turns reddish-orange.
There has been a chemical change in its physical state, which we
call rusting.

Although the list of types of energy kept getting longer and
longer, it was clear that many of the types were just variations on
a theme. There is an obvious similarity between the energy needed
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to melt ice and to melt butter, or between the rusting of iron and
many other chemical reactions. The topic of the next chapter is
how this process of simpli�cation reduced all the types of energy
to a very small number (four, according to the way I’ve chosen to
count them).

It might seem that if the principle of conservation of energy ever
appeared to be violated, we could �x it up simply by inventing some
new type of energy to compensate for the discrepancy. This would
be like balancing your checkbook by adding in an imaginary deposit
or withdrawal to make your �gures agree with the bank’s statements.
Step (2) above guards against this kind of chicanery. In the 1920s
there were experiments that suggested energy was not conserved in
radioactive processes. Precise measurements of the energy released
in the radioactive decay of a given type of atom showed inconsistent
results. One atom might decay and release, say, 1.1� 10� 10 J of
energy, which had presumably been stored in some mysterious form
in the nucleus. But in a later measurement, an atom of exactly the
same type might release 1.2� 10� 10 J. Atoms of the same type are
supposed to be identical, so both atoms were thought to have started
out with the same energy. If the amount released was random, then
apparently the total amount of energy was not the same after the
decay as before, i.e., energy was not conserved.

Only later was it found that a previously unknown particle,
which is very hard to detect, was being spewed out in the decay.
The particle, now called a neutrino, was carrying o� some energy,
and if this previously unsuspected form of energy was added in,
energy was found to be conserved after all. The discovery of the
energy discrepancies is seen with hindsight as being step (1) in the
establishment of a new form of energy, and the discovery of the neu-
trino was step (2). But during the decade or so between step (1)
and step (2) (the accumulation of evidence was gradual), physicists
had the admirable honesty to admit that the cherished principle of
conservation of energy might have to be discarded.

self-check A
How would you carry out the two steps given above in order to estab-
lish that some form of energy was stored in a stretched or compressed
spring? . Answer, p. 561

Mass Into Energy
Einstein showed that mass itself could be converted to and from energy,
according to his celebrated equation E = mc2, in which c is the speed
of light. We thus speak of mass as simply another form of energy, and
it is valid to measure it in units of joules. The mass of a 15-gram pencil
corresponds to about 1.3 � 1015 J. The issue is largely academic in the
case of the pencil, because very violent processes such as nuclear re-
actions are required in order to convert any signi�cant fraction of an ob-
ject’s mass into energy. Cosmic rays, however, are continually striking
you and your surroundings and converting part of their energy of motion
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into the mass of newly created particles. A single high-energy cosmic
ray can create a �shower� of millions of previously nonexistent particles
when it strikes the atmosphere. Einstein’s theories are discussed later
in this book.

Even today, when the energy concept is relatively mature and sta-
ble, a new form of energy has been proposed based on observations
of distant galaxies whose light began its voyage to us billions of years
ago. Astronomers have found that the universe’s continuing expansion,
resulting from the Big Bang, has not been decelerating as rapidly in the
last few billion years as would have been expected from gravitational
forces. They suggest that a new form of energy may be at work.

Discussion question

A I’m not making this up. XS Energy Drink has ads that read like this:
All the �Energy� ... Without the Sugar! Only 8 Calories! Comment on
this.

11.4 Kinetic energy
The technical term for the energy associated with motion is kinetic
energy, from the Greek word for motion. (The root is the same as
the root of the word \cinema" for a motion picture, and in French
the term for kinetic energy is \�energie cin�etique.") To �nd how
much kinetic energy is possessed by a given moving object, we must
convert all its kinetic energy into heat energy, which we have chosen
as the standard reference type of energy. We could do this, for
example, by �ring projectiles into a tank of water and measuring the
increase in temperature of the water as a function of the projectile’s
mass and velocity. Consider the following data from a series of three
such experiments:

m (kg) v (m/s) energy (J)
1.00 1.00 0.50
1.00 2.00 2.00
2.00 1.00 1.00

Comparing the �rst experiment with the second, we see that dou-
bling the object’s velocity doesn’t just double its energy, it quadru-
ples it. If we compare the �rst and third lines, however, we �nd
that doubling the mass only doubles the energy. This suggests that
kinetic energy is proportional to mass and to the square of veloc-
ity, KE / mv2, and further experiments of this type would indeed
establish such a general rule. The proportionality factor equals 0.5
because of the design of the metric system, so the kinetic energy of
a moving object is given by

KE =
1
2

mv2.

The metric system is based on the meter, kilogram, and second,
with other units being derived from those. Comparing the units on
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the left and right sides of the equation shows that the joule can be
reexpressed in terms of the basic units as kg�m2=s2.

Energy released by a comet impact example 7
. Comet Shoemaker-Levy, which struck the planet Jupiter in 1994,
had a mass of roughly 4 � 1013 kg, and was moving at a speed
of 60 km/s. Compare the kinetic energy released in the impact to
the total energy in the world’s nuclear arsenals, which is 2 � 1019

J. Assume for the sake of simplicity that Jupiter was at rest.

. Since we assume Jupiter was at rest, we can imagine that the
comet stopped completely on impact, and 100% of its kinetic en-
ergy was converted to heat and sound. We �rst convert the speed
to mks units, v = 6 � 104 m/s, and then plug in to the equation
to �nd that the comet’s kinetic energy was roughly 7 � 1022 J, or
about 3000 times the energy in the world’s nuclear arsenals.

Energy and relative motion

Galileo’s Aristotelian enemies (and it is no exaggeration to call
them enemies!) would probably have objected to conservation of
energy. Galilean got in trouble by claiming that an object in motion
would continue in motion inde�nitely in the absence of a force. This
is not so di�erent from the idea that an object’s kinetic energy
stays the same unless there is a mechanism like frictional heating
for converting that energy into some other form.

More subtly, however, it’s not immediately obvious that what
we’ve learned so far about energy is strictly mathematically con-
sistent with Galileo’s principle that motion is relative. Suppose we
verify that a certain process, say the collision of two pool balls, con-
serves energy as measured in a certain frame of reference: the sum
of the balls’ kinetic energies before the collision is equal to their sum
after the collision. But what if we were to measure everything in a
frame of reference that was in a di�erent state of motion? It’s not
immediately obvious that the total energy before the collision will
still equal the total energy after the collision. It doesstill work out.
Homework problem 13, p. 333, gives a simple numerical example,
and the general proof is taken up in problem 15 on p. 422 (with the
solution given in the back of the book).

Why kinetic energy obeys the equation it does

I’ve presented the magic expression for kinetic energy, (1=2)mv2,
as a purely empirical fact. Does it have any deeper reason that
might be knowable to us mere mortals? Yes and no. It contains
three factors, and we need to consider each separately.

The reason for the factor of 1/2 is understandable, but only
as an arbitrary historical choice. The metric system was designed
so that some of the equations relating to energy would come out
looking simple, at the expense of some others, which had to have
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g / Kinetic energies of electrons
measured in three experiments.
At high velocities, the equation
K E = (1=2)mv2 becomes a poor
approximation.

inconvenient conversion factors in front. If we were using the old
British Engineering System of units in this course, then we’d have
the British Thermal Unit (BTU) as our unit of energy. In that
system, the equation you’d learn for kinetic energy would have an
inconvenient proportionality constant, KE =

�
1.29� 10� 3�

mv2,
with KE measured in units of BTUs,v measured in feet per second,
and so on. At the expense of this inconvenient equation for kinetic
energy, the designers of the British Engineering System got a simple
rule for calculating the energy required to heat water: one BTU
per degree Fahrenheit per pound. The inventor of kinetic energy,
Thomas Young, actually de�ned it as KE = mv2, which meant that
all his other equations had to be di�erent from ours by a factor of
two. All these systems of units work just �ne as long as they are
not combined with one another in an inconsistent way.

The proportionality to m is inevitable because the energy con-
cept is based on the idea that we add up energy contributions from
all the objects within a system. Therefore it is logically necessary
that a 2 kg object moving at 1 m/s have the same kinetic energy as
two 1 kg objects moving side-by-side at the same speed.

What about the proportionality to v2? Consider:

1. It’s surprisingly hard to tamper with this factor without break-
ing things: see discussion questions A and B on p. 322.

2. The proportionality to v2 is not even correct, except as a low-
velocity approximation. Experiments show deviations from
the v2 rule at high speeds (�gure g), an e�ect that is related
to Einstein’s theory of relativity.

3. As described on p. 320, we want conservation of energy to
keep working when we switch frames of reference. The fact
that this does work for KE / v2 is intimately connected with
the assumption that when we change frames, velocities add as
described in section 2.5. This assumption turns out to be an
approximation, which only works well at low velocities.

4. Conservation laws are of more general validity than Newton’s
laws, which apply to material objects moving at low speeds.
Under the conditions where Newton’s laws are accurate, they
follow logically from the conservation laws. Therefore we need
kinetic energy to have low-velocity behavior that ends up cor-
rectly reproducing Newton’s laws.

So under a certain set of low-velocity approximations, KE / v2

is what works. We verify in problem 15, p. 422, that it satis�es
criterion 3, and we show in section 13.6, p. 374, that it is theonly
such relation that satis�es criterion 4.
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Discussion question C

Discussion questions

A Suppose that, like Young or Einstein, you were trying out different
equations for kinetic energy to see if they agreed with the experimental
data. Based on the meaning of positive and negative signs of velocity,
why would you suspect that a proportionality to mv would be less likely
than mv2?

B As in discussion question A, try to think of an argument showing that
m(v2 + v4) is not a possible formula for kinetic energy.

C The �gure shows a pendulum that is released at A and caught by a
peg as it passes through the vertical, B. To what height will the bob rise
on the right?

11.5 Power
A car may have plenty of energy in its gas tank, but still may not
be able to increase its kinetic energy rapidly. A Porsche doesn’t
necessarily have more energy in its gas tank than a Hyundai, it is
just able to transfer it more quickly. The rate of transferring energy
from one form to another is called power. The de�nition can be
written as an equation,

P =
� E
� t

,

where the use of the delta notation in the symbol � E has the usual
interpretation: the �nal amount of energy in a certain form minus
the initial amount that was present in that form. Power has units
of J/s, which are abbreviated as watts, W (rhymes with \lots").

If the rate of energy transfer is not constant, the power at any
instant can be de�ned as the derivative dE= dt

Converting kilowatt-hours to joules example 8
. The electric company bills you for energy in units of kilowatt-
hours (kilowatts multiplied by hours) rather than in SI units of
joules. How many joules is a kilowatt-hour?

. 1 kilowatt-hour = (1 kW)(1 hour) = (1000 J/s)(3600 s) = 3.6 MJ.

Human wattage example 9
. A typical person consumes 2000 kcal of food in a day, and con-
verts nearly all of that directly to heat. Compare the person’s heat
output to the rate of energy consumption of a 100-watt lightbulb.

. Looking up the conversion factor from calories to joules, we �nd

� E = 2000 kcal �
1000 cal

1 kcal
�

4.18 J
1 cal

= 8 � 106 J

for our daily energy consumption. Converting the time interval
likewise into mks,

� t = 1 day �
24 hours

1 day
�

60 min
1 hour

�
60 s
1 min

= 9 � 104 s.

Dividing, we �nd that our power dissipated as heat is 90 J/s = 90
W, about the same as a lightbulb.
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Wind power density example 10
Wind power is a renewable energy resource, but it is most prac-
tical in areas where the wind is both strong and reliably strong.
When a horizontal-axis wind turbine faces directly into a wind
�owing at speed v , the air it intercepts in time � t forms a cylin-
der whose length is v � t , and whose mass is proportional to the
same factor. The kinetic energy of this cylinder represents the
maximum energy that can theoretically be extracted in this time.
Since the mass is proportional to v , the kinetic energy is propor-
tional to v � v2 = v3. That is, the �wind power density� varies as
the cube of the wind’s speed.

It is easy to confuse the concepts of force, energy, and power,
especially since they are synonyms in ordinary speech. The table on
the following page may help to clear this up:
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force energy power
conceptual
de�nition

A force is an interaction
between two objects that
causes a push or a pull.
A force can be de�ned as
anything that is capable
of changing an object’s
state of motion.

Heating an object, mak-
ing it move faster, or in-
creasing its distance from
another object that is at-
tracting it are all exam-
ples of things that would
require fuel or physical ef-
fort. All these things can
be quanti�ed using a sin-
gle scale of measurement,
and we describe them all
as forms of energy.

Power is the rate at
which energy is trans-
formed from one form
to another or transferred
from one object to an-
other.

operational
de�nition A spring scale can be used

to measure force.

If we de�ne a unit of en-
ergy as the amount re-
quired to heat a certain
amount of water by a
1� C, then we can mea-
sure any other quantity
of energy by transferring
it into heat in water and
measuring the tempera-
ture increase.

Measure the change in the
amount of some form of
energy possessed by an
object, and divide by the
amount of time required
for the change to occur.

scalar or
vector?

vector | has a direction
in space which is the di-
rection in which it pulls or
pushes

scalar | has no direction
in space

scalar | has no direction
in space

unit newtons (N) joules (J) watts (W) = joules/s
Can it run
out? Does it
cost money?

No. I don’t have to
pay a monthly bill for
the meganewtons of force
required to hold up my
house.

Yes. We pay money for
gasoline, electrical energy,
batteries, etc., because
they contain energy.

More power means you
are paying money at a
higher rate. A 100-W
lightbulb costs a certain
number of cents per hour.

Can it be a
property of
an object?

No. A force is a rela-
tionship between two
interacting objects.
A home-run baseball
doesn’t \have" force.

Yes. What a home-run
baseball has is kinetic en-
ergy, not force.

Not really. A 100-W
lightbulb doesn’t \have"
100 W. 100 J/s is the rate
at which it converts elec-
trical energy into light.

11.6 ? Massless particles
Failure of Newton’s laws

One of the main reasons for preferring conservation laws to New-
ton’s laws as a foundation for physics is that conservation laws are
more general. For example, Newton’s laws apply only to matter,
whereas conservation laws can handle light as well. No experiment
in Newton’s day had ever shown anything but zero for the mass
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or weight of a ray of light, and substituting m = 0 into a = F=m
results in an in�nite acceleration, which doesn’t make sense. With
hindsight, this is to be expected because of relativity (section 2.6).
Newton’s laws are only a good approximation for velocities that are
small compared to c, the maximum speed of cause and e�ect. But
light travels at c, so Newton’s laws are not a good approximation to
the behavior of light.

For insight into the behavior of things that go at exactly c, let’s
consider a case where something goes very close toc. A typical
22-caliber rie shoots a bullet with a mass of about 3 g at a speed
of about 400 m/s. Now consider the �ring of such a rie as seen
through an ultra-powerful telescope by an alien in a distant galaxy.
We happen to be �ring in the direction away from the alien, who
gets a view from over our shoulder. Since the universe is expanding,
our two galaxies are receding from each other. In the alien’s frame,
our own galaxy is the one that is moving | let’s say at c� (200 m=s).
If the two velocities simply added, the bullet would be moving at
c + (200 m=s). But velocities don’t simply add and subtract rela-
tivistically (p. 90), and applying the correct equation for relativistic
combination of velocities, we �nd that in the alien’s frame, the bullet
ies at only c � (199.9995 m=s). That is, according to the alien, the
energy in the gunpowder only succeeded in accelerating the bullet
by 0.0005 m=s! If we insisted on believing inKE = (1 =2)mv2, this
would clearly violate conservation of energy in the alien’s frame of
reference. KE must not only get bigger faster than (1=2)mv2 as v
approachesc, it must blow up to in�nity. This gives a mechanical
explanation for why no material object can ever reach or exceedc,
which is reassuring because speeds greater thanc lead to violation
of causality.

Ultrarelativistic motion

The bullet as seen in the alien’s frame of reference is an example
of an ultrarelativistic particle, meaning one moving very close toc.
We can fairly easily infer quite a bit about how kinetic energy must
behave at ultrarelativistic speeds. We know that it must get larger
and larger, and the question is how large it is when the speed di�ers
from c by some small amount.

A good way of thinking about an ultrarelativistic particle is that
it’s a particle with a very small mass. For example, the subatomic
particle called the neutrino has a very small mass, thousands of times
smaller than that of the electron. Neutrinos are emitted in radioac-
tive decay, and because the neutrino’s mass is so small, the amount
of energy available in these decays is always enough to accelerate
it to very close to the speed of light. Nobody has ever succeeded
in observing a neutrino that was not ultrarelativistic. When a par-
ticle’s mass is very small, the mass becomes di�cult to measure.
For almost 70 years after the neutrino was discovered, its mass was
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thought to be zero. Similarly, we currently believe that a ray of light
has no mass, but it is always possible that its mass will be found
to be nonzero at some point in the future. A ray of light can be
modeled as an ultrarelativistic particle.

Let’s compare ultrarelativistic particles with train cars. A single
car with kinetic energy E has di�erent properties than a train of two
cars each with kinetic energyE=2. The single car has half the mass
and a speed that is greater by a factor of

p
2. But the same is not

true for ultrarelativistic particles. Since an idealized ultrarelativistic
particle has a mass too small to be detectable in any experiment,
we can’t detect the di�erence between m and 2m. Furthermore,
ultrarelativistic particles move at close to c, so there is no observable
di�erence in speed. Thus we expect that a single ultrarelativistic
particle with energy E compared with two such particles, each with
energy E=2, should have all the same properties as measured by a
mechanical detector.

An idealized zero-mass particle also has no frame in which it
can be at rest. It always travels at c, and no matter how fast we
chase after it, we can never catch up. We can, however, observe
it in di�erent frames of reference, and we will �nd that its energy
is di�erent. For example, distant galaxies are receding from us at
substantial fractions of c, and when we observe them through a
telescope, they appear very dim not just because they are very far
away but also because their light has less energy in our frame than
in a frame at rest relative to the source. This e�ect must be such
that changing frames of reference according to a speci�c Lorentz
transformation always changes the energy of the particle by a �xed
factor, regardless of the particle’s original energy; for if not, then
the e�ect of a Lorentz transformation on a single particle of energy
E would be di�erent from its e�ect on two particles of energy E=2.

How does this energy-shift factor depend on the velocityv of the
Lorentz transformation? Actually, it is more convenient to express
this in terms of a di�erent variable rather than v. In nonrelativistic
physics, we change frames of reference simply by adding a constant
onto all our velocities, but this is only a low-velocity approximation.
For this reason, it will be more convenient to work with a variable s,
de�ned as the factor by which the long diagonal of a parallelogram
like the ones in section 2.6 stretches under a Lorentz transformation.
For example, we found in problem 21 on p. 100 that a velocity of
0.6c corresponds to a stretch factors = 2. The convenient thing
about stretch factors is that when we change to a new frame of
reference, they simply multiply. For example, in problem 21 you
found the result of combining a velocity of 0.6c with another velocity
of 0.6c by drawing a parallelogram with its long axis stretched by
a factor of 2 � 2 = 4. The relation between s and v is given by
s =

p
(1 + v)=(1 � v) (in units with c = 1; see problems 18 on p. 99

and 22 on p. 101).
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A low-speed approximation example 11
What happens when the the velocity is small compared to c? In
units where c = 1, this means that v is small compared to 1. The
stretch factor s =

p
(1 + v )=(1 � v ) can then be approximated by

taking 1=(1 � v ) � 1+v and
p

1 + � � 1+ � =2, so that s � 1+v .

Let’s write f (s) for the energy-shift factor that results from a
given Lorentz transformation. Since a Lorentz transformations1 fol-
lowed by a second transformations2 is equivalent to a single trans-
formation by s1s2, we must havef (s1s2) = f (s1)f (s2). This tightly
constrains the form of the function f ; it must be something like
f (s) = sn , where n is a constant. The interpretation of n is that
under a Lorentz transformation corresponding to 1% ofc, energies
of ultrarelativistic particles change by about n% (making the ap-
proximation that v = .01 gives s � 1.01). We postpone until p. 415
the proof that n = 1, which is also in agreement with experiments
with rays of light.

Our �nal result is that the energy of an ultrarelativistic particle
is simply proportional to its Lorentz \stretch factor" s. Even in
the case where the particle is truly massless, so thats doesn’t have
any �nite value, we can still �nd how the energy di�ers according
to di�erent observers by �nding the s of the Lorentz transformation
between the two observers’ frames of reference.

An astronomical energy shift example 12
. For quantum-mechanical reasons, a hydrogen atom can only
exist in states with certain speci�c energies. By conservation
of energy, the atom can therefore only absorb or emit light that
has an energy equal to the difference between two such atomic
energies. The outer atmosphere of a star is mostly made of
monoatomic hydrogen, and one of the energies that a hydrogen
atom can absorb or emit is 3.0276 � 10� 19 J. When we observe
light from stars in the Andromeda Galaxy, it has an energy of
3.0306 � 10� 19 J. If this is assumed to be due entirely to the
motion of the Milky Way and Andromeda Galaxy relative to one
another, along the line connecting them, �nd the direction and
magnitude of this velocity.

. The energy is shifted upward, which means that the Andromeda
Galaxy is moving toward us. (Galaxies at cosmological distances
are always observed to be receding from one another, but this
doesn’t necessarily hold for galaxies as close as these.) Relating
the energy shift to the velocity, we have

E0

E
= s =

p
(1 + v )=(1 � v ).

Since the shift is only about one part per thousand, the velocity
is small compared to c � or small compared to 1 in units where
c = 1. Therefore we can approximate as in example 11, s � 1+v ,
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and we �nd

v � s � 1 =
E0

E
� 1 = 1.0 � 10� 3.

This is in units where c = 1. Converting to SI units, where c 6= 1,
we have v = (1.0 � 10� 3)c = 300 km=s. Although the Andromeda
Galaxy’s tangential motion is not accurately known, it is consid-
ered likely that it will collide with the Milky Way in a few billion
years.

A symmetry property of the energy shift example 13
Suppose that A and B are at rest relative to one another, but C is
moving along the line between A and B. A sends a pulse of laser
light to C, who then measures its energy and transmits another
pulse to B having the same energy. The pulse accumulates two
energy shifts, and the result is their product s(v )s(� v ). But C
didn’t actually need to absorb the original pulse and retransmit it;
the results would have been the same if C had just stayed out of
the way. Therefore this product must equal 1, so we must have
s(� v )s(v ) = 1, which can be veri�ed directly from the equation.

The Ives-Stilwell experiment example 14
The result of example 13 was the basis of one of the earliest labo-
ratory tests of special relativity, by Ives and Stilwell in 1938. They
observed the light emitted by a beam of excited H+

2 and H+
3 ions

with speeds of a few tenths of a percent of c. Measuring the light
from both ahead of and behind the beams, they found that the
product s(v )s(� v ) was equal to 1, as predicted by relativity. If rel-
ativity had been false, then one would have expected the product
to differ from 1 by an amount that would have been detectable in
their experiment. In 2003, Saathoff et al. carried out an extremely
precise version of the Ives-Stilwell technique with Li+ ions moving
at 6.4% of c. The energies observed, in units of 10� 28 J, were:

Eo = 3620927488 � 3
(unshifted energy)

Eos(v ) = 3859620256 � 0.6
(shifted energy, forward)

Eos(� v ) = 3396996334 � 3
(shifted energy, backward)p

Eos(v ) � Eos(� v ) = 3620927487 � 2

The results show incredibly precise agreement between Eo andp
Eos(v ) � Eos(� v ), as expected relativistically because s(v )s(� v )

is supposed to equal 1. The agreement extends to 9 signi�cant
�gures, whereas if relativity had been false there should have
been a relative disagreement of about v2 = .004, i.e., a discrep-
ancy in the third signi�cant �gure. The spectacular agreement
with theory has made this experiment a lightning rod for anti-
relativity kooks.
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Summary
Selected vocabulary
energy . . . . . . A numerical scale used to measure the heat,

motion, or other properties that would require
fuel or physical e�ort to put into an object; a
scalar quantity with units of joules (J).

power . . . . . . . The rate of transferring energy; a scalar quan-
tity with units of watts (W).

kinetic energy . . The energy an object possesses because of its
motion.

heat . . . . . . . . A form of energy that relates to temperature.
Heat is di�erent from temperature because an
object with twice as much mass requires twice
as much heat to increase its temperature by
the same amount. Heat is measured in joules,
temperature in degrees. (In standard termi-
nology, there is another, �ner distinction be-
tween heat and thermal energy, which is dis-
cussed below. In this book, I informally refer
to both as heat.)

temperature . . . What a thermometer measures. Objects left in
contact with each other tend to reach the same
temperature. Cf. heat. As discussed in more
detail in chapter 2, temperature is essentially
a measure of the average kinetic energy per
molecule.

Notation
E . . . . . . . . . energy
J . . . . . . . . . . joules, the SI unit of energy
KE . . . . . . . . kinetic energy
P . . . . . . . . . power
W . . . . . . . . . watts, the SI unit of power; equivalent to J/s

Other terminology and notation
Q or � Q . . . . . the amount of heat transferred into or out of

an object
K or T . . . . . . alternative symbols for kinetic energy, used in

the scienti�c literature and in most advanced
textbooks

thermal energy . Careful writers make a distinction between
heat and thermal energy, but the distinction
is often ignored in casual speech, even among
physicists. Properly, thermal energy is used
to mean the total amount of energy possessed
by an object, while heat indicates the amount
of thermal energy transferred in or out. The
term heat is used in this book to include both
meanings.
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Summary

Heating an object, making it move faster, or increasing its dis-
tance from another object that is attracting it are all examples of
things that would require fuel or physical e�ort. All these things can
be quanti�ed using a single scale of measurement, and we describe
them all as forms of energy. The SI unit of energy is the Joule.
The reason why energy is a useful and important quantity is that
it is always conserved. That is, it cannot be created or destroyed
but only transferred between objects or changed from one form to
another. Conservation of energy is the most important and broadly
applicable of all the laws of physics, more fundamental and general
even than Newton’s laws of motion.

Heating an object requires a certain amount of energy per degree
of temperature and per unit mass, which depends on the substance
of which the object consists. Heat and temperature are completely
di�erent things. Heat is a form of energy, and its SI unit is the joule
(J). Temperature is not a measure of energy. Heating twice as much
of something requires twice as much heat, but double the amount
of a substance does not have double the temperature.

The energy that an object possesses because of its motion is
called kinetic energy. Kinetic energy is related to the mass of the
object and the magnitude of its velocity vector by the equation

KE =
1
2

mv2.

Power is the rate at which energy is transformed from one form
to another or transferred from one object to another,

P =
dE
dt

The SI unit of power is the watt (W).

The equation KE = (1 =2)mv2 is a nonrelativistic approxima-
tion, valid at speeds that are small compared toc. In the oppo-
site limit, of a particle with a speed very close to c, the energy is
proportional to the \stretch factor" of the Lorentz transformation,
s =

p
(1 + v)=(1 � v) (in units with c = 1), for v ! + c and 1=s for

v ! � c. This gives a mechanical explanation for why no material
object can ever reach or exceedc, which is reassuring because speeds
greater than c lead to violation of causality.
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Problems
Keyp

A computerized answer check is available online.R
A problem that requires calculus.

? A di�cult problem.

1 Can kinetic energy ever be less than zero? Explain. [Based
on a problem by Serway and Faughn.]

2 Estimate the kinetic energy of an Olympic sprinter.

3 You are driving your car, and you hit a brick wall head on,
at full speed. The car has a mass of 1500 kg. The kinetic energy
released is a measure of how much destruction will be done to the car
and to your body. Calculate the energy released if you are traveling
at (a) 40 mi/hr, and again (b) if you’re going 80 mi/hr. What is
counterintuitive about this, and what implication does this have for
driving at high speeds?

p

4 The following table gives the amount of energy required in
order to heat, melt, or boil a gram of water.
heat 1 g of ice by 1� C 2.05 J
melt 1 g of ice 333 J
heat 1 g of water by 1� C 4.19 J
boil 1 g of water 2500 J
heat 1 g of steam by 1� C 2.01 J

(a) How much energy is required in order to convert 1.00 g of ice at
-20 � C into steam at 137 � C?

p

(b) What is the minimum amount of hot water that could melt 1.00
g of ice?

p

5 A closed system can be a bad thing | for an astronaut
sealed inside a space suit, getting rid of body heat can be di�cult.
Suppose a 60-kg astronaut is performing vigorous physical activity,
expending 200 W of power. If none of the heat can escape from her
space suit, how long will it take before her body temperature rises
by 6� C(11� F), an amount su�cient to kill her? Assume that the
amount of heat required to raise her body temperature by 1� C is
the same as it would be for an equal mass of water. Express your
answer in units of minutes.

p
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6 A bullet ies through the air, passes through a paperback book,
and then continues to y through the air beyond the book. When
is there a force? When is there energy? . Solution, p. 554

7 Experiments show that the power consumed by a boat’s engine
is approximately proportional to the third power of its speed. (We
assume that it is moving at constant speed.) (a) When a boat
is crusing at constant speed, what type of energy transformation
do you think is being performed? (b) If you upgrade to a motor
with double the power, by what factor is your boat’s crusing speed
increased? [Based on a problem by Arnold Arons.]

. Solution, p. 554

8 Object A has a kinetic energy of 13.4 J. Object B has a mass
that is greater by a factor of 3.77, but is moving more slowly by
a factor of 2.34. What is object B’s kinetic energy? [Based on a
problem by Arnold Arons.] . Solution, p. 554

9 Example 10 on page 323 showed that the power produced by
a wind turbine is proportional to the cube of the wind speedv. Von
K�arm�an found empirically that when a uid ows turbulently over a
surface, the speed of the uid is often well approximated byv / z1=7,
where z is the distance from the surface. Wind turbine towers are
often constructed at heights of 50 m, but surveys of wind speeds are
usually conducted at heights of about 3 m. By what factor should
the predicted wind power density be scaled up relative to the survey
data?

p

10 The moon doesn’t really just orbit the Earth. By Newton’s
third law, the moon’s gravitational force on the earth is the same as
the earth’s force on the moon, and the earth must respond to the
moon’s force by accelerating. If we consider the earth and moon in
isolation and ignore outside forces, then Newton’s �rst law says their
common center of mass doesn’t accelerate, i.e., the earth wobbles
around the center of mass of the earth-moon system once per month,
and the moon also orbits around this point. The moon’s mass is 81
times smaller than the earth’s. Compare the kinetic energies of the
earth and moon. (We know that the center of mass is a kind of
balance point, so it must be closer to the earth than to the moon.
In fact, the distance from the earth to the center of mass is 1/81
of the distance from the moon to the center of mass, which makes
sense intuitively, and can be proved rigorously using the equation
on page 404.)

11 My 1.25 kW microwave oven takes 126 seconds to bring 250
g of water from room temperature to a boil. What percentage of
the power is being wasted? Where might the rest of the energy be
going? . Solution, p. 554
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12 The multiash photograph shows a collision between two
pool balls. The ball that was initially at rest shows up as a dark
image in its initial position, because its image was exposed several
times before it was struck and began moving. By makingmeasure-
ments on the �gure, determine numerically whether or not energy
appears to have been conserved in the collision. What systematic
e�ects would limit the accuracy of your test? [From an example in
PSSC Physics.]

Problem 12.

13 This problem is a numerical example of the imaginary exper-
iment discussed on p. 320 regarding the relationship between energy
and relative motion. Let’s say that the pool balls both have masses
of 1.00 kg. Suppose that in the frame of reference of the pool table,
the cue ball moves at a speed of 1.00 m/s toward the eight ball,
which is initially at rest. The collision is head-on, and as you can
verify for yourself the next time you’re playing pool, the result of
such a collision is that the incoming ball stops dead and the ball that
was struck takes o� with the same speed originally possessed by the
incoming ball. (This is actually a bit of an idealization. To keep
things simple, we’re ignoring the spin of the balls, and we assume
that no energy is liberated by the collision as heat or sound.) (a)
Calculate the total initial kinetic energy and the total �nal kinetic
energy, and verify that they are equal. (b) Now carry out the whole
calculation again in the frame of reference that is moving in the same
direction that the cue ball was initially moving, but at a speed of
0.50 m/s. In this frame of reference, both balls have nonzero initial
and �nal velocities, which are di�erent from what they were in the
table’s frame. [See also problem 15 on p. 422.]
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14 One theory about the destruction of the space shuttle Columbia
in 2003 is that one of its wings had been damaged on lifto� by a
chunk of foam insulation that fell o� of one of its external fuel tanks.
The New York Times reported on June 5, 2003, that NASA engi-
neers had recreated the impact to see if it would damage a mock-up
of the shuttle’s wing. \Before last week’s test, many engineers at
NASA said they thought lightweight foam could not harm the seem-
ingly tough composite panels, and privately predicted that the foam
would bounce o� harmlessly, like a Nerf ball." In fact, the 1.7-pound
piece of foam, moving at 531 miles per hour, did serious damage.
A member of the board investigating the disaster said this demon-
strated that \people’s intuitive sense of physics is sometimes way
o�." (a) Compute the kinetic energy of the foam, and (b) compare
with the energy of a 170-pound boulder moving at 5.3 miles per
hour (the speed it would have if you dropped it from about knee-
level).

p

(c) The boulder is a hundred times more massive, but its speed
is a hundred times smaller, so what’s counterintuitive about your
results?

15 The �gure above is from a classic 1920 physics textbook
by Millikan and Gale. It represents a method for raising the water
from the pond up to the water tower, at a higher level, without
using a pump. Water is allowed into the drive pipe, and once it is
owing fast enough, it forces the valve at the bottom closed. Explain
how this works in terms of conservation of mass and energy. (Cf.
example 1 on page 311.)
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16 All stars, including our sun, show variations in their light
output to some degree. Some stars vary their brightness by a factor
of two or even more, but our sun has remained relatively steady dur-
ing the hundred years or so that accurate data have been collected.
Nevertheless, it is possible that climate variations such as ice ages
are related to long-term irregularities in the sun’s light output. If
the sun was to increase its light output even slightly, it could melt
enough Antarctic ice to ood all the world’s coastal cities. The total
sunlight that falls on Antarctica amounts to about 1 � 1016 watts.
Presently, this heat input to the poles is balanced by the loss of
heat via winds, ocean currents, and emission of infrared light, so
that there is no net melting or freezing of ice at the poles from year
to year. Suppose that the sun changes its light output by some small
percentage, but there is no change in the rate of heat loss by the
polar caps. Estimate the percentage by which the sun’s light output
would have to increase in order to melt enough ice to raise the level
of the oceans by 10 meters over a period of 10 years. (This would be
enough to ood New York, London, and many other cities.) Melting
1 kg of ice requires 3� 103 J.

17 Estimate the kinetic energy of a buzzing y’s wing. (You
may wish to review section 1.3 on order-of-magnitude estimates.)

18 A blade of grass moves upward as it grows. Estimate its
kinetic energy. (You may wish to review section 1.3 on order-of-
magnitude estimates.)
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Do these forms of energy have anything in common?

Chapter 12

Simplifying the energy zoo

Variety is the spice of life, not of science. The �gure shows a few
examples from the bewildering array of forms of energy that sur-
rounds us. The physicist’s psyche rebels against the prospect of a
long laundry list of types of energy, each of which would require
its own equations, concepts, notation, and terminology. The point
at which we’ve arrived in the study of energy is analogous to the
period in the 1960’s when a half a dozen new subatomic particles
were being discovered every year in particle accelerators. It was an
embarrassment. Physicists began to speak of the \particle zoo,"
and it seemed that the subatomic world was distressingly complex.
The particle zoo was simpli�ed by the realization that most of the
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new particles being whipped up were simply clusters of a previously
unsuspected set of more fundamental particles (which were whimsi-
cally dubbed quarks, a made-up word from a line of poetry by James
Joyce, \Three quarks for Master Mark.") The energy zoo can also
be simpli�ed, and it is the purpose of this chapter to demonstrate
the hidden similarities between forms of energy as seemingly di�er-
ent as heat and motion.

a / A vivid demonstration that
heat is a form of motion. A small
amount of boiling water is poured
into the empty can, which rapidly
�lls up with hot steam. The can
is then sealed tightly, and soon
crumples. This can be explained
as follows. The high tempera-
ture of the steam is interpreted as
a high average speed of random
motions of its molecules. Before
the lid was put on the can, the
rapidly moving steam molecules
pushed their way out of the can,
forcing the slower air molecules
out of the way. As the steam in-
side the can thinned out, a sta-
ble situation was soon achieved,
in which the force from the less
dense steam molecules moving
at high speed balanced against
the force from the more dense but
slower air molecules outside. The
cap was put on, and after a while
the steam inside the can reached
the same temperature as the air
outside. The force from the cool,
thin steam no longer matched the
force from the cool, dense air out-
side, and the imbalance of forces
crushed the can.

12.1 Heat is kinetic energy
What is heat really? Is it an invisible uid that your bare feet soak
up from a hot sidewalk? Can one ever remove all the heat from an
object? Is there a maximum to the temperature scale?

The theory of heat as a uid seemed to explain why colder ob-
jects absorbed heat from hotter ones, but once it became clear that
heat was a form of energy, it began to seem unlikely that a material
substance could transform itself into and out of all those other forms
of energy like motion or light. For instance, a compost pile gets hot,
and we describe this as a case where, through the action of bacteria,
chemical energy stored in the plant cuttings is transformed into heat
energy. The heating occurs even if there is no nearby warmer object
that could have been leaking \heat uid" into the pile.

An alternative interpretation of heat was suggested by the theory
that matter is made of atoms. Since gases are thousands of times less
dense than solids or liquids, the atoms (or clusters of atoms called
molecules) in a gas must be far apart. In that case, what is keeping
all the air molecules from settling into a thin �lm on the oor of the
room in which you are reading this book? The simplest explanation
is that they are moving very rapidly, continually ricocheting o� of
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b / Random motion of atoms
in a gas, a liquid, and a solid.

the oor, walls, and ceiling. Though bizarre, the cloud-of-bullets
image of a gas did give a natural explanation for the surprising
ability of something as tenuous as a gas to exert huge forces. Your
car’s tires can hold it up because you have pumped extra molecules
into them. The inside of the tire gets hit by molecules more often
than the outside, forcing it to stretch and sti�en.

The outward forces of the air in your car’s tires increase even
further when you drive on the freeway for a while, heating up the
rubber and the air inside. This type of observation leads naturally
to the conclusion that hotter matter di�ers from colder in that its
atoms’ random motion is more rapid. In a liquid, the motion could
be visualized as people in a milling crowd shoving past each other
more quickly. In a solid, where the atoms are packed together, the
motion is a random vibration of each atom as it knocks against its
neighbors.

We thus achieve a great simpli�cation in the theory of heat. Heat
is simply a form of kinetic energy, the total kinetic energy of random
motion of all the atoms in an object. With this new understanding,
it becomes possible to answer at one stroke the questions posed at
the beginning of the section. Yes, it is at least theoretically possible
to remove all the heat from an object. The coldest possible temper-
ature, known as absolute zero, is that at which all the atoms have
zero velocity, so that their kinetic energies, (1=2)mv2, are all zero.
No, there is no maximum amount of heat that a certain quantity of
matter can have, and no maximum to the temperature scale, since
arbitrarily large values of v can create arbitrarily large amounts of
kinetic energy per atom.

The kinetic theory of heat also provides a simple explanation of
the true nature of temperature. Temperature is a measure of the
amount of energy per molecule, whereas heat is the total amount of
energy possessed by all the molecules in an object.

There is an entire branch of physics, called thermodynamics,
that deals with heat and temperature and forms the basis for tech-
nologies such as refrigeration.

Thermodynamics is not covered in this book, and I have pro-
vided here only a brief overview of the thermodynamic concepts
that relate directly to energy, glossing over at least one point that
would be dealt with more carefully in a thermodynamics course: it
is really only true for a gas that all the heat is in the form of ki-
netic energy. In solids and liquids, the atoms are close enough to
each other to exert intense electrical forces on each other, and there
is therefore another type of energy involved, the energy associated
with the atoms’ distances from each other. Strictly speaking, heat
energy is de�ned not as energy associated with random motion of
molecules but as any form of energy that can be conducted between
objects in contact, without any force.

Section 12.1 Heat is kinetic energy 339



c / The skater has converted
all his kinetic energy into potential
energy on the way up the side of
the pool.

12.2 Potential energy: energy of distance or
closeness

We have already seen many examples of energy related to the dis-
tance between interacting objects. When two objects participate in
an attractive noncontact force, energy is required to bring them far-
ther apart. In both of the perpetual motion machines that started
o� the previous chapter, one of the types of energy involved was the
energy associated with the distance between the balls and the earth,
which attract each other gravitationally. In the perpetual motion
machine with the magnet on the pedestal, there was also energy
associated with the distance between the magnet and the iron ball,
which were attracting each other.

The opposite happens with repulsive forces: two socks with the
same type of static electric charge will repel each other, and cannot
be pushed closer together without supplying energy.

In general, the term potential energy,with algebra symbol PE, is
used for the energy associated with the distance between two objects
that attract or repel each other via a force that depends on the
distance between them. Forces that are not determined by distance
do not have potential energy associated with them. For instance,
the normal force acts only between objects that have zero distance
between them, and depends on other factors besides the fact that
the distance is zero. There is no potential energy associated with
the normal force.

The following are some commonplace examples of potential en-
ergy:

gravitational potential energy: The skateboarder in the photo
has risen from the bottom of the pool, converting kinetic en-
ergy into gravitational potential energy. After being at rest
for an instant, he will go back down, converting PE back into
KE.

magnetic potential energy: When a magnetic compass needle is
allowed to rotate, the poles of the compass change their dis-
tances from the earth’s north and south magnetic poles, con-
verting magnetic potential energy into kinetic energy. (Even-
tually the kinetic energy is all changed into heat by friction,
and the needle settles down in the position that minimizes its
potential energy.)

electrical potential energy: Socks coming out of the dryer cling
together because of attractive electrical forces. Energy is re-
quired in order to separate them.

potential energy of bending or stretching: The force between
the two ends of a spring depends on the distance between
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d / As the skater free-falls,
his PE is converted into KE. (The
numbers would be equally valid
as a description of his motion on
the way up.)

them, i.e., on the length of the spring. If a car is pressed
down on its shock absorbers and then released, the potential
energy stored in the spring is transformed into kinetic and
gravitational potential energy as the car bounces back up.

I have deliberately avoided introducing the term potential en-
ergy up until this point, because it tends to produce unfortunate
connotations in the minds of students who have not yet been inoc-
ulated with a careful description of the construction of a numerical
energy scale. Speci�cally, there is a tendency to generalize the term
inappropriately to apply to any situation where there is the \poten-
tial" for something to happen: \I took a break from digging, but
I had potential energy because I knew I’d be ready to work hard
again in a few minutes."

An equation for gravitational potential energy

All the vital points about potential energy can be made by focus-
ing on the example of gravitational potential energy. For simplicity,
we treat only vertical motion, and motion close to the surface of the
earth, where the gravitational force is nearly constant. (The gener-
alization to the three dimensions and varying forces is more easily
accomplished using the concept of work, which is the subject of the
next chapter.)

To �nd an equation for gravitational PE, we examine the case
of free fall, in which energy is transformed between kinetic energy
and gravitational PE. Whatever energy is lost in one form is gained
in an equal amount in the other form, so using the notation � KE
to stand for KE f � KE i and a similar notation for PE, we have

[1] � KE = � � P Egrav .

It will be convenient to refer to the object as falling, so that PE
is being changed into KE, but the math applies equally well to an
object slowing down on its way up. We know an equation for kinetic
energy,

[2] KE =
1
2

mv2,

so if we can relatev to height, y, we will be able to relate � P E to y,
which would tell us what we want to know about potential energy.
The y component of the velocity can be connected to the height via
the constant acceleration equation

[3] v2
f = v2

i + 2a� y,

and Newton’s second law provides the acceleration,

[4] a = F=m,
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in terms of the gravitational force.

The algebra is simple because both equation [2] and equation [3]
have velocity to the second power. Equation [2] can be solved for
v2 to give v2 = 2KE=m , and substituting this into equation [3], we
�nd

2
KE f

m
= 2

KE i

m
+ 2a� y.

Making use of equations [1] and [4] gives the simple result

� P Egrav = � F � y. [change in gravitational PE
resulting from a change in height � y;

F is the gravitational force on the object,
i.e., its weight; valid only near the surface

of the earth, where F is constant]

Dropping a rock example 1
. If you drop a 1-kg rock from a height of 1 m, how many joules
of KE does it have on impact with the ground? (Assume that any
energy transformed into heat by air friction is negligible.)

. If we choose the y axis to point up, then Fy is negative, and
equals � (1 kg)(g) = � 9.8 N. A decrease in y is represented by a
negative value of � y , � y = � 1 m, so the change in potential en-
ergy is � (� 9.8 N)(� 1 m) � � 10 J. (The proof that newtons mul-
tiplied by meters give units of joules is left as a homework prob-
lem.) Conservation of energy says that the loss of this amount of
PE must be accompanied by a corresponding increase in KE of
10 J.

It may be dismaying to note how many minus signs had to be
handled correctly even in this relatively simple example: a total
of four. Rather than depending on yourself to avoid any mistakes
with signs, it is better to check whether the �nal result make sense
physically. If it doesn’t, just reverse the sign.

Although the equation for gravitational potential energy was de-
rived by imagining a situation where it was transformed into kinetic
energy, the equation can be used in any context, because all the
types of energy are freely convertible into each other.
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Gravitational PE converted directly into heat example 2
. A 50-kg �re�ghter slides down a 5-m pole at constant velocity.
How much heat is produced?

. Since she slides down at constant velocity, there is no change
in KE. Heat and gravitational PE are the only forms of energy that
change. Ignoring plus and minus signs, the gravitational force on
her body equals mg, and the amount of energy transformed is

(mg)(5 m) = 2500 J.

On physical grounds, we know that there must have been an in-
crease (positive change) in the heat energy in her hands and in
the �agpole.

Here are some questions and answers about the interpretation of
the equation � P Egrav = � F � y for gravitational potential energy.

Question: In a nutshell, why is there a minus sign in the equation?
Answer: It is because we increase the PE by moving the object in
the opposite direction compared to the gravitational force.

Question: Why do we only get an equation for the change in po-
tential energy? Don’t I really want an equation for the potential
energy itself?
Answer: No, you really don’t. This relates to a basic fact about
potential energy, which is that it is not a well de�ned quantity in
the absolute sense. Only changes in potential energy are unambigu-
ously de�ned. If you and I both observe a rock falling, and agree
that it deposits 10 J of energy in the dirt when it hits, then we will
be forced to agree that the 10 J of KE must have come from a loss
of 10 joules of PE. But I might claim that it started with 37 J of PE
and ended with 27, while you might swear just as truthfully that it
had 109 J initially and 99 at the end. It is possible to pick some
speci�c height as a reference level and say that the PE is zero there,
but it’s easier and safer just to work with changes in PE and avoid
absolute PE altogether.

Question: You referred to potential energy as the energy thattwo
objects have because of their distance from each other. If a rock
falls, the object is the rock. Where’s the other object?
Answer: Newton’s third law guarantees that there will always be
two objects. The other object is the planet earth.

Question: If the other object is the earth, are we talking about the
distance from the rock to the center of the earth or the distance
from the rock to the surface of the earth?
Answer: It doesn’t matter. All that matters is the change in dis-
tance, � y, not y. Measuring from the earth’s center or its surface
are just two equally valid choices of a reference point for de�ning
absolute PE.

Question: Which object contains the PE, the rock or the earth?
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e / All these energy transfor-
mations turn out at the atomic
level to be changes in potential
energy resulting from changes in
the distances between atoms.

Answer: We may refer casually to the PE of the rock, but techni-
cally the PE is a relationship between the earth and the rock, and
we should refer to the earth and the rock together as possessing the
PE.

Question: How would this be any di�erent for a force other than
gravity?
Answer: It wouldn’t. The result was derived under the assumption
of constant force, but the result would be valid for any other situa-
tion where two objects interacted through a constant force. Gravity
is unusual, however, in that the gravitational force on an object is
so nearly constant under ordinary conditions. The magnetic force
between a magnet and a refrigerator, on the other hand, changes
drastically with distance. The math is a little more complex for a
varying force, but the concepts are the same.

Question: Suppose a pencil is balanced on its tip and then falls
over. The pencil is simultaneously changing its height and rotating,
so the height change is di�erent for di�erent parts of the object.
The bottom of the pencil doesn’t lose any height at all. What do
you do in this situation?
Answer: The general philosophy of energy is that an object’s en-
ergy is found by adding up the energy of every little part of it.
You could thus add up the changes in potential energy of all the
little parts of the pencil to �nd the total change in potential en-
ergy. Luckily there’s an easier way! The derivation of the equation
for gravitational potential energy used Newton’s second law, which
deals with the acceleration of the object’s center of mass (i.e., its
balance point). If you just de�ne � y as the height change of the
center of mass, everything works out. A huge Ferris wheel can be
rotated without putting in or taking out any PE, because its center
of mass is staying at the same height.

self-check A
A ball thrown straight up will have the same speed on impact with the
ground as a ball thrown straight down at the same speed. How can this
be explained using potential energy? . Answer, p. 561

Discussion question

A You throw a steel ball up in the air. How can you prove based on
conservation of energy that it has the same speed when it falls back into
your hand? What if you throw a feather up � is energy not conserved in
this case?
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f / This �gure looks similar to
the previous ones, but the scale
is a million times smaller. The
little balls are the neutrons and
protons that make up the tiny nu-
cleus at the center of the uranium
atom. When the nucleus splits
(�ssions), the potential energy
change is partly electrical and
partly a change in the potential
energy derived from the force
that holds atomic nuclei together
(known as the strong nuclear
force).

g / A pellet of plutonium-238
glows with its own heat. Its
nuclear potential energy is being
converted into heat, a form of
kinetic energy. Pellets of this type
are used as power supplies on
some space probes.

12.3 All energy is potential or kinetic
In the same way that we found that a change in temperature is really
only a change in kinetic energy at the atomic level, we now �nd
that every other form of energy turns out to be a form of potential
energy. Boiling, for instance, means knocking some of the atoms (or
molecules) out of the liquid and into the space above, where they
constitute a gas. There is a net attractive force between essentially
any two atoms that are next to each other, which is why matter
always prefers to be packed tightly in the solid or liquid state unless
we supply enough potential energy to pull it apart into a gas. This
explains why water stops getting hotter when it reaches the boiling
point: the power being pumped into the water by your stove begins
going into potential energy rather than kinetic energy.

As shown in �gure e, every stored form of energy that we en-
counter in everyday life turns out to be a form of potential energy
at the atomic level. The forces between atoms are electrical and
magnetic in nature, so these are actually electrical and magnetic
potential energies.

Even if we wish to include nuclear reactions in the picture, there
still turn out to be only four fundamental types of energy:

kinetic energy (including heat)

gravitational PE

electrical and magnetic PE (including light)

nuclear PE

How does light �t into this picture? Optional section 11.6 dis-
cussed the idea of modeling a ray of light as a stream of massless
particles. But the way in which we described the energy of such par-
ticles was completely di�erent from the use of KE = (1 =2)mv2 for
objects made of atoms. Since the purpose of this chapter has been
to bring every form of energy under the same roof, this inconsistency
feels unsatisfying. Section 12.5 eliminates this inconsistency.

Discussion question

A Referring back to the pictures at the beginning of the chapter, how
do all these forms of energy �t into the shortened list of categories given
above?
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h / A portrait of a man’s face
made with infrared light, a color
of light that lies beyond the red
end of the visible rainbow. His
warm skin emits quite a bit of
infrared light energy, while his
hair, at a lower temperature,
emits less.

12.4 Applications
Heat transfer

Conduction

When you hold a hot potato in your hand, energy is transferred
from the hot object to the cooler one. Our microscopic picture of
this process (�gure b, p. 339) tells us that the heat transfer can
only occur at the surface of contact, where one layer of atoms in the
potato skin make contact with one such layer in the hand. This type
of heat transfer is calledconduction, and its rate is proportional to
both the surface area and the temperature di�erence.

Convection

In a gas or a liquid, a faster method of heat transfer can occur,
because hotter or colder parts of the uid can ow, physically trans-
porting their heat energy from one place to another. This mecha-
nism of heat transfer, convection, is at work in Los Angeles when
hot Santa Ana winds blow in from the Mojave Desert. On a cold
day, the reason you feel warmer when there is no wind is that your
skin warms a thin layer of air near it by conduction. If a gust of
wind comes along, convection robs you of this layer. A thermos bot-
tle has inner and outer walls separated by a layer of vacuum, which
prevents heat transport by conduction or convection, except for a
tiny amount of conduction through the thin connection between the
walls, near the neck, which has a small cross-sectional area.

Radiation

The glow of the sun or a candle ame is an example of heat
transfer by radiation . In this context, \radiation" just means any-
thing that radiates outward from a source, including, in these exam-
ples, ordinary visible light. The power is proportional to the surface
area. It also depends very dramatically on the absolute tempera-
ture, P / T4.

We can easily understand the reason for radiation based on the
picture of heat as random kinetic energy at the atomic scale. Atoms
are made out of subatomic particles, such as electrons and nuclei,
that carry electric charge. When a charged particle vibrates, it
creates wave disturbances in the electric and magnetic �elds, and
the waves have a frequency (number of vibrations per second) that
matches the frequency of the particle’s motion. If this frequency
is in the right range, they constitute visible light . In �gure g,
the nuclear and electrical potential energy in the plutonium pellet
cause the pellet to heat up, and an equilibrium is reached, in which
the heat is radiated away just as quickly as it is produced. When
an object is closer to room temperature, it glows in the invisible
infrared part of the spectrum (�gure h).
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i / The �greenhouse effect.�
Carbon dioxide in the atmo-
sphere allows visible light in,
but partially blocks the reemitted
infrared light.

j / Global average tempera-
tures over the last 2000 years.
The black line is from thermome-
ter measurements. The colored
lines are from various indirect
indicators such as tree rings, ice
cores, buried pollen, and corals.

Earth’s energy equilibrium

Our planet receives a nearly constant amount of energy from
the sun (about 1.8 � 1017 W). If it hadn’t had any mechanism for
getting rid of that energy, the result would have been some kind of
catastrophic explosion soon after its formation. Even a 10% imbal-
ance between energy input and output, if maintained steadily from
the time of the Roman Empire until the present, would have been
enough to raise the oceans to a boil. So evidently the earth does
dump this energy somehow. How does it do it? Our planet is sur-
rounded by the vacuum of outer space, like the ultimate thermos
bottle. Therefore it can’t expel heat by conduction or convection,
but it does radiate in the infrared, and this is the only available
mechanism for cooling.

Global warming

It was realized starting around 1930 that this created a danger-
ous vulnerability in our biosphere. Our atmosphere is only about
0.04% carbon dioxide, but carbon dioxide is an extraordinarily e�-
cient absorber of infrared light. It is, however, transparent to visible
light. Therefore any increase in the concentration of carbon dioxide
would decrease the e�ciency of cooling by radiation, while allowing
in just as much heat input from visible light. When we burn fossil
fuels such as gasoline or coal, we release into the atmosphere carbon
that had previously been locked away underground. This results in
a shift to a new energy balance. The average temperatureT of the
land increases until theT4 dependence of radiation compensates for
the additional absorption of infrared light.

By about 1980, a clear scienti�c consensus had emerged that
this e�ect was real, that it was caused by human activity, and that
it had resulted in an abrupt increase in the earth’s average tem-
perature. We know, for example, from radioisotope studies that
the e�ect has not been caused by the release of carbon dioxide in
volcanic eruptions. The temperature increase has been veri�ed by
multiple independent methods, including studies of tree rings and
coral reefs. Detailed computer models have correctly predicted a
number of e�ects that were later veri�ed empirically, including a
rise in sea levels, and day-night and pole-equator variations. There
is no longer any controversy among climate scientists about the ex-
istence or cause of the e�ect.

One solution to the problem is to replace fossil fuels with renew-
able sources of energy such as solar power and wind. However, these
cannot be brought online fast enough to prevent severe warming all
by themselves, so nuclear power is also a critical piece of the puzzle.
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12.5 ? E=mc2

In section 11.6 we found the relativistic expression for kinetic energy
in the limiting case of an ultrarelativistic particle, i.e., one with a
speed very close toc: its energy is proportional to the \stretch
factor" of the Lorentz transformation, s =

p
(1 + v)=(1 � v) (in

units with c = 1), for v ! + c and 1=s for v ! � c. What about
intermediate cases, likev = c=2?

k / The match is lit inside the bell
jar. It burns, and energy escapes
from the jar in the form of light. Af-
ter it stops burning, all the same
atoms are still in the jar: none
have entered or escaped. The �g-
ure shows the outcome expected
before relativity, which was that
the mass measured on the bal-
ance would remain exactly the
same. This is not what happens
in reality.

When we are forced to tinker with a time-honored theory, our
�rst instinct should always be to tinker as conservatively as possible.
Although we’ve been forced to admit that kinetic energy doesn’t
vary as v2=2 at relativistic speeds, the next most conservative thing
we could do would be to assume that theonly change necessary is to
replace the factor ofv2=2 in the nonrelativistic expression for kinetic
energy with some other function, which would have to act likes or
1=s for v ! � c. I suspect that this is what Einstein thought when he
completed his original paper on relativity in 1905, because it wasn’t
until later that year that he published a second paper showing that
this still wasn’t enough of a change to produce a working theory. We
now know that there is something more that needs to be changed
about prerelativistic physics, and this is the assumption that mass
is only a property of material particles such as atoms (�gure k). Call
this the \atoms-only hypothesis."

Now that we know the correct relativistic way of �nding the
energy of a ray of light, it turns out that we can use that to �nd
what we were originally seeking, which was the energy of a material
object. The following discussion closely follows Einstein’s.

Suppose that a material object O of massmo, initially at rest
in a certain frame A, emits two rays of light, each with energyE=2.
By conservation of energy, the object must have lost an amount of
energy equal toE . By symmetry, O remains at rest.

We now switch to a di�erent frame of reference B moving at some
arbitrary speed corresponding to a stretch factorS. The change of
frames means that we’re chasing one ray, so that its energy is scaled
down to (E=2)S� 1, while running away from the other, whose energy
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gets boosted to (E=2)S. In frame B, as in A, O retains the same
speed after emission of the light. But observers in frames A and B
disagree on how much energy O has lost, the discrepancy being

E
�

1
2

(S + S� 1) � 1
�

.

Let’s consider the case where B’s velocity relative to A is small. Ex-
panding the above expression in a Taylor series inv, the discrepancy
in O’s energy loss is approximately

1
2

Ev2=c2.

The interpretation is that when O reduced its energy by E in order
to make the light rays, it reduced its mass from mo to mo � m,
where m = E=c2. Rearranging factors, we have Einstein’s famous

E = mc2.

This derivation entailed an approximation, and redoing it without
the approximation entails some complexity.1 It turns out, however,
to be valid in general.

We �nd that mass is not simply a built-in property of the parti-
cles that make up an object, with the object’s mass being the sum of
the masses of its particles. Rather, mass and energy are equivalent,
so that if the experiment of �gure k is carried out with a su�ciently
precise balance, the reading will drop because of the mass equivalent
of the energy emitted as light.

The equation E = mc2 tells us how much energy is equivalent
to how much mass: the conversion factor is the square of the speed
of light, c. Sincec a big number, you get a really really big number
when you multiply it by itself to get c2. This means that even
a small amount of mass is equivalent to a very large amount of
energy. Conversely, an ordinary amount of energy corresponds to
an extremely small mass, and this is why nobody detected the non-
null result of experiments like the one in �gure k hundreds of years
ago.

The big event here is mass-energy equivalence, but we can also
harvest a result for the energy of a material particle moving at a
certain speed. Plugging inS =

p
(1 + v)=(1 � v) to the equation

above for the energy discrepancy of object O between frames A and
B, we �nd m( � 1)c2. This is the di�erence between O’s energy in
frame B and its energy when it is at rest, but since mass and energy
are equivalent, we assign it energymc2 when it is at rest. The result
is that the energy is

E = mc 2.

1See Ohanian, \Einstein’s E = mc2 mistakes," arxiv.org/abs/0805.1400 ,
and Jammer, Concepts of Mass in Contemporary Physics and Philosophy.
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l / Top: A PET scanner. Mid-
dle: Each positron annihilates
with an electron, producing two
gamma-rays that �y off back-to-
back. When two gamma rays
are observed simultaneously in
the ring of detectors, they are
assumed to come from the same
annihilation event, and the point
at which they were emitted must
lie on the line connecting the
two detectors. Bottom: A scan
of a person’s torso. The body
has concentrated the radioactive
tracer around the stomach,
indicating an abnormal medical
condition.

Electron-positron annihilation example 3
Natural radioactivity in the earth produces positrons, which are
like electrons but have the opposite charge. A form of antimat-
ter, positrons annihilate with electrons to produce gamma rays, a
form of high-frequency light. Such a process would have been
considered impossible before Einstein, because conservation of
mass and energy were believed to be separate principles, and
this process eliminates 100% of the original mass. The amount
of energy produced by annihilating 1 kg of matter with 1 kg of
antimatter is

E = mc2

= (2 kg)
�

3.0 � 108 m=s
� 2

= 2 � 1017 J,

which is on the same order of magnitude as a day’s energy con-
sumption for the entire world’s population!

Positron annihilation forms the basis for the medical imaging tech-
nique called a PET (positron emission tomography) scan, in which
a positron-emitting chemical is injected into the patient and map-
ped by the emission of gamma rays from the parts of the body
where it accumulates.

A rusting nail example 4
. An iron nail is left in a cup of water until it turns entirely to rust.
The energy released is about 0.5 MJ. In theory, would a suf�-
ciently precise scale register a change in mass? If so, how much?

. The energy will appear as heat, which will be lost to the envi-
ronment. The total mass-energy of the cup, water, and iron will
indeed be lessened by 0.5 MJ. (If it had been perfectly insulated,
there would have been no change, since the heat energy would
have been trapped in the cup.) The speed of light is c = 3 � 108

meters per second, so converting to mass units, we have

m =
E
c2

=
0.5 � 106 J

�
3 � 108 m=s

� 2

= 6 � 10� 12 kilograms.

The change in mass is too small to measure with any practical
technique. This is because the square of the speed of light is
such a large number.

Gravity bending light example 5
Gravity is a universal attraction between things that have mass,
and since the energy in a beam of light is equivalent to some
very small amount of mass, we expect that light will be affected
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