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The Mars Climate Orbiter is pre-
pared for its mission. The laws
of physics are the same every-
where, even on Mars, so the
probe could be designed based
on the laws of physics as discov-
ered on earth. There is unfor-
tunately another reason why this
spacecraft is relevant to the top-
ics of this chapter: it was de-
stroyed attempting to enter Mars’
atmosphere because engineers
at Lockheed Martin forgot to con-
vert data on engine thrusts from
pounds into the metric unit of
force (newtons) before giving the
information to NASA. Conver-
sions are important!

Chapter 0

Introduction and Review

0.1 Introduction and review
If you drop your shoe and a coin side by side, they hit the ground at
the same time. Why doesn’t the shoe get there �rst, since gravity is
pulling harder on it? How does the lens of your eye work, and why
do your eye’s muscles need to squash its lens into di�erent shapes in
order to focus on objects nearby or far away? These are the kinds
of questions that physics tries to answer about the behavior of light
and matter, the two things that the universe is made of.

0.1.1 The scienti�c method

Until very recently in history, no progress was made in answering
questions like these. Worse than that, thewrong answers written
by thinkers like the ancient Greek physicist Aristotle were accepted
without question for thousands of years. Why is it that scienti�c
knowledge has progressed more since the Renaissance than it had
in all the preceding millennia since the beginning of recorded his-
tory? Undoubtedly the industrial revolution is part of the answer.
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a / Science is a cycle of the-
ory and experiment.

b / A satirical drawing of an
alchemist’s laboratory. H. Cock,
after a drawing by Peter Brueghel
the Elder (16th century).

Building its centerpiece, the steam engine, required improved tech-
niques for precise construction and measurement. (Early on, it was
considered a major advance when English machine shops learned to
build pistons and cylinders that �t together with a gap narrower
than the thickness of a penny.) But even before the industrial rev-
olution, the pace of discovery had picked up, mainly because of the
introduction of the modern scienti�c method. Although it evolved
over time, most scientists today would agree on something like the
following list of the basic principles of the scienti�c method:

(1) Science is a cycle of theory and experiment.Scienti�c the-
ories are created to explain the results of experiments that were
created under certain conditions. A successful theory will also make
new predictions about new experiments under new conditions. Even-
tually, though, it always seems to happen that a new experiment
comes along, showing that under certain conditions the theory is
not a good approximation or is not valid at all. The ball is then
back in the theorists’ court. If an experiment disagrees with the
current theory, the theory has to be changed, not the experiment.

(2) Theories should both predict and explain.The requirement of
predictive power means that a theory is only meaningful if it predicts
something that can be checked against experimental measurements
that the theorist did not already have at hand. That is, a theory
should be testable. Explanatory value means that many phenomena
should be accounted for with few basic principles. If you answer
every \why" question with \because that’s the way it is," then your
theory has no explanatory value. Collecting lots of data without
being able to �nd any basic underlying principles is not science.

(3) Experiments should be reproducible.An experiment should
be treated with suspicion if it only works for one person, or only
in one part of the world. Anyone with the necessary skills and
equipment should be able to get the same results from the same
experiment. This implies that science transcends national and eth-
nic boundaries; you can be sure that nobody is doing actual science
who claims that their work is \Aryan, not Jewish," \Marxist, not
bourgeois," or \Christian, not atheistic." An experiment cannot be
reproduced if it is secret, so science is necessarily a public enterprise.

As an example of the cycle of theory and experiment, a vital step
toward modern chemistry was the experimental observation that the
chemical elements could not be transformed into each other, e.g.,
lead could not be turned into gold. This led to the theory that
chemical reactions consisted of rearrangements of the elements in
di�erent combinations, without any change in the identities of the
elements themselves. The theory worked for hundreds of years, and
was con�rmed experimentally over a wide range of pressures and
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temperatures and with many combinations of elements. Only in
the twentieth century did we learn that one element could be trans-
formed into one another under the conditions of extremely high
pressure and temperature existing in a nuclear bomb or inside a star.
That observation didn’t completely invalidate the original theory of
the immutability of the elements, but it showed that it was only an
approximation, valid at ordinary temperatures and pressures.

self-check A
A psychic conducts seances in which the spirits of the dead speak to
the participants. He says he has special psychic powers not possessed
by other people, which allow him to �channel� the communications with
the spirits. What part of the scienti�c method is being violated here?
. Answer, p. 1045

The scienti�c method as described here is an idealization, and
should not be understood as a set procedure for doing science. Sci-
entists have as many weaknesses and character aws as any other
group, and it is very common for scientists to try to discredit other
people’s experiments when the results run contrary to their own fa-
vored point of view. Successful science also has more to do with
luck, intuition, and creativity than most people realize, and the
restrictions of the scienti�c method do not stie individuality and
self-expression any more than the fugue and sonata forms stied
Bach and Haydn. There is a recent tendency among social scien-
tists to go even further and to deny that the scienti�c method even
exists, claiming that science is no more than an arbitrary social sys-
tem that determines what ideas to accept based on an in-group’s
criteria. I think that’s going too far. If science is an arbitrary social
ritual, it would seem di�cult to explain its e�ectiveness in building
such useful items as airplanes, CD players, and sewers. If alchemy
and astrology were no less scienti�c in their methods than chem-
istry and astronomy, what was it that kept them from producing
anything useful?

Discussion Questions
Consider whether or not the scienti�c method is being applied in the fol-
lowing examples. If the scienti�c method is not being applied, are the
people whose actions are being described performing a useful human
activity, albeit an unscienti�c one?

A Acupuncture is a traditional medical technique of Asian origin in
which small needles are inserted in the patient’s body to relieve pain.
Many doctors trained in the west consider acupuncture unworthy of ex-
perimental study because if it had therapeutic effects, such effects could
not be explained by their theories of the nervous system. Who is being
more scienti�c, the western or eastern practitioners?

Section 0.1 Introduction and review 15



B Goethe, a German poet, is less well known for his theory of color.
He published a book on the subject, in which he argued that scienti�c
apparatus for measuring and quantifying color, such as prisms, lenses
and colored �lters, could not give us full insight into the ultimate meaning
of color, for instance the cold feeling evoked by blue and green or the
heroic sentiments inspired by red. Was his work scienti�c?

C A child asks why things fall down, and an adult answers �because of
gravity.� The ancient Greek philosopher Aristotle explained that rocks fell
because it was their nature to seek out their natural place, in contact with
the earth. Are these explanations scienti�c?

D Buddhism is partly a psychological explanation of human suffering,
and psychology is of course a science. The Buddha could be said to
have engaged in a cycle of theory and experiment, since he worked by
trial and error, and even late in his life he asked his followers to challenge
his ideas. Buddhism could also be considered reproducible, since the
Buddha told his followers they could �nd enlightenment for themselves
if they followed a certain course of study and discipline. Is Buddhism a
scienti�c pursuit?

0.1.2 What is physics?

Given for one instant an intelligence which could comprehend all
the forces by which nature is animated and the respective positions
of the things which compose it...nothing would be uncertain, and
the future as the past would be laid out before its eyes.

Pierre Simon de Laplace

Physics is the use of the scienti�c method to �nd out the basic
principles governing light and matter, and to discover the implica-
tions of those laws. Part of what distinguishes the modern outlook
from the ancient mind-set is the assumption that there are rules by
which the universe functions, and that those laws can be at least par-
tially understood by humans. From the Age of Reason through the
nineteenth century, many scientists began to be convinced that the
laws of nature not only could be known but, as claimed by Laplace,
those laws could in principle be used to predict everything about
the universe’s future if complete information was available about
the present state of all light and matter. In subsequent sections,
I’ll describe two general types of limitations on prediction using the
laws of physics, which were only recognized in the twentieth century.

Matter can be de�ned as anything that is a�ected by gravity,
i.e., that has weight or would have weight if it was near the Earth
or another star or planet massive enough to produce measurable
gravity. Light can be de�ned as anything that can travel from one
place to another through empty space and can inuence matter, but
has no weight. For example, sunlight can inuence your body by
heating it or by damaging your DNA and giving you skin cancer.
The physicist’s de�nition of light includes a variety of phenomena
that are not visible to the eye, including radio waves, microwaves,
x-rays, and gamma rays. These are the \colors" of light that do not
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c / This telescope picture shows
two images of the same distant
object, an exotic, very luminous
object called a quasar. This is
interpreted as evidence that a
massive, dark object, possibly
a black hole, happens to be
between us and it. Light rays that
would otherwise have missed the
earth on either side have been
bent by the dark object’s gravity
so that they reach us. The actual
direction to the quasar is presum-
ably in the center of the image,
but the light along that central line
doesn’t get to us because it is
absorbed by the dark object. The
quasar is known by its catalog
number, MG1131+0456, or more
informally as Einstein’s Ring.

happen to fall within the narrow violet-to-red range of the rainbow
that we can see.

self-check B
At the turn of the 20th century, a strange new phenomenon was discov-
ered in vacuum tubes: mysterious rays of unknown origin and nature.
These rays are the same as the ones that shoot from the back of your
TV’s picture tube and hit the front to make the picture. Physicists in
1895 didn’t have the faintest idea what the rays were, so they simply
named them �cathode rays,� after the name for the electrical contact
from which they sprang. A �erce debate raged, complete with national-
istic overtones, over whether the rays were a form of light or of matter.
What would they have had to do in order to settle the issue? .
Answer, p. 1045

Many physical phenomena are not themselves light or matter,
but are properties of light or matter or interactions between light
and matter. For instance, motion is a property of all light and some
matter, but it is not itself light or matter. The pressure that keeps
a bicycle tire blown up is an interaction between the air and the
tire. Pressure is not a form of matter in and of itself. It is as
much a property of the tire as of the air. Analogously, sisterhood
and employment are relationships among people but are not people
themselves.

Some things that appear weightless actually do have weight, and
so qualify as matter. Air has weight, and is thus a form of matter
even though a cubic inch of air weighs less than a grain of sand. A
helium balloon has weight, but is kept from falling by the force of the
surrounding more dense air, which pushes up on it. Astronauts in
orbit around the Earth have weight, and are falling along a curved
arc, but they are moving so fast that the curved arc of their fall
is broad enough to carry them all the way around the Earth in a
circle. They perceive themselves as being weightless because their
space capsule is falling along with them, and the oor therefore does
not push up on their feet.

Optional Topic: Modern Changes in the De�nition of Light and
Matter
Einstein predicted as a consequence of his theory of relativity that light
would after all be affected by gravity, although the effect would be ex-
tremely weak under normal conditions. His prediction was borne out
by observations of the bending of light rays from stars as they passed
close to the sun on their way to the Earth. Einstein’s theory also implied
the existence of black holes, stars so massive and compact that their
intense gravity would not even allow light to escape. (These days there
is strong evidence that black holes exist.)

Einstein’s interpretation was that light doesn’t really have mass, but
that energy is affected by gravity just like mass is. The energy in a light
beam is equivalent to a certain amount of mass, given by the famous
equation E = mc2, where c is the speed of light. Because the speed
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d / Reductionism.

of light is such a big number, a large amount of energy is equivalent to
only a very small amount of mass, so the gravitational force on a light
ray can be ignored for most practical purposes.

There is however a more satisfactory and fundamental distinction
between light and matter, which should be understandable to you if you
have had a chemistry course. In chemistry, one learns that electrons
obey the Pauli exclusion principle, which forbids more than one electron
from occupying the same orbital if they have the same spin. The Pauli
exclusion principle is obeyed by the subatomic particles of which matter
is composed, but disobeyed by the particles, called photons, of which a
beam of light is made.

Einstein’s theory of relativity is discussed more fully in book 6 of this
series.

The boundary between physics and the other sciences is not
always clear. For instance, chemists study atoms and molecules,
which are what matter is built from, and there are some scientists
who would be equally willing to call themselves physical chemists
or chemical physicists. It might seem that the distinction between
physics and biology would be clearer, since physics seems to deal
with inanimate objects. In fact, almost all physicists would agree
that the basic laws of physics that apply to molecules in a test tube
work equally well for the combination of molecules that constitutes
a bacterium. (Some might believe that something more happens in
the minds of humans, or even those of cats and dogs.) What di�er-
entiates physics from biology is that many of the scienti�c theories
that describe living things, while ultimately resulting from the fun-
damental laws of physics, cannot be rigorously derived from physical
principles.

Isolated systems and reductionism

To avoid having to study everything at once, scientists isolate the
things they are trying to study. For instance, a physicist who wants
to study the motion of a rotating gyroscope would probably prefer
that it be isolated from vibrations and air currents. Even in biology,
where �eld work is indispensable for understanding how living things
relate to their entire environment, it is interesting to note the vital
historical role played by Darwin’s study of the Gal�apagos Islands,
which were conveniently isolated from the rest of the world. Any
part of the universe that is considered apart from the rest can be
called a \system."

Physics has had some of its greatest successes by carrying this
process of isolation to extremes, subdividing the universe into smaller
and smaller parts. Matter can be divided into atoms, and the be-
havior of individual atoms can be studied. Atoms can be split apart
into their constituent neutrons, protons and electrons. Protons and
neutrons appear to be made out of even smaller particles called
quarks, and there have even been some claims of experimental ev-

18 Chapter 0 Introduction and Review



idence that quarks have smaller parts inside them. This method
of splitting things into smaller and smaller parts and studying how
those parts inuence each other is called reductionism. The hope is
that the seemingly complex rules governing the larger units can be
better understood in terms of simpler rules governing the smaller
units. To appreciate what reductionism has done for science, it is
only necessary to examine a 19th-century chemistry textbook. At
that time, the existence of atoms was still doubted by some, elec-
trons were not even suspected to exist, and almost nothing was
understood of what basic rules governed the way atoms interacted
with each other in chemical reactions. Students had to memorize
long lists of chemicals and their reactions, and there was no way to
understand any of it systematically. Today, the student only needs
to remember a small set of rules about how atoms interact, for in-
stance that atoms of one element cannot be converted into another
via chemical reactions, or that atoms from the right side of the pe-
riodic table tend to form strong bonds with atoms from the left
side.

Discussion Questions

A I’ve suggested replacing the ordinary dictionary de�nition of light
with a more technical, more precise one that involves weightlessness. It’s
still possible, though, that the stuff a lightbulb makes, ordinarily called
�light,� does have some small amount of weight. Suggest an experiment
to attempt to measure whether it does.

B Heat is weightless (i.e., an object becomes no heavier when heated),
and can travel across an empty room from the �replace to your skin,
where it in�uences you by heating you. Should heat therefore be con-
sidered a form of light by our de�nition? Why or why not?

C Similarly, should sound be considered a form of light?

0.1.3 How to learn physics

For as knowledges are now delivered, there is a kind of contract of
error between the deliverer and the receiver; for he that delivereth
knowledge desireth to deliver it in such a form as may be best be-
lieved, and not as may be best examined; and he that receiveth
knowledge desireth rather present satisfaction than expectant in-
quiry.

Francis Bacon

Many students approach a science course with the idea that they
can succeed by memorizing the formulas, so that when a problem
is assigned on the homework or an exam, they will be able to plug
numbers in to the formula and get a numerical result on their cal-
culator. Wrong! That’s not what learning science is about! There
is a big di�erence between memorizing formulas and understanding
concepts. To start with, di�erent formulas may apply in di�erent
situations. One equation might represent a de�nition, which is al-
ways true. Another might be a very speci�c equation for the speed
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of an object sliding down an inclined plane, which would not be true
if the object was a rock drifting down to the bottom of the ocean.
If you don’t work to understand physics on a conceptual level, you
won’t know which formulas can be used when.

Most students taking college science courses for the �rst time
also have very little experience with interpreting the meaning of an
equation. Consider the equationw = A=h relating the width of a
rectangle to its height and area. A student who has not developed
skill at interpretation might view this as yet another equation to
memorize and plug in to when needed. A slightly more savvy stu-
dent might realize that it is simply the familiar formula A = wh
in a di�erent form. When asked whether a rectangle would have
a greater or smaller width than another with the same area but
a smaller height, the unsophisticated student might be at a loss,
not having any numbers to plug in on a calculator. The more ex-
perienced student would know how to reason about an equation
involving division | if h is smaller, and A stays the same, thenw
must be bigger. Often, students fail to recognize a sequence of equa-
tions as a derivation leading to a �nal result, so they think all the
intermediate steps are equally important formulas that they should
memorize.

When learning any subject at all, it is important to become as
actively involved as possible, rather than trying to read through
all the information quickly without thinking about it. It is a good
idea to read and think about the questions posed at the end of each
section of these notes as you encounter them, so that you know you
have understood what you were reading.

Many students’ di�culties in physics boil down mainly to di�-
culties with math. Suppose you feel con�dent that you have enough
mathematical preparation to succeed in this course, but you are
having trouble with a few speci�c things. In some areas, the brief
review given in this chapter may be su�cient, but in other areas
it probably will not. Once you identify the areas of math in which
you are having problems, get help in those areas. Don’t limp along
through the whole course with a vague feeling of dread about some-
thing like scienti�c notation. The problem will not go away if you
ignore it. The same applies to essential mathematical skills that you
are learning in this course for the �rst time, such as vector addition.

Sometimes students tell me they keep trying to understand a
certain topic in the book, and it just doesn’t make sense. The worst
thing you can possibly do in that situation is to keep on staring
at the same page. Every textbook explains certain things badly |
even mine! | so the best thing to do in this situation is to look
at a di�erent book. Instead of college textbooks aimed at the same
mathematical level as the course you’re taking, you may in some
cases �nd that high school books or books at a lower math level

20 Chapter 0 Introduction and Review



give clearer explanations.

Finally, when reviewing for an exam, don’t simply read back
over the text and your lecture notes. Instead, try to use an active
method of reviewing, for instance by discussing some of the discus-
sion questions with another student, or doing homework problems
you hadn’t done the �rst time.

0.1.4 Velocity and acceleration

Calculus was invented by a physicist, Isaac Newton, because
he needed it as a tool for calculating velocity and acceleration; in
your introductory calculus course, velocity and acceleration were
probably presented as some of the �rst applications.

If an object’s position as a function of time is given by the func-
tion x(t), then its velocity and acceleration are given by the �rst
and second derivatives with respect to time,

v =
dx
dt

and

a =
d2 x
dt2 .

The notation relates in a logical way to the units of the quantities.
Velocity has units of m/s, and that makes sense because dx is inter-
preted as an in�nitesimally small distance, with units of meters, and
dt as an in�nitesimally small time, with units of seconds. The seem-
ingly weird and inconsistent placement of the superscripted twos in
the notation for the acceleration is likewise meant to suggest the
units: something on top with units of meters, and something on the
bottom with units of seconds squared.

Velocity and acceleration have completely di�erent physical in-
terpretations. Velocity is a matter of opinion. Right now as you sit
in a chair and read this book, you could say that your velocity was
zero, but an observer watching the Earth rotate would say that you
had a velocity of hundreds of miles an hour. Acceleration represents
a changein velocity, and it’s not a matter of opinion. Accelerations
produce physical e�ects, and don’t occur unless there’s a force to
cause them. For example, gravitational forces on Earth cause falling
objects to have an acceleration of 9.8 m=s2.

Constant acceleration example 1
. How high does a diving board have to be above the water if the
diver is to have as much as 1.0 s in the air?

. The diver starts at rest, and has an acceleration of 9.8 m=s2.
We need to �nd a connection between the distance she travels
and time it takes. In other words, we’re looking for information
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about the function x(t), given information about the acceleration.
To go from acceleration to position, we need to integrate twice:

x =
Z Z

a dt dt

=
Z

(at + vo) dt [vo is a constant of integration.]

=
Z

at dt [vo is zero because she’s dropping from rest.]

=
1
2

at2 + xo [xo is a constant of integration.]

=
1
2

at2 [xo can be zero if we de�ne it that way.]

Note some of the good problem-solving habits demonstrated here.
We solve the problem symbolically, and only plug in numbers at
the very end, once all the algebra and calculus are done. One
should also make a habit, after �nding a symbolic result, of check-
ing whether the dependence on the variables make sense. A
greater value of t in this expression would lead to a greater value
for x ; that makes sense, because if you want more time in the
air, you’re going to have to jump from higher up. A greater ac-
celeration also leads to a greater height; this also makes sense,
because the stronger gravity is, the more height you’ll need in or-
der to stay in the air for a given amount of time. Now we plug in
numbers.

x =
1
2

�
9.8 m=s2

�
(1.0 s)2

= 4.9 m

Note that when we put in the numbers, we check that the units
work out correctly,

�
m=s2�

(s)2 = m. We should also check that
the result makes sense: 4.9 meters is pretty high, but not unrea-
sonable.

The notation dq in calculus represents an in�nitesimally small
change in the variable q. The corresponding notation for a �nite
change in a variable is � q. For example, if q represents the value
of a certain stock on the stock market, and the value falls from
qo = 5 dollars initially to qf = 3 dollars �nally, then � q = � 2
dollars. When we study linear functions, whose slopes are constant,
the derivative is synonymous with the slope of the line, and dy=dx
is the same thing as � y=� x, the rise over the run.

Under conditions of constant acceleration, we can relate velocity
and time,

a =
� v
� t

,

or, as in the example 1, position and time,

x =
1
2

at2 + vot + xo.
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It can also be handy to have a relation involving velocity and posi-
tion, eliminating time. Straightforward algebra gives

v2
f = v2

o + 2a� x,

where vf is the �nal velocity, vo the initial velocity, and � x the
distance traveled.

. Solved problem: Dropping a rock on Mars page 50, problem 17

. Solved problem: The Dodge Viper page 51, problem 19

0.1.5 Self-evaluation

The introductory part of a book like this is hard to write, because
every student arrives at this starting point with a di�erent prepara-
tion. One student may have grown up outside the U.S. and so may
be completely comfortable with the metric system, but may have
had an algebra course in which the instructor passed too quickly
over scienti�c notation. Another student may have already taken
vector calculus, but may have never learned the metric system. The
following self-evaluation is a checklist to help you �gure out what
you need to study to be prepared for the rest of the course.

If you disagree with this state-
ment. . .

you should study this section:

I am familiar with the basic metric
units of meters, kilograms, and sec-
onds, and the most common metric
pre�xes: milli- (m), kilo- (k), and
centi- (c).

subsection 0.1.6 Basic of the Metric
System

I am familiar with these less com-
mon metric pre�xes: mega- (M),
micro- (� ), and nano- (n).

subsection 0.1.7 Less Common Met-
ric Pre�xes

I am comfortable with scienti�c no-
tation.

subsection 0.1.8 Scienti�c Notation

I can con�dently do metric conver-
sions.

subsection 0.1.9 Conversions

I understand the purpose and use of
signi�cant �gures.

subsection 0.1.10 Signi�cant Figures

It wouldn’t hurt you to skim the sections you think you already
know about, and to do the self-checks in those sections.
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0.1.6 Basics of the metric system

The metric system

Units were not standardized until fairly recently in history, so
when the physicist Isaac Newton gave the result of an experiment
with a pendulum, he had to specify not just that the string was 37
7=8 inches long but that it was \37 7=8 London inches long." The
inch as de�ned in Yorkshire would have been di�erent. Even after
the British Empire standardized its units, it was still very inconve-
nient to do calculations involving money, volume, distance, time, or
weight, because of all the odd conversion factors, like 16 ounces in
a pound, and 5280 feet in a mile. Through the nineteenth century,
schoolchildren squandered most of their mathematical education in
preparing to do calculations such as making change when a customer
in a shop o�ered a one-crown note for a book costing two pounds,
thirteen shillings and tuppence. The dollar has always been decimal,
and British money went decimal decades ago, but the United States
is still saddled with the antiquated system of feet, inches, pounds,
ounces and so on.

Every country in the world besides the U.S. uses a system of
units known in English as the \metric system.1" This system is
entirely decimal, thanks to the same eminently logical people who
brought about the French Revolution. In deference to France, the
system’s o�cial name is the Syst�eme International, or SI, meaning
International System. (The phrase \SI system" is therefore redun-
dant.)

The wonderful thing about the SI is that people who live in
countries more modern than ours do not need to memorize how
many ounces there are in a pound, how many cups in a pint, how
many feet in a mile, etc. The whole system works with a single,
consistent set of Greek and Latin pre�xes that modify the basic
units. Each pre�x stands for a power of ten, and has an abbreviation
that can be combined with the symbol for the unit. For instance,
the meter is a unit of distance. The pre�x kilo- stands for 103, so a
kilometer, 1 km, is a thousand meters.

The basic units of the metric system are the meter for distance,
the second for time, and the gram for mass.

The following are the most common metric pre�xes. You should
memorize them.

pre�x meaning example
kilo- k 103 60 kg = a person’s mass
centi- c 10� 2 28 cm = height of a piece of paper
milli- m 10 � 3 1 ms = time for one vibration of a guitar

string playing the note D

1Liberia and Myanmar have not legally adopted metric units, but use them
in everyday life.
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e / The original de�nition of
the meter.

The pre�x centi-, meaning 10� 2, is only used in the centimeter;
a hundredth of a gram would not be written as 1 cg but as 10 mg.
The centi- pre�x can be easily remembered because a cent is 10� 2

dollars. The o�cial SI abbreviation for seconds is \s" (not \sec")
and grams are \g" (not \gm").

The second

When I stated briey above that the second was a unit of time, it
may not have occurred to you that this was not much of a de�nition.
We can make a dictionary-style de�nition of a term like \time," or
give a general description like Isaac Newton’s: \Absolute, true, and
mathematical time, of itself, and from its own nature, ows equably
without relation to anything external. . . " Newton’s characterization
sounds impressive, but physicists today would consider it useless as
a de�nition of time. Today, the physical sciences are based on oper-
ational de�nitions, which means de�nitions that spell out the actual
steps (operations) required to measure something numerically.

In an era when our toasters, pens, and co�ee pots tell us the
time, it is far from obvious to most people what is the fundamental
operational de�nition of time. Until recently, the hour, minute, and
second were de�ned operationally in terms of the time required for
the earth to rotate about its axis. Unfortunately, the Earth’s ro-
tation is slowing down slightly, and by 1967 this was becoming an
issue in scienti�c experiments requiring precise time measurements.
The second was therefore rede�ned as the time required for a cer-
tain number of vibrations of the light waves emitted by a cesium
atoms in a lamp constructed like a familiar neon sign but with the
neon replaced by cesium. The new de�nition not only promises to
stay constant inde�nitely, but for scientists is a more convenient
way of calibrating a clock than having to carry out astronomical
measurements.

self-check C
What is a possible operational de�nition of how strong a person is? .
Answer, p. 1045

The meter

The French originally de�ned the meter as 10� 7 times the dis-
tance from the equator to the north pole, as measured through Paris
(of course). Even if the de�nition was operational, the operation of
traveling to the north pole and laying a surveying chain behind you
was not one that most working scientists wanted to carry out. Fairly
soon, a standard was created in the form of a metal bar with two
scratches on it. This was replaced by an atomic standard in 1960,
and �nally in 1983 by the current de�nition, which is that the me-
ter is the distance traveled by light in a vacuum over a period of
(1/299792458) seconds.
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f / A duplicate of the Paris
kilogram, maintained at the Dan-
ish National Metrology Institute.

The kilogram

The third base unit of the SI is the kilogram, a unit of mass.
Mass is intended to be a measure of the amount of a substance,
but that is not an operational de�nition. Bathroom scales work by
measuring our planet’s gravitational attraction for the object being
weighed, but using that type of scale to de�ne mass operationally
would be undesirable because gravity varies in strength from place
to place on the earth.

There’s a surprising amount of disagreement among physics text-
books about how mass should be de�ned, but here’s how it’s actually
handled by the few working physicists who specialize in ultra-high-
precision measurements. They maintain a physical object in Paris,
which is the standard kilogram, a cylinder made of platinum-iridium
alloy. Duplicates are checked against this mother of all kilograms
by putting the original and the copy on the two opposite pans of a
balance. Although this method of comparison depends on gravity,
the problems associated with di�erences in gravity in di�erent geo-
graphical locations are bypassed, because the two objects are being
compared in the same place. The duplicates can then be removed
from the Parisian kilogram shrine and transported elsewhere in the
world. It would be desirable to replace this at some point with a
universally accessible atomic standard rather than one based on a
speci�c artifact, but as of 2010 the technology for automated count-
ing of large numbers of atoms has not gotten good enough to make
that work with the desired precision.

Combinations of metric units

Just about anything you want to measure can be measured with
some combination of meters, kilograms, and seconds. Speed can be
measured in m/s, volume in m3, and density in kg=m3. Part of what
makes the SI great is this basic simplicity. No more funny units like
a cord of wood, a bolt of cloth, or a jigger of whiskey. No more
liquid and dry measure. Just a simple, consistent set of units. The
SI measures put together from meters, kilograms, and seconds make
up the mks system. For example, the mks unit of speed is m/s, not
km/hr.

Checking units

A useful technique for �nding mistakes in one’s algebra is to
analyze the units associated with the variables.

Checking units example 2
. Jae starts from the formula V = 1

3Ah for the volume of a cone,
where A is the area of its base, and h is its height. He wants to
�nd an equation that will tell him how tall a conical tent has to be
in order to have a certain volume, given its radius. His algebra
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goes like this:

V =
1
3

Ah[1]

A = � r2[2]

V =
1
3

� r2h[3]

h =
� r2

3V
[4]

Is his algebra correct? If not, �nd the mistake.

. Line 4 is supposed to be an equation for the height, so the units
of the expression on the right-hand side had better equal meters.
The pi and the 3 are unitless, so we can ignore them. In terms of
units, line 4 becomes

m =
m2

m3 =
1
m

.

This is false, so there must be a mistake in the algebra. The units
of lines 1, 2, and 3 check out, so the mistake must be in the step
from line 3 to line 4. In fact the result should have been

h =
3V
� r2 .

Now the units check: m = m3=m2.

Discussion Question

A Isaac Newton wrote, �. . . the natural days are truly unequal, though
they are commonly considered as equal, and used for a measure of
time. . . It may be that there is no such thing as an equable motion, whereby
time may be accurately measured. All motions may be accelerated or re-
tarded. . . � Newton was right. Even the modern de�nition of the second
in terms of light emitted by cesium atoms is subject to variation. For in-
stance, magnetic �elds could cause the cesium atoms to emit light with
a slightly different rate of vibration. What makes us think, though, that a
pendulum clock is more accurate than a sundial, or that a cesium atom
is a more accurate timekeeper than a pendulum clock? That is, how can
one test experimentally how the accuracies of different time standards
compare?
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g / This is a mnemonic to
help you remember the most im-
portant metric pre�xes. The word
�little� is to remind you that the
list starts with the pre�xes used
for small quantities and builds
upward. The exponent changes
by 3, except that of course that
we do not need a special pre�x
for 100, which equals one.

0.1.7 Less common metric pre�xes

The following are three metric pre�xes which, while less common
than the ones discussed previously, are well worth memorizing.

pre�x meaning example
mega- M 106 6.4 Mm = radius of the earth
micro- � 10� 6 10 � m = size of a white blood cell
nano- n 10� 9 0.154 nm = distance between carbon

nuclei in an ethane molecule

Note that the abbreviation for micro is the Greek letter mu, �
| a common mistake is to confuse it with m (milli) or M (mega).

There are other pre�xes even less common, used for extremely
large and small quantities. For instance, 1 femtometer = 10� 15 m is
a convenient unit of distance in nuclear physics, and 1 gigabyte =
109 bytes is used for computers’ hard disks. The international com-
mittee that makes decisions about the SI has recently even added
some new pre�xes that sound like jokes, e.g., 1 yoctogram = 10� 24 g
is about half the mass of a proton. In the immediate future, how-
ever, you’re unlikely to see pre�xes like \yocto-" and \zepto-" used
except perhaps in trivia contests at science-�ction conventions or
other geekfests.

self-check D
Suppose you could slow down time so that according to your perception,
a beam of light would move across a room at the speed of a slow walk.
If you perceived a nanosecond as if it was a second, how would you
perceive a microsecond? . Answer, p. 1045

0.1.8 Scienti�c notation

Most of the interesting phenomena in our universe are not on
the human scale. It would take about 1,000,000,000,000,000,000,000
bacteria to equal the mass of a human body. When the physicist
Thomas Young discovered that light was a wave, it was back in the
bad old days before scienti�c notation, and he was obliged to write
that the time required for one vibration of the wave was 1/500 of
a millionth of a millionth of a second. Scienti�c notation is a less
awkward way to write very large and very small numbers such as
these. Here’s a quick review.

Scienti�c notation means writing a number in terms of a product
of something from 1 to 10 and something else that is a power of ten.
For instance,

32 = 3.2 � 101

320 = 3.2 � 102

3200 = 3.2 � 103 : : :

Each number is ten times bigger than the previous one.

Since 101 is ten times smaller than 102 , it makes sense to use
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the notation 100 to stand for one, the number that is in turn ten
times smaller than 101 . Continuing on, we can write 10� 1 to stand
for 0.1, the number ten times smaller than 100 . Negative exponents
are used for small numbers:

3.2 = 3.2 � 100

0.32 = 3.2 � 10� 1

0.032 = 3.2 � 10� 2 : : :

A common source of confusion is the notation used on the dis-
plays of many calculators. Examples:

3.2 � 106 (written notation)
3.2E+6 (notation on some calculators)
3.26 (notation on some other calculators)

The last example is particularly unfortunate, because 3.26 really
stands for the number 3.2� 3.2 � 3.2 � 3.2 � 3.2 � 3.2 = 1074, a
totally di�erent number from 3.2 � 106 = 3200000. The calculator
notation should never be used in writing. It’s just a way for the
manufacturer to save money by making a simpler display.

self-check E
A student learns that 104 bacteria, standing in line to register for classes
at Paramecium Community College, would form a queue of this size:

The student concludes that 102 bacteria would form a line of this length:

Why is the student incorrect? . Answer, p. 1046

0.1.9 Conversions

Conversions are one of the three essential mathematical skills,
summarized on pp.1007-1009, that you need for success in this course.

I suggest you avoid memorizing lots of conversion factors be-
tween SI units and U.S. units, but two that do come in handy are:

1 inch = 2.54 cm

An object with a weight on Earth of 2.2 pounds-force has a
mass of 1 kg.

The �rst one is the present de�nition of the inch, so it’s exact. The
second one is not exact, but is good enough for most purposes. (U.S.
units of force and mass are confusing, so it’s a good thing they’re
not used in science. In U.S. units, the unit of force is the pound-
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force, and the best unit to use for mass is the slug, which is about
14.6 kg.)

More important than memorizing conversion factors is under-
standing the right method for doing conversions. Even within the
SI, you may need to convert, say, from grams to kilograms. Di�er-
ent people have di�erent ways of thinking about conversions, but
the method I’ll describe here is systematic and easy to understand.
The idea is that if 1 kg and 1000 g represent the same mass, then
we can consider a fraction like

103 g
1 kg

to be a way of expressing the number one. This may bother you. For
instance, if you type 1000/1 into your calculator, you will get 1000,
not one. Again, di�erent people have di�erent ways of thinking
about it, but the justi�cation is that it helps us to do conversions,
and it works! Now if we want to convert 0.7 kg to units of grams,
we can multiply kg by the number one:

0.7 kg �
103 g
1 kg

If you’re willing to treat symbols such as \kg" as if they were vari-
ables as used in algebra (which they’re really not), you can then
cancel the kg on top with the kg on the bottom, resulting in

0.7 � �kg �
103 g
1 � �kg

= 700 g.

To convert grams to kilograms, you would simply ip the fraction
upside down.

One advantage of this method is that it can easily be applied to
a series of conversions. For instance, to convert one year to units of
seconds,

1 � ��year �
365 � � �days

1 � ��year
�

24 � � �hours
1 � �day

�
60 � ��min
1 � � �hour

�
60 s

1 � ��min
=

= 3.15 � 107 s.

Should that exponent be positive, or negative?

A common mistake is to write the conversion fraction incorrectly.
For instance the fraction

103 kg
1 g

(incorrect)

does not equal one, because 103 kg is the mass of a car, and 1 g is
the mass of a raisin. One correct way of setting up the conversion
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factor would be
10� 3 kg

1 g
(correct).

You can usually detect such a mistake if you take the time to check
your answer and see if it is reasonable.

If common sense doesn’t rule out either a positive or a negative
exponent, here’s another way to make sure you get it right. There
are big pre�xes and small pre�xes:

big pre�xes: k M
small pre�xes: m � n

(It’s not hard to keep straight which are which, since \mega" and
\micro" are evocative, and it’s easy to remember that a kilometer
is bigger than a meter and a millimeter is smaller.) In the example
above, we want the top of the fraction to be the same as the bottom.
Since k is a big pre�x, we need to compensateby putting a small
number like 10� 3 in front of it, not a big number like 10 3.

. Solved problem: a simple conversion page 48, problem 6

. Solved problem: the geometric mean page 48, problem 8

Discussion Question

A Each of the following conversions contains an error. In each case,
explain what the error is.

(a) 1000 kg � 1 kg
1000 g = 1 g

(b) 50 m � 1 cm
100 m = 0.5 cm

(c) �Nano� is 10 � 9, so there are 10� 9 nm in a meter.

(d) �Micro� is 10 � 6, so 1 kg is 106 � g.

0.1.10 Signi�cant �gures

The international governing body for football (\soccer" in the
US) says the ball should have a circumference of 68 to 70 cm. Tak-
ing the middle of this range and dividing by � gives a diameter of
approximately 21.96338214668155633610595934540698196 cm. The
digits after the �rst few are completely meaningless. Since the cir-
cumference could have varied by about a centimeter in either direc-
tion, the diameter is fuzzy by something like a third of a centimeter.
We say that the additional, random digits are not signi�cant �gures .
If you write down a number with a lot of gratuitous insigni�cant �g-
ures, it shows a lack of scienti�c literacy and imples to other people
a greater precision than you really have.

As a rule of thumb, the result of a calculation has as many
signi�cant �gures, or \sig �gs," as the least accurate piece of data
that went in. In the example with the soccer ball, it didn’t do us any
good to know � to dozens of digits, because the bottleneck in the
precision of the result was the �gure for the circumference, which
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was two sig �gs. The result is 22 cm. The rule of thumb works best
for multiplication and division.

For calculations involving multiplication and division, a given
fractional or \percent" error in one of the inputs causes the same
fractional error in the output. The number of digits in a number
provides a rough measure of its possible fractional error. These are
called signi�cant �gures or \sig �gs." Examples:

3.14 3 sig �gs
3.1 2 sig �gs
0.03 1 sig �g, because the zeroes are just placeholders
3.0 � 101 2 sig �gs
30 could be 1 or 2 sig �gs, since we can’t tell if the

0 is a placeholder or a real sig �g

In such calculations, your result should not have more than the
number of sig �gs in the least accurate piece of data you started
with.

Sig �gs in the area of a triangle example 3
. A triangle has an area of 6.45 m2 and a base with a width of
4.0138 m. Find its height.

. The area is related to the base and height by A = bh=2.

h =
2A
b

= 3.21391200358762 m (calculator output)
= 3.21 m

The given data were 3 sig �gs and 5 sig �gs. We’re limited by the
less accurate piece of data, so the �nal result is 3 sig �gs. The
additional digits on the calculator don’t mean anything, and if we
communicated them to another person, we would create the false
impression of having determined h with more precision than we
really obtained.

self-check F
The following quote is taken from an editorial by Norimitsu Onishi in the
New York Times, August 18, 2002.

Consider Nigeria. Everyone agrees it is Africa’s most populous
nation. But what is its population? The United Nations says
114 million; the State Department, 120 million. The World Bank
says 126.9 million, while the Central Intelligence Agency puts it
at 126,635,626.

What should bother you about this? . Answer, p. 1046

Dealing correctly with signi�cant �gures can save you time! Of-
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h / A diagram of a tomato.

ten, students copy down numbers from their calculators with eight
signi�cant �gures of precision, then type them back in for a later
calculation. That’s a waste of time, unless your original data had
that kind of incredible precision.

self-check G
How many signi�cant �gures are there in each of the following mea-
surements?

(1) 9.937 m

(2) 4.0 s

(3) 0.0000000000000037 kg . Answer, p. 1046

The rules about signi�cant �gures are only rules of thumb, and
are not a substitute for careful thinking. For instance, $20.00 +
$0.05 is $20.05. It need not and should not be rounded o� to $20.
In general, the sig �g rules work best for multiplication and division,
and we sometimes also apply them when doing a complicated calcu-
lation that involves many types of operations. For simple addition
and subtraction, it makes more sense to maintain a �xed number of
digits after the decimal point.

When in doubt, don’t use the sig �g rules at all. Instead, in-
tentionally change one piece of your initial data by the maximum
amount by which you think it could have been o�, and recalculate
the �nal result. The digits on the end that are completely reshu�ed
are the ones that are meaningless, and should be omitted.

A nonlinear function example 4
. How many sig �gs are there in sin 88.7 � ?

. We’re using a sine function, which isn’t addition, subtraction,
multiplication, or division. It would be reasonable to guess that
since the input angle had 3 sig �gs, so would the output. But if
this was an important calculation and we really needed to know,
we would do the following:

sin 88.7� = 0.999742609322698
sin 88.8� = 0.999780683474846

Surprisingly, the result appears to have as many as 5 sig �gs, not
just 3:

sin 88.7� = 0.99974,

where the �nal 4 is uncertain but may have some signi�cance.
The unexpectedly high precision of the result is because the sine
function is nearing its maximum at 90 degrees, where the graph
�attens out and becomes insensitive to the input angle.

0.1.11 A note about diagrams

A quick note about diagrams. Often when you solve a problem,
the best way to get started and organize your thoughts is by draw-
ing a diagram. For an artist, it’s desirable to be able to draw a
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recognizable, realistic, perspective picture of a tomato, like the one
at the top of �gure h. But in science and engineering, we usually
don’t draw solid �gures in perspective, because that would make it
di�cult to label distances and angles. Usually we want views or
cross-sections that project the object into its planes of symmetry,
as in the line drawings in the �gure.

34 Chapter 0 Introduction and Review



a / Amoebas this size are
seldom encountered.

0.2 Scaling and order-of-magnitude estimates
0.2.1 Introduction

Why can’t an insect be the size of a dog? Some skinny stretched-
out cells in your spinal cord are a meter tall | why does nature
display no single cells that are not just a meter tall, but a meter
wide, and a meter thick as well? Believe it or not, these are questions
that can be answered fairly easily without knowing much more about
physics than you already do. The only mathematical technique you
really need is the humble conversion, applied to area and volume.

Area and volume

Area can be de�ned by saying that we can copy the shape of
interest onto graph paper with 1 cm � 1 cm squares and count the
number of squares inside. Fractions of squares can be estimated by
eye. We then say the area equals the number of squares, in units of
square cm. Although this might seem less \pure" than computing
areas using formulae likeA = �r 2 for a circle or A = wh=2 for a
triangle, those formulae are not useful as de�nitions of area because
they cannot be applied to irregularly shaped areas.

Units of square cm are more commonly written as cm2 in science.
Of course, the unit of measurement symbolized by \cm" is not an
algebra symbol standing for a number that can be literally multiplied
by itself. But it is advantageous to write the units of area that way
and treat the units as if they were algebra symbols. For instance,
if you have a rectangle with an area of 6m2 and a width of 2 m,
then calculating its length as (6 m2)=(2 m) = 3 m gives a result
that makes sense both numerically and in terms of units. This
algebra-style treatment of the units also ensures that our methods
of converting units work out correctly. For instance, if we accept
the fraction

100 cm
1 m

as a valid way of writing the number one, then one times one equals
one, so we should also say that one can be represented by

100 cm
1 m

�
100 cm

1 m
,

which is the same as
10000 cm2

1 m2 .

That means the conversion factor from square meters to square cen-
timeters is a factor of 104, i.e., a square meter has 104 square cen-
timeters in it.

All of the above can be easily applied to volume as well, using
one-cubic-centimeter blocks instead of squares on graph paper.

To many people, it seems hard to believe that a square meter
equals 10000 square centimeters, or that a cubic meter equals a
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million cubic centimeters | they think it would make more sense if
there were 100 cm2 in 1 m2, and 100 cm3 in 1 m3, but that would be
incorrect. The examples shown in �gure b aim to make the correct
answer more believable, using the traditional U.S. units of feet and
yards. (One foot is 12 inches, and one yard is three feet.)

b / Visualizing conversions of
area and volume using traditional
U.S. units.

self-check H
Based on �gure b, convince yourself that there are 9 ft 2 in a square yard,
and 27 ft3 in a cubic yard, then demonstrate the same thing symbolically
(i.e., with the method using fractions that equal one). . Answer, p.
1046

. Solved problem: converting mm2 to cm2 page 52, problem 31

. Solved problem: scaling a liter page 53, problem 40

Discussion Question

A How many square centimeters are there in a square inch? (1 inch =
2.54 cm) First �nd an approximate answer by making a drawing, then de-
rive the conversion factor more accurately using the symbolic method.

0.2.2 Scaling of area and volume

Great eas have lesser eas
Upon their backs to bite ’em.
And lesser eas have lesser still,
And so ad in�nitum.

Jonathan Swift

Now how do these conversions of area and volume relate to the
questions I posed about sizes of living things? Well, imagine that
you are shrunk like Alice in Wonderland to the size of an insect.
One way of thinking about the change of scale is that what used
to look like a centimeter now looks like perhaps a meter to you,
because you’re so much smaller. If area and volume scaled according
to most people’s intuitive, incorrect expectations, with 1 m2 being
the same as 100 cm2, then there would be no particular reason
why nature should behave any di�erently on your new, reduced
scale. But nature does behave di�erently now that you’re small.
For instance, you will �nd that you can walk on water, and jump
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c / Galileo Galilei (1564-1642).

d / The small boat holds up
just �ne.

e / A larger boat built with
the same proportions as the
small one will collapse under its
own weight.

f / A boat this large needs to
have timbers that are thicker
compared to its size.

to many times your own height. The physicist Galileo Galilei had
the basic insight that the scaling of area and volume determines
how natural phenomena behave di�erently on di�erent scales. He
�rst reasoned about mechanical structures, but later extended his
insights to living things, taking the then-radical point of view that at
the fundamental level, a living organism should follow the same laws
of nature as a machine. We will follow his lead by �rst discussing
machines and then living things.

Galileo on the behavior of nature on large and small scales

One of the world’s most famous pieces of scienti�c writing is
Galileo’s Dialogues Concerning the Two New Sciences. Galileo was
an entertaining writer who wanted to explain things clearly to laypeo-
ple, and he livened up his work by casting it in the form of a dialogue
among three people. Salviati is really Galileo’s alter ego. Simplicio
is the stupid character, and one of the reasons Galileo got in trouble
with the Church was that there were rumors that Simplicio repre-
sented the Pope. Sagredo is the earnest and intelligent student, with
whom the reader is supposed to identify. (The following excerpts
are from the 1914 translation by Crew and de Salvio.)

SAGREDO: Yes, that is what I mean; and I refer especially to
his last assertion which I have always regarded as false. . . ;
namely, that in speaking of these and other similar machines
one cannot argue from the small to the large, because many
devices which succeed on a small scale do not work on a
large scale. Now, since mechanics has its foundations in ge-
ometry, where mere size [ is unimportant], I do not see that
the properties of circles, triangles, cylinders, cones and other
solid �gures will change with their size. If, therefore, a large
machine be constructed in such a way that its parts bear to
one another the same ratio as in a smaller one, and if the
smaller is suf�ciently strong for the purpose for which it is
designed, I do not see why the larger should not be able to
withstand any severe and destructive tests to which it may be
subjected.

Salviati contradicts Sagredo:

SALVIATI: . . . Please observe, gentlemen, how facts which
at �rst seem improbable will, even on scant explanation, drop
the cloak which has hidden them and stand forth in naked and
simple beauty. Who does not know that a horse falling from a
height of three or four cubits will break his bones, while a dog
falling from the same height or a cat from a height of eight
or ten cubits will suffer no injury? Equally harmless would be
the fall of a grasshopper from a tower or the fall of an ant from
the distance of the moon.

The point Galileo is making here is that small things are sturdier
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in proportion to their size. There are a lot of objections that could be
raised, however. After all, what does it really mean for something to
be \strong", to be \strong in proportion to its size," or to be strong
\out of proportion to its size?" Galileo hasn’t given operational
de�nitions of things like \strength," i.e., de�nitions that spell out
how to measure them numerically.

Also, a cat is shaped di�erently from a horse | an enlarged
photograph of a cat would not be mistaken for a horse, even if the
photo-doctoring experts at the National Inquirer made it look like a
person was riding on its back. A grasshopper is not even a mammal,
and it has an exoskeleton instead of an internal skeleton. The whole
argument would be a lot more convincing if we could do some iso-
lation of variables, a scienti�c term that means to change only one
thing at a time, isolating it from the other variables that might have
an e�ect. If size is the variable whose e�ect we’re interested in see-
ing, then we don’t really want to compare things that are di�erent
in size but also di�erent in other ways.

SALVIATI: . . . we asked the reason why [shipbuilders] em-
ployed stocks, scaffolding, and bracing of larger dimensions
for launching a big vessel than they do for a small one; and
[an old man] answered that they did this in order to avoid the
danger of the ship parting under its own heavy weight, a dan-
ger to which small boats are not subject?

After this entertaining but not scienti�cally rigorous beginning,
Galileo starts to do something worthwhile by modern standards.
He simpli�es everything by considering the strength of a wooden
plank. The variables involved can then be narrowed down to the
type of wood, the width, the thickness, and the length. He also
gives an operational de�nition of what it means for the plank to
have a certain strength \in proportion to its size," by introducing
the concept of a plank that is the longest one that would not snap
under its own weight if supported at one end. If you increased
its length by the slightest amount, without increasing its width or
thickness, it would break. He says that if one plank is the same
shape as another but a di�erent size, appearing like a reduced or
enlarged photograph of the other, then the planks would be strong
\in proportion to their sizes" if both were just barely able to support
their own weight.
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h / Galileo discusses planks
made of wood, but the concept
may be easier to imagine with
clay. All three clay rods in the
�gure were originally the same
shape. The medium-sized one
was twice the height, twice the
length, and twice the width of
the small one, and similarly the
large one was twice as big as
the medium one in all its linear
dimensions. The big one has
four times the linear dimensions
of the small one, 16 times the
cross-sectional area when cut
perpendicular to the page, and
64 times the volume. That means
that the big one has 64 times the
weight to support, but only 16
times the strength compared to
the smallest one.

g / 1. This plank is as long as it can be without collapsing under
its own weight. If it was a hundredth of an inch longer, it would collapse.
2. This plank is made out of the same kind of wood. It is twice as thick,
twice as long, and twice as wide. It will collapse under its own weight.

Also, Galileo is doing something that would be frowned on in
modern science: he is mixing experiments whose results he has ac-
tually observed (building boats of di�erent sizes), with experiments
that he could not possibly have done (dropping an ant from the
height of the moon). He now relates how he has done actual ex-
periments with such planks, and found that, according to this op-
erational de�nition, they are not strong in proportion to their sizes.
The larger one breaks. He makes sure to tell the reader how impor-
tant the result is, via Sagredo’s astonished response:

SAGREDO: My brain already reels. My mind, like a cloud
momentarily illuminated by a lightning �ash, is for an instant
�lled with an unusual light, which now beckons to me and
which now suddenly mingles and obscures strange, crude
ideas. From what you have said it appears to me impossible
to build two similar structures of the same material, but of
different sizes and have them proportionately strong.

In other words, this speci�c experiment, using things like wooden
planks that have no intrinsic scienti�c interest, has very wide impli-
cations because it points out a general principle, that nature acts
di�erently on di�erent scales.

To �nish the discussion, Galileo gives an explanation. He says
that the strength of a plank (de�ned as, say, the weight of the heav-
iest boulder you could put on the end without breaking it) is pro-
portional to its cross-sectional area, that is, the surface area of the
fresh wood that would be exposed if you sawed through it in the
middle. Its weight, however, is proportional to its volume.2

How do the volume and cross-sectional area of the longer plank
compare with those of the shorter plank? We have already seen,

2Galileo makes a slightly more complicated argument, taking into account
the e�ect of leverage (torque). The result I’m referring to comes out the same
regardless of this e�ect.
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i / The area of a shape is
proportional to the square of its
linear dimensions, even if the
shape is irregular.

while discussing conversions of the units of area and volume, that
these quantities don’t act the way most people naively expect. You
might think that the volume and area of the longer plank would both
be doubled compared to the shorter plank, so they would increase
in proportion to each other, and the longer plank would be equally
able to support its weight. You would be wrong, but Galileo knows
that this is a common misconception, so he has Salviati address the
point speci�cally:

SALVIATI: . . . Take, for example, a cube two inches on a
side so that each face has an area of four square inches
and the total area, i.e., the sum of the six faces, amounts
to twenty-four square inches; now imagine this cube to be
sawed through three times [with cuts in three perpendicular
planes] so as to divide it into eight smaller cubes, each one
inch on the side, each face one inch square, and the total
surface of each cube six square inches instead of twenty-
four in the case of the larger cube. It is evident therefore,
that the surface of the little cube is only one-fourth that of
the larger, namely, the ratio of six to twenty-four; but the vol-
ume of the solid cube itself is only one-eighth; the volume,
and hence also the weight, diminishes therefore much more
rapidly than the surface. . . You see, therefore, Simplicio, that
I was not mistaken when . . . I said that the surface of a small
solid is comparatively greater than that of a large one.

The same reasoning applies to the planks. Even though they
are not cubes, the large one could be sawed into eight small ones,
each with half the length, half the thickness, and half the width.
The small plank, therefore, has more surface area in proportion to
its weight, and is therefore able to support its own weight while the
large one breaks.

Scaling of area and volume for irregularly shaped objects

You probably are not going to believe Galileo’s claim that this
has deep implications for all of nature unless you can be convinced
that the same is true for any shape. Every drawing you’ve seen so
far has been of squares, rectangles, and rectangular solids. Clearly
the reasoning about sawing things up into smaller pieces would not
prove anything about, say, an egg, which cannot be cut up into eight
smaller egg-shaped objects with half the length.

Is it always true that something half the size has one quarter
the surface area and one eighth the volume, even if it has an irreg-
ular shape? Take the example of a child’s violin. Violins are made
for small children in smaller size to accomodate their small bodies.
Figure i shows a full-size violin, along with two violins made with
half and 3/4 of the normal length.3 Let’s study the surface area of

3The customary terms \half-size" and \3/4-size" actually don’t describe the
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j / The muf�n comes out of
the oven too hot to eat. Breaking
it up into four pieces increases
its surface area while keeping
the total volume the same. It
cools faster because of the
greater surface-to-volume ratio.
In general, smaller things have
greater surface-to-volume ratios,
but in this example there is no
easy way to compute the effect
exactly, because the small pieces
aren’t the same shape as the
original muf�n.

the front panels of the three violins.

Consider the square in the interior of the panel of the full-size
violin. In the 3/4-size violin, its height and width are both smaller
by a factor of 3/4, so the area of the corresponding, smaller square
becomes 3=4� 3=4 = 9=16 of the original area, not 3/4 of the original
area. Similarly, the corresponding square on the smallest violin has
half the height and half the width of the original one, so its area is
1/4 the original area, not half.

The same reasoning works for parts of the panel near the edge,
such as the part that only partially �lls in the other square. The
entire square scales down the same as a square in the interior, and
in each violin the same fraction (about 70%) of the square is full, so
the contribution of this part to the total area scales down just the
same.

Since any small square region or any small region covering part
of a square scales down like a square object, the entire surface area
of an irregularly shaped object changes in the same manner as the
surface area of a square: scaling it down by 3/4 reduces the area by
a factor of 9/16, and so on.

In general, we can see that any time there are two objects with
the same shape, but di�erent linear dimensions (i.e., one looks like a
reduced photo of the other), the ratio of their areas equals the ratio
of the squares of their linear dimensions:

A1

A2
=

�
L 1

L 2

� 2
.

Note that it doesn’t matter where we choose to measure the linear
size,L , of an object. In the case of the violins, for instance, it could
have been measured vertically, horizontally, diagonally, or even from
the bottom of the left f-hole to the middle of the right f-hole. We
just have to measure it in a consistent way on each violin. Since all
the parts are assumed to shrink or expand in the same manner, the
ratio L 1=L2 is independent of the choice of measurement.

It is also important to realize that it is completely unnecessary
to have a formula for the area of a violin. It is only possible to
derive simple formulas for the areas of certain shapes like circles,
rectangles, triangles and so on, but that is no impediment to the
type of reasoning we are using.

Sometimes it is inconvenient to write all the equations in terms
of ratios, especially when more than two objects are being compared.
A more compact way of rewriting the previous equation is

A / L 2.

sizes in any accurate way. They’re really just standard, arbitrary marketing
labels.
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k / Example 5. The big trian-
gle has four times more area than
the little one.

l / A tricky way of solving ex-
ample 5, explained in solution #2.

The symbol \ / " means \is proportional to." Scientists and engi-
neers often speak about such relationships verbally using the phrases
\scales like" or \goes like," for instance \area goes like length squared."

All of the above reasoning works just as well in the case of vol-
ume. Volume goes like length cubed:

V / L 3.

self-check I
When a car or truck travels over a road, there is wear and tear on the
road surface, which incurs a cost. Studies show that the cost C per kilo-
meter of travel is related to the weight per axle w by C / w4. Translate
this into a statement about ratios. . Answer, p. 1046

If di�erent objects are made of the same material with the same
density, � = m=V , then their masses,m = �V , are proportional to
L 3. (The symbol for density is � , the lower-case Greek letter \rho.")

An important point is that all of the above reasoning about
scaling only applies to objects that are the same shape. For instance,
a piece of paper is larger than a pencil, but has a much greater
surface-to-volume ratio.

Scaling of the area of a triangle example 5
. In �gure k, the larger triangle has sides twice as long. How
many times greater is its area?

Correct solution #1: Area scales in proportion to the square of the
linear dimensions, so the larger triangle has four times more area
(22 = 4).

Correct solution #2: You could cut the larger triangle into four of
the smaller size, as shown in �g. (b), so its area is four times
greater. (This solution is correct, but it would not work for a shape
like a circle, which can’t be cut up into smaller circles.)

Correct solution #3: The area of a triangle is given by

A = bh=2, where b is the base and h is the height. The areas of
the triangles are

A1 = b1h1=2
A2 = b2h2=2

= (2b1)(2h1)=2
= 2b1h1

A2=A1 = (2b1h1)=(b1h1=2)
= 4

(Although this solution is correct, it is a lot more work than solution
#1, and it can only be used in this case because a triangle is a
simple geometric shape, and we happen to know a formula for its
area.)

42 Chapter 0 Introduction and Review



m / Example 6. The big sphere
has 125 times more volume than
the little one.

n / Example 7. The 48-point
�S� has 1.78 times more area
than the 36-point �S.�

Correct solution #4: The area of a triangle is A = bh=2. The
comparison of the areas will come out the same as long as the
ratios of the linear sizes of the triangles is as speci�ed, so let’s
just say b1 = 1.00 m and b2 = 2.00 m. The heights are then also
h1 = 1.00 m and h2 = 2.00 m, giving areas A1 = 0.50 m2 and
A2 = 2.00 m2, so A2=A1 = 4.00.

(The solution is correct, but it wouldn’t work with a shape for
whose area we don’t have a formula. Also, the numerical cal-
culation might make the answer of 4.00 appear inexact, whereas
solution #1 makes it clear that it is exactly 4.)

Incorrect solution: The area of a triangle is A = bh=2, and if you
plug in b = 2.00 m and h = 2.00 m, you get A = 2.00 m2, so
the bigger triangle has 2.00 times more area. (This solution is
incorrect because no comparison has been made with the smaller
triangle.)

Scaling of the volume of a sphere example 6
. In �gure m, the larger sphere has a radius that is �ve times
greater. How many times greater is its volume?

Correct solution #1: Volume scales like the third power of the
linear size, so the larger sphere has a volume that is 125 times
greater (53 = 125).

Correct solution #2: The volume of a sphere is V = (4=3)� r3, so

V1 =
4
3

� r3
1

V2 =
4
3

� r3
2

=
4
3

� (5r1)3

=
500

3
� r3

1

V2=V1 =
�

500
3

� r3
1

�
=

�
4
3

� r3
1

�
= 125

Incorrect solution: The volume of a sphere is V = (4=3)� r3, so

V1 =
4
3

� r3
1

V2 =
4
3

� r3
2

=
4
3

� � 5r3
1

=
20
3

� r3
1

V2=V1 =
�

20
3

� r3
1

�
=

�
4
3

� r3
1

�
= 5

(The solution is incorrect because (5r1)3 is not the same as 5r3
1 .)
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Scaling of a more complex shape example 7
. The �rst letter �S� in �gure n is in a 36-point font, the second in
48-point. How many times more ink is required to make the larger
�S�? (Points are a unit of length used in typography.)

Correct solution: The amount of ink depends on the area to be
covered with ink, and area is proportional to the square of the
linear dimensions, so the amount of ink required for the second
�S� is greater by a factor of (48 =36)2 = 1.78.

Incorrect solution: The length of the curve of the second �S� is
longer by a factor of 48=36 = 1.33, so 1.33 times more ink is
required.

(The solution is wrong because it assumes incorrectly that the
width of the curve is the same in both cases. Actually both the
width and the length of the curve are greater by a factor of 48/36,
so the area is greater by a factor of (48=36)2 = 1.78.)

Reasoning about ratios and proportionalities is one of the three
essential mathematical skills, summarized on pp.1007-1009, that you
need for success in this course.

. Solved problem: a telescope gathers light page 52, problem 32

. Solved problem: distance from an earthquake page 52, problem 33

Discussion Questions

A A toy �re engine is 1/30 the size of the real one, but is constructed
from the same metal with the same proportions. How many times smaller
is its weight? How many times less red paint would be needed to paint
it?

B Galileo spends a lot of time in his dialog discussing what really
happens when things break. He discusses everything in terms of Aristo-
tle’s now-discredited explanation that things are hard to break, because
if something breaks, there has to be a gap between the two halves with
nothing in between, at least initially. Nature, according to Aristotle, �ab-
hors a vacuum,� i.e., nature doesn’t �like� empty space to exist. Of course,
air will rush into the gap immediately, but at the very moment of breaking,
Aristotle imagined a vacuum in the gap. Is Aristotle’s explanation of why
it is hard to break things an experimentally testable statement? If so, how
could it be tested experimentally?

0.2.3 Order-of-magnitude estimates

It is the mark of an instructed mind to rest satis�ed with the degree
of precision that the nature of the subject permits and not to seek
an exactness where only an approximation of the truth is possible.

Aristotle

It is a common misconception that science must be exact. For
instance, in the Star Trek TV series, it would often happen that
Captain Kirk would ask Mr. Spock, \Spock, we’re in a pretty bad
situation. What do you think are our chances of getting out of
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o / Can you guess how many
jelly beans are in the jar? If you
try to guess directly, you will
almost certainly underestimate.
The right way to do it is to esti-
mate the linear dimensions, then
get the volume indirectly. See
problem 44, p. 54.

p / Consider a spherical cow.

here?" The scienti�c Mr. Spock would answer with something like,
\Captain, I estimate the odds as 237.345 to one." In reality, he
could not have estimated the odds with six signi�cant �gures of
accuracy, but nevertheless one of the hallmarks of a person with a
good education in science is the ability to make estimates that are
likely to be at least somewhere in the right ballpark. In many such
situations, it is often only necessary to get an answer that is o� by no
more than a factor of ten in either direction. Since things that di�er
by a factor of ten are said to di�er by one order of magnitude, such
an estimate is called an order-of-magnitude estimate. The tilde,
� , is used to indicate that things are only of the same order of
magnitude, but not exactly equal, as in

odds of survival � 100 to one.

The tilde can also be used in front of an individual number to em-
phasize that the number is only of the right order of magnitude.

Although making order-of-magnitude estimates seems simple and
natural to experienced scientists, it’s a mode of reasoning that is
completely unfamiliar to most college students. Some of the typical
mental steps can be illustrated in the following example.

Cost of transporting tomatoes (incorrect solution) example 8
. Roughly what percentage of the price of a tomato comes from
the cost of transporting it in a truck?

. The following incorrect solution illustrates one of the main ways
you can go wrong in order-of-magnitude estimates.

Incorrect solution: Let’s say the trucker needs to make a $400
pro�t on the trip. Taking into account her bene�ts, the cost of gas,
and maintenance and payments on the truck, let’s say the total
cost is more like $2000. I’d guess about 5000 tomatoes would �t
in the back of the truck, so the extra cost per tomato is 40 cents.
That means the cost of transporting one tomato is comparable to
the cost of the tomato itself. Transportation really adds a lot to the
cost of produce, I guess.

The problem is that the human brain is not very good at esti-
mating area or volume, so it turns out the estimate of 5000 tomatoes
�tting in the truck is way o�. That’s why people have a hard time
at those contests where you are supposed to estimate the number of
jellybeans in a big jar. Another example is that most people think
their families use about 10 gallons of water per day, but in reality
the average is about 300 gallons per day. When estimating area
or volume, you are much better o� estimating linear dimensions,
and computing volume from the linear dimensions. Here’s a better
solution to the problem about the tomato truck:

Cost of transporting tomatoes (correct solution) example 9
As in the previous solution, say the cost of the trip is $2000. The
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dimensions of the bin are probably 4 m � 2 m � 1 m, for a vol-
ume of 8 m3. Since the whole thing is just an order-of-magnitude
estimate, let’s round that off to the nearest power of ten, 10 m3.
The shape of a tomato is complicated, and I don’t know any for-
mula for the volume of a tomato shape, but since this is just an
estimate, let’s pretend that a tomato is a cube, 0.05 m � 0.05 m �
0.05 m, for a volume of 1.25 � 10� 4 m3. Since this is just a rough
estimate, let’s round that to 10� 4m3. We can �nd the total num-
ber of tomatoes by dividing the volume of the bin by the volume
of one tomato: 10 m3=10� 4 m3 = 105 tomatoes. The transporta-
tion cost per tomato is $2000=105 tomatoes=$0.02/tomato. That
means that transportation really doesn’t contribute very much to
the cost of a tomato.

Approximating the shape of a tomato as a cube is an example of
another general strategy for making order-of-magnitude estimates.
A similar situation would occur if you were trying to estimate how
many m2 of leather could be produced from a herd of ten thousand
cattle. There is no point in trying to take into account the shape of
the cows’ bodies. A reasonable plan of attack might be to consider
a spherical cow. Probably a cow has roughly the same surface area
as a sphere with a radius of about 1 m, which would be 4� (1 m)2.
Using the well-known facts that pi equals three, and four times three
equals about ten, we can guess that a cow has a surface area of about
10 m2, so the herd as a whole might yield 105 m2 of leather.

Estimating mass indirectly example 10
Usually the best way to estimate mass is to estimate linear di-
mensions, then use those to infer volume, and then get the mass
based on the volume. For example, Amphicoelias, shown in the
�gure, may have been the largest land animal ever to live. Fossils
tell us the linear dimensions of an animal, but we can only indi-
rectly guess its mass. Given the length scale in the �gure, let’s
estimate the mass of an Amphicoelias.

Its torso looks like it can be approximated by a rectangular box
with dimensions 10 m � 5 m � 3 m, giving about 2 � 102 m3. Living
things are mostly made of water, so we assume the animal to
have the density of water, 1 g=cm3, which converts to 103 kg=m3.
This gives a mass of about 2 � 105 kg, or 200 metric tons.

The following list summarizes the strategies for getting a good
order-of-magnitude estimate.
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1. Don’t even attempt more than one signi�cant �gure of preci-
sion.

2. Don’t guess area, volume, or mass directly. Guess linear di-
mensions and get area, volume, or mass from them.

3. When dealing with areas or volumes of objects with complex
shapes, idealize them as if they were some simpler shape, a
cube or a sphere, for example.

4. Check your �nal answer to see if it is reasonable. If you esti-
mate that a herd of ten thousand cattle would yield 0.01 m2

of leather, then you have probably made a mistake with con-
version factors somewhere.
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Problems
The symbols

p
, , etc. are explained on page 54.

1 Correct use of a calculator: (a) Calculate 74658
53222+97554 on a cal-

culator. [Self-check: The most common mistake results in 97555.40.]p

(b) Which would be more like the price of a TV, and which would
be more like the price of a house, $3.5� 105 or $3.55?

2 Compute the following things. If they don’t make sense be-
cause of units, say so.
(a) 3 cm + 5 cm
(b) 1.11 m + 22 cm
(c) 120 miles + 2.0 hours
(d) 120 miles / 2.0 hours

3 Your backyard has brick walls on both ends. You measure a
distance of 23.4 m from the inside of one wall to the inside of the
other. Each wall is 29.4 cm thick. How far is it from the outside
of one wall to the outside of the other? Pay attention to signi�cant
�gures.

4 The speed of light is 3.0� 108 m/s. Convert this to furlongs
per fortnight. A furlong is 220 yards, and a fortnight is 14 days. An
inch is 2.54 cm.

p

5 Express each of the following quantities in micrograms:
(a) 10 mg, (b) 104 g, (c) 10 kg, (d) 100� 103 g, (e) 1000 ng.

p

6 Convert 134 mg to units of kg, writing your answer in scienti�c
notation. . Solution, p. 1026

7 In the last century, the average age of the onset of puberty for
girls has decreased by several years. Urban folklore has it that this
is because of hormones fed to beef cattle, but it is more likely to be
because modern girls have more body fat on the average and pos-
sibly because of estrogen-mimicking chemicals in the environment
from the breakdown of pesticides. A hamburger from a hormone-
implanted steer has about 0.2 ng of estrogen (about double the
amount of natural beef). A serving of peas contains about 300
ng of estrogen. An adult woman produces about 0.5 mg of estrogen
per day (note the di�erent unit!). (a) How many hamburgers would
a girl have to eat in one day to consume as much estrogen as an
adult woman’s daily production? (b) How many servings of peas?p

8 The usual de�nition of the mean (average) of two numbersa
and b is (a+ b)=2. This is called the arithmetic mean. The geometric
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Problem 10.

Problem 12.

mean, however, is de�ned as (ab)1=2 (i.e., the square root ofab). For
the sake of de�niteness, let’s say both numbers have units of mass.
(a) Compute the arithmetic mean of two numbers that have units
of grams. Then convert the numbers to units of kilograms and
recompute their mean. Is the answer consistent? (b) Do the same
for the geometric mean. (c) If a and b both have units of grams,
what should we call the units of ab? Does your answer make sense
when you take the square root? (d) Suppose someone proposes to
you a third kind of mean, called the superduper mean, de�ned as
(ab)1=3. Is this reasonable? . Solution, p. 1026

9 In an article on the SARS epidemic, the May 7, 2003 New
York Times discusses conicting estimates of the disease’s incuba-
tion period (the average time that elapses from infection to the �rst
symptoms). \The study estimated it to be 6.4 days. But other sta-
tistical calculations ... showed that the incubation period could be
as long as 14.22 days." What’s wrong here?

10 The photo shows the corner of a bag of pretzels. What’s
wrong here?

11 The distance to the horizon is given by the expression
p

2rh ,
where r is the radius of the Earth, and h is the observer’s height
above the Earth’s surface. (This can be proved using the Pythagorean
theorem.) Show that the units of this expression make sense. Don’t
try to prove the result, just check its units. (See example 2 on p.
26 for an example of how to do this.)

12 (a) Based on the de�nitions of the sine, cosine, and tangent,
what units must they have? (b) A cute formula from trigonometry
lets you �nd any angle of a triangle if you know the lengths of
its sides. Using the notation shown in the �gure, and letting s =
(a + b+ c)=2 be half the perimeter, we have

tan A=2 =

s
(s � b)(s � c)

s(s � a)
.

Show that the units of this equation make sense. In other words,
check that the units of the right-hand side are the same as your
answer to part a of the question. . Solution, p. 1026

13 A physics homework question asks, \If you start from rest
and accelerate at 1.54 m=s2 for 3.29 s, how far do you travel by the
end of that time?" A student answers as follows:

1.54� 3.29 = 5.07 m

His Aunt Wanda is good with numbers, but has never taken physics.
She doesn’t know the formula for the distance traveled under con-
stant acceleration over a given amount of time, but she tells her
nephew his answer cannot be right. How does she know?
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14 You are looking into a deep well. It is dark, and you cannot
see the bottom. You want to �nd out how deep it is, so you drop
a rock in, and you hear a splash 3.0 seconds later. How deep is the
well?

p

15 You take a trip in your spaceship to another star. Setting o�,
you increase your speed at a constant acceleration. Once you get
half-way there, you start decelerating, at the same rate, so that by
the time you get there, you have slowed down to zero speed. You see
the tourist attractions, and then head home by the same method.
(a) Find a formula for the time, T , required for the round trip, in
terms of d, the distance from our sun to the star, anda, the magni-
tude of the acceleration. Note that the acceleration is not constant
over the whole trip, but the trip can be broken up into constant-
acceleration parts.
(b) The nearest star to the Earth (other than our own sun) is Prox-
ima Centauri, at a distance of d = 4 � 1016 m. Suppose you use an
acceleration ofa = 10 m=s2, just enough to compensate for the lack
of true gravity and make you feel comfortable. How long does the
round trip take, in years?
(c) Using the same numbers ford and a, �nd your maximum speed.
Compare this to the speed of light, which is 3.0� 108 m/s. (Later
in this course, you will learn that there are some new things going
on in physics when one gets close to the speed of light, and that it
is impossible to exceed the speed of light. For now, though, just use
the simpler ideas you’ve learned so far.)

p

16 You climb half-way up a tree, and drop a rock. Then you
climb to the top, and drop another rock. How many times greater
is the velocity of the second rock on impact? Explain. (The answer
is not two times greater.)

17 If the acceleration of gravity on Mars is 1/3 that on Earth,
how many times longer does it take for a rock to drop the same
distance on Mars? Ignore air resistance. . Solution, p. 1027

18 A person is parachute jumping. During the time between
when she leaps out of the plane and when she opens her chute, her
altitude is given by an equation of the form

y = b � c
�

t + ke� t=k
�

,

where e is the base of natural logarithms, andb, c, and k are con-
stants. Because of air resistance, her velocity does not increase at a
steady rate as it would for an object falling in vacuum.
(a) What units would b, c, and k have to have for the equation to
make sense?
(b) Find the person’s velocity, v, as a function of time. [You will
need to use the chain rule, and the fact that d(ex )=dx = ex .]

p

(c) Use your answer from part (b) to get an interpretation of the
constant c. [Hint: e� x approaches zero for large values ofx.]
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