
38 Suppose an object has massm, and moment of inertia I o
for rotation about some axis A passing through its center of mass.
Prove that for an axis B, parallel to A and lying at a distance h
from it, the object’s moment of inertia is given by I o + mh2. This
is known as the parallel axis theorem.

39 Let two sides of a triangle be given by the vectorsA and
B , with their tails at the origin, and let mass m be uniformly dis-
tributed on the interior of the triangle. (a) Show that the distance
of the triangle’s center of mass from the intersection of sidesA and
B is given by 1

3 jA + B j.
(b) Consider the quadrilateral with mass 2m, and vertices at the
origin, A , B , and A + B . Show that its moment of inertia, for
rotation about an axis perpendicular to it and passing through its
center of mass, ism

6 (A2 + B 2).
(c) Show that the moment of inertia for rotation about an axis per-
pendicular to the plane of the original triangle, and passing through
its center of mass, ism

18(A2 + B 2 � A �B ). Hint: Combine the results
of parts a and b with the result of problem 38.

40 When we talk about rigid-body rotation, the concept of
a perfectly rigid body can only be an idealization. In reality, any
object will compress, expand, or deform to some extent when sub-
jected to the strain of rotation. However, if we let it settle down for
a while, perhaps it will reach a new equilibrium. As an example,
suppose we �ll a centrifuge tube with some compressible substance
like shaving cream or Wonder Bread. We can model the contents of
the tube as a one-dimensional line of mass, extending fromr = 0 to
r = ‘ . Once the rotation starts, we expect that the contents will be
most compressed near the \oor" of the tube at r = ‘ ; this is both
because the inward force required for circular motion increases with
r for a �xed ! , and because the part at the oor has the greatest
amount of material pressing \down" (actually outward) on it. The
linear density dm=dr , in units of kg/m, should therefore increase as
a function of r . Suppose that we have dm=dr = �e r=‘ , where � is a
constant. Find the moment of inertia.

p

41 When we release an object such as a bicycle wheel or a coin
on an inclined plane, we can observe a variety of di�erent behaviors.
Characterize these behaviors empirically and try to list the physical
parameters that determine which behavior occurs. Try to form a
conjecture about the behavior using simple closed-form expressions.
Test your conjecture experimentally.
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Problem 42.

Problem 43.

42 The �gure shows a tabletop experiment that can be used to
determine an unknown moment of inertia. A rotating platform of
radius R has a string wrapped around it. The string is threaded
over a pulley and down to a hanging weight of massm. The mass
is released from rest, and its downward accelerationa (a > 0) is
measured. Find the total moment of inertia I of the platform plus
the object sitting on top of it. (The moment of inertia of the object
itself can then be found by subtracting the value for the empty
platform.)

p

43 The uniform cube has unit weight and sides of unit length.
One corner is attached to a universal joint, i.e., a frictionless bearing
that allows any type of rotation. If the cube is in equilibrium, �nd
the magnitudes of the forcesa, b, and c.

p

44 In this problem we investigate the notion of division by a
vector.
(a) Given a nonzero vectora and a scalarb, suppose we wish to �nd
a vector u that is the solution of a � u = b. Show that the solution
is not unique, and give a geometrical description of the solution set.
(b) Do the same thing for the equation a � u = c.
(c) Show that the simultaneous solution of these two equations ex-
ists and is unique.

Remark: This is one motivation for constructing the number system called the
quaternions. For a certain period around 1900, quaternions were more popular
than the system of vectors and scalars more commonly used today. They still
have some important advantages over the scalar-vector system for certain appli-
cations, such as avoiding a phenomenon known as gimbal lock in controlling the
orientation of bodies such as spacecraft.

45 Show that when a thin, uniform ring rotates about a diameter,
the moment of inertia is half as big as for rotation about the axis of
symmetry. . Solution, p. 1028

Key to symbols:
easy typical challenging di�cult very di�cultp

An answer check is available at www.lightandmatter.com.
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Exercises
Exercise 4A: Torque

Equipment:

� rulers with holes in them

� spring scales (two per group)

While one person holds the pencil which forms the axle for the ruler, the other members of the
group pull on the scale and take readings. In each case, calculate the total torque on the ruler,
and �nd out whether it equals zero to roughly within the accuracy of the experiment.
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Chapter 5

Thermodynamics

S = k logW

Inscription on the tomb of Ludwig Boltzmann, 1844-1906.
Boltzmann originated the microscopic theory of thermodynam-
ics.

In a developing country like China, a refrigerator is the mark of
a family that has arrived in the middle class, and a car is the ulti-
mate symbol of wealth. Both of these areheat engines: devices for
converting between heat and other forms of energy. Unfortunately
for the Chinese, neither is a very e�cient device. Burning fossil fuels
has made China’s big cities the most polluted on the planet, and
the country’s total energy supply isn’t su�cient to support Amer-
ican levels of energy consumption by more than a small fraction
of China’s population. Could we somehow manipulate energy in a
more e�cient way?

Conservation of energy is a statement that the total amount of
energy is constant at all times, which encourages us to believe that
any energy transformation can be undone | indeed, the laws of
physics you’ve learned so far don’t even distinguish the past from
the future. If you get in a car and drive around the block, the
net e�ect is to consume some of the energy you paid for at the
gas station, using it to heat the neighborhood. There would not
seem to be any fundamental physical principle to prevent you from
recapturing all that heat and using it again the next time you want
to go for a drive. More modestly, why don’t engineers design a car
engine so that it recaptures the heat energy that would otherwise
be wasted via the radiator and the exhaust?

Hard experience, however, has shown that designers of more and
more e�cient engines run into a brick wall at a certain point. The
generators that the electric company uses to produce energy at an
oil-fueled plant are indeed much more e�cient than a car engine, but
even if one is willing to accept a device that is very large, expensive,
and complex, it turns out to be impossible to make a perfectly e�-
cient heat engine | not just impossible with present-day technology,
but impossible due to a set of fundamental physical principles known
as the science ofthermodynamics. And thermodynamics isn’t just a
pesky set of constraints on heat engines. Without thermodynamics,
there is no way to explain the direction of time’s arrow | why we
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can remember the past but not the future, and why it’s easier to
break Humpty Dumpty than to put him back together again.

5.1 Pressure and temperature
When we heat an object, we speed up the mind-bogglingly complex
random motion of its molecules. One method for taming complexity
is the conservation laws, since they tell us that certain things must
remain constant regardless of what process is going on. Indeed,
the law of conservation of energy is also known as the �rst law of
thermodynamics.

But as alluded to in the introduction to this chapter, conserva-
tion of energy by itself is not powerful enough to explain certain
empirical facts about heat. A second way to sidestep the complex-
ity of heat is to ignore heat’s atomic nature and concentrate on
quantities like temperature and pressure that tell us about a sys-
tem’s properties as a whole. This approach is called macroscopic in
contrast to the microscopic method of attack. Pressure and temper-
ature were fairly well understood in the age of Newton and Galileo,
hundreds of years before there was any �rm evidence that atoms
and molecules even existed.

Unlike the conserved quantities such as mass, energy, momen-
tum, and angular momentum, neither pressure nor temperature is
additive. Two cups of co�ee have twice the heat energy of a single
cup, but they do not have twice the temperature. Likewise, the
painful pressure on your eardrums at the bottom of a pool is not
a�ected if you insert or remove a partition between the two halves
of the pool.

We restrict ourselves to a discussion of pressure in uids at rest
and in equilibrium. In physics, the term \uid" is used to mean
either a gas or a liquid. The important feature of a uid can be
demonstrated by comparing with a cube of jello on a plate. The
jello is a solid. If you shake the plate from side to side, the jello will
respond by shearing, i.e., by slanting its sides, but it will tend to
spring back into its original shape. A solid can sustain shear forces,
but a uid cannot. A uid does not resist a change in shape unless
it involves a change in volume.

5.1.1 Pressure

If you’re at the bottom of a pool, you can’t relieve the pain in
your ears by turning your head. The water’s force on your eardrum
is always the same, and is always perpendicular to the surface where
the eardrum contacts the water. If your ear is on the east side of
your head, the water’s force is to the west. If you keep your ear
in the same spot while turning around so your ear is on the north,
the force will still be the same in magnitude, and it will change
its direction so that it is still perpendicular to the eardrum: south.
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a / A simple pressure gauge
consists of a cylinder open at one
end, with a piston and a spring
inside. The depth to which the
spring is depressed is a measure
of the pressure. To determine the
absolute pressure, the air needs
to be pumped out of the interior of
the gauge, so that there is no air
pressure acting outward on the
piston. In many practical gauges,
the back of the piston is open to
the atmosphere, so the pressure
the gauge registers equals the
pressure of the �uid minus the
pressure of the atmosphere.

This shows that pressure has no direction in space, i.e., it is a scalar.
The direction of the force is determined by the orientation of the
surface on which the pressure acts, not by the pressure itself. A
uid owing over a surface can also exert frictional forces, which
are parallel to the surface, but the present discussion is restricted
to uids at rest.

Experiments also show that a uid’s force on a surface is pro-
portional to the surface area. The vast force of the water behind
a dam, for example, in proportion to the dam’s great surface area.
(The bottom of the dam experiences a higher proportion of its force.)

Based on these experimental results, it appears that the useful
way to de�ne pressure is as follows. The pressure of a uid at a
given point is de�ned as F? =A, whereA is the area of a small surface
inserted in the uid at that point, and F? is the component of the
uid’s force on the surface which is perpendicular to the surface. (In
the case of a moving uid, uid friction forces can act parallel to
the surface, but we’re only dealing with stationary uids, so there
is only an F? .)

This is essentially how a pressure gauge works. The reason that
the surface must be small is so that there will not be any signi�cant
di�erence in pressure between one part of it and another part. The
SI units of pressure are evidently N=m2, and this combination can
be abbreviated as the pascal, 1 Pa=1 N=m2. The pascal turns out to
be an inconveniently small unit, so car tires, for example, normally
have pressures imprinted on them in units of kilopascals.

Pressure in U.S. units example 1
In U.S. units, the unit of force is the pound, and the unit of distance
is the inch. The unit of pressure is therefore pounds per square
inch, or p.s.i. (Note that the pound is not a unit of mass.)

Atmospheric pressure in U.S. and metric units example 2
. A �gure that many people in the U.S. remember is that atmo-
spheric pressure is about 15 pounds per square inch. What is
this in metric units?

.

(15 lb)=(1 in2) =
68 N

(0.0254 m)2

= 1.0 � 105 N=m2

= 100 kPa

Only pressure di�erences are normally signi�cant.

If you spend enough time on an airplane, the pain in your ears
subsides. This is because your body has gradually been able to ad-
mit more air into the cavity behind the eardrum. Once the pressure
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inside is equalized with the pressure outside, the inward and out-
ward forces on your eardrums cancel out, and there is no physical
sensation to tell you that anything unusual is going on. For this
reason, it is normally only pressure di�erences that have any phys-
ical signi�cance. Thus deep-sea �sh are perfectly healthy in their
habitat because their bodies have enough internal pressure to cancel
the pressure from the water in which they live; if they are caught in
a net and brought to the surface rapidly, they explode because their
internal pressure is so much greater than the low pressure outside.

Getting killed by a pool pump example 3
. My house has a pool, which I maintain myself. A pool always
needs to have its water circulated through a �lter for several hours
a day in order to keep it clean. The �lter is a large barrel with a
strong clamp that holds the top and bottom halves together. My
�lter has a prominent warning label that warns me not to try to
open the clamps while the pump is on, and it shows a cartoon
of a person being struck by the top half of the pump. The cross-
sectional area of the �lter barrel is 0.25 m 2. Like most pressure
gauges, the one on my pool pump actually reads the difference in
pressure between the pressure inside the pump and atmospheric
pressure. The gauge reads 90 kPa. What is the force that is
trying to pop open the �lter?

. If the gauge told us the absolute pressure of the water inside,
we’d have to �nd the force of the water pushing outward and the
force of the air pushing inward, and subtract in order to �nd the
total force. Since air surrounds us all the time, we would have to
do such a subtraction every time we wanted to calculate anything
useful based on the gauge’s reading. The manufacturers of the
gauge decided to save us from all this work by making it read the
difference in pressure between inside and outside, so all we have
to do is multiply the gauge reading by the cross-sectional area of
the �lter:

F = PA

= (90 � 103 N=m2)(0.25 m2)
= 22000 N

That’s a lot of force!

The word \suction" and other related words contain a hidden
misunderstanding related to this point about pressure di�erences.
When you suck water up through a straw, there is nothing in your
mouth that is attracting the water upward. The force that lifts the
water is from the pressure of the water in the cup. By creating a
partial vacuum in your mouth, you decreased the air’s downward
force on the water so that it no longer exactly canceled the upward
force.
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b / This doesn’t happen. If
pressure could vary horizontally
in equilibrium, the cube of water
would accelerate horizontally.
This is a contradiction, since
we assumed the �uid was in
equilibrium.

c / The pressure is the same
at all the points marked with dots.

d / This does happen. The
sum of the forces from the
surrounding parts of the �uid is
upward, canceling the downward
force of gravity.

Variation of pressure with depth

The pressure within a uid in equilibrium can only depend on
depth, due to gravity. If the pressure could vary from side to side,
then a piece of the uid in between, b, would be subject to unequal
forces from the parts of the uid on its two sides. Since uids do not
exhibit shear forces, there would be no other force that could keep
this piece of uid from accelerating. This contradicts the assumption
that the uid was in equilibrium.

self-check A
How does this proof fail for solids? . Answer, p. 1044

To �nd the variation with depth, we consider the vertical forces
acting on a tiny, imaginary cube of the uid having in�nitesimal
height dy and areas dA on the top and bottom. Using positive
numbers for upward forces, we have

Pbottom dA � Ptop dA � Fg = 0.

The weight of the uid is Fg = mg = �V g = � dA dy g, where � is
the density of the uid, so the di�erence in pressure is

dP = � �g dy. [variation in pressure with depth for
a uid of density � in equilibrium;

positive y is up.]

A more elegant way of writing this is in terms of a dot product,
dP = � g � dy , which automatically takes care of the plus or minus
sign, depending on the relative directions of theg and dy vectors,
and avoids any requirements about the coordinate system.

The factor of � explains why we notice the di�erence in pressure
when diving 3 m down in a pool, but not when going down 3 m of
stairs. The equation only tells us the di�erence in pressure, not the
absolute pressure. The pressure at the surface of a swimming pool
equals the atmospheric pressure, not zero, even though the depth is
zero at the surface. The blood in your body does not even have an
upper surface.

In cases whereg and � are independent of depth, we can inte-
grate both sides of the equation to get everything in terms of �nite
di�erences rather than di�erentials: � P = � �g � y.

self-check B
In which of the following situations is the equation � P = � � g� y valid?
Why? (1) difference in pressure between a tabletop and the feet (i.e.,
predicting the pressure of the feet on the �oor) (2) difference in air pres-
sure between the top and bottom of a tall building (3) difference in air
pressure between the top and bottom of Mt. Everest (4) difference in
pressure between the top of the earth’s mantle and the center of the
earth (5) difference in pressure between the top and bottom of an air-
plane’s wing . Answer, p.
1044
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e / We have to wait for the
thermometer to equilibrate its
temperature with the temperature
of Irene’s armpit.

Pressure of lava underneath a volcano example 4
. A volcano has just �nished erupting, and a pool of molten lava
is lying at rest in the crater. The lava has come up through an
opening inside the volcano that connects to the earth’s molten
mantle. The density of the lava is 4.1 g=cm3. What is the pressure
in the lava underneath the base of the volcano, 3000 m below the
surface of the pool?

.

� P = � g� y

= (4.1 g=cm3)(9.8 m=s2)(3000 m)

= (4.1 � 106 g=m3)(9.8 m=s2)(3000 m)

= (4.1 � 103 kg=m3)(9.8 m=s2)(3000 m)

= 1.2 � 108 N=m2

= 1.2 � 108 Pa

This is the difference between the pressure we want to �nd and
atmospheric pressure at the surface. The latter, however, is tiny
compared to the � P we just calculated, so what we’ve found is
essentially the pressure, P.

Atmospheric pressure example 5
Gases, unlike liquids, are quite compressible, and at a given tem-
perature, the density of a gas is approximately proportional to the
pressure. The proportionality constant is discussed on page 314,
but for now let’s just call it k , � = kP. Using this fact, we can
�nd the variation of atmospheric pressure with altitude, assuming
constant temperature:

dP = � � g dy
dP = � kPg dy
dP
P

= � kg dy

ln P = � kgy + constant [integrating both sides]

P = (constant)e� kgy [exponentiating both sides]

Pressure falls off exponentially with height. There is no sharp cut-
off to the atmosphere, but the exponential factor gets extremely
small by the time you’re ten or a hundred miles up.

5.1.2 Temperature

Thermal equilibrium

We use the term temperature casually, but what is it exactly?
Roughly speaking, temperature is a measure of how concentrated
the heat energy is in an object. A large, massive object with very
little heat energy in it has a low temperature.
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f / Thermal equilibrium can
be prevented. Otters have a coat
of fur that traps air bubbles for in-
sulation. If a swimming otter was
in thermal equilibrium with cold
water, it would be dead. Heat is
still conducted from the otter’s
body to the water, but much
more slowly than it would be in a
warm-blooded animal that didn’t
have this special adaptation.

g / A hot air balloon is in�ated.
Because of thermal expansion,
the hot air is less dense than
the surrounding cold air, and
therefore �oats as the cold air
drops underneath it and pushes it
up out of the way.

But physics deals with operational de�nitions, i.e., de�nitions of
how to measure the thing in question. How do we measure temper-
ature? One common feature of all temperature-measuring devices
is that they must be left for a while in contact with the thing whose
temperature is being measured. When you take your temperature
with a fever thermometer, you are waiting for the mercury inside to
come up to the same temperature as your body. The thermometer
actually tells you the temperature of its own working uid (in this
case the mercury). In general, the idea of temperature depends on
the concept of thermal equilibrium. When you mix cold eggs from
the refrigerator with our that has been at room temperature, they
rapidly reach a compromise temperature. What determines this
compromise temperature is conservation of energy, and the amount
of energy required to heat or cool each substance by one degree.
But without even having constructed a temperature scale, we can
see that the important point is the phenomenon of thermal equi-
librium itself: two objects left in contact will approach the same
temperature. We also assume that if object A is at the same tem-
perature as object B, and B is at the same temperature as C, then
A is at the same temperature as C. This statement is sometimes
known as the zeroth law of thermodynamics, so called because after
the �rst, second, and third laws had been developed, it was realized
that there was another law that was even more fundamental.

Thermal expansion

The familiar mercury thermometer operates on the principle that
the mercury, its working uid, expands when heated and contracts
when cooled. In general, all substances expand and contract with
changes in temperature. The zeroth law of thermodynamics guar-
antees that we can construct a comparative scale of temperatures
that is independent of what type of thermometer we use. If a ther-
mometer gives a certain reading when it’s in thermal equilibrium
with object A, and also gives the same reading for object B, then
A and B must be the same temperature, regardless of the details of
how the thermometers works.

What about constructing a temperature scale in which every
degree represents an equal step in temperature? The Celsius scale
has 0 as the freezing point of water and 100 as its boiling point. The
hidden assumption behind all this is that since two points de�ne a
line, any two thermometers that agree at two points must agree at
all other points. In reality if we calibrate a mercury thermometer
and an alcohol thermometer in this way, we will �nd that a graph
of one thermometer’s reading versus the other is not a perfectly
straight y = x line. The subtle inconsistency becomes a drastic one
when we try to extend the temperature scale through the points
where mercury and alcohol boil or freeze. Gases, however, are much
more consistent among themselves in their thermal expansion than
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h / A simpli�ed version of an
ideal gas thermometer. The
whole instrument is allowed to
come into thermal equilibrium
with the substance whose tem-
perature is to be measured, and
the mouth of the cylinder is left
open to standard pressure. The
volume of the noble gas gives an
indication of temperature.

i / The volume of 1 kg of neon
gas as a function of temperature
(at standard pressure). Although
neon would actually condense
into a liquid at some point,
extrapolating the graph gives
to zero volume gives the same
temperature as for any other gas:
absolute zero.

solids or liquids, and the noble gases like helium and neon are more
consistent with each other than gases in general. Continuing to
search for consistency, we �nd that noble gases are more consistent
with each other when their pressure is very low.

As an idealization, we imagine a gas in which the atoms interact
only with the sides of the container, not with each other. Such a
gas is perfectly nonreactive (as the noble gases very nearly are), and
never condenses to a liquid (as the noble gases do only at extremely
low temperatures). Its atoms take up a negligible fraction of the
available volume. Any gas can be made to behave very much like
this if the pressure is extremely low, so that the atoms hardly ever
encounter each other. Such a gas is called an ideal gas, and we de�ne
the Celsius scale in terms of the volume of the gas in a thermometer
whose working substance is an ideal gas maintained at a �xed (very
low) pressure, and which is calibrated at 0 and 100 degrees according
to the melting and boiling points of water. The Celsius scale is not
just a comparative scale but an additive one as well: every step in
temperature is equal, and it makes sense to say that the di�erence
in temperature between 18 and 28� C is the same as the di�erence
between 48 and 58.

Absolute zero and the kelvin scale

We �nd that if we extrapolate a graph of volume versus tem-
perature, the volume becomes zero at nearly the same temperature
for all gases: � 273� C. Real gases will all condense into liquids at
some temperature above this, but an ideal gas would achieve zero
volume at this temperature, known as absolute zero. The most use-
ful temperature scale in scienti�c work is one whose zero is de�ned
by absolute zero, rather than by some arbitrary standard like the
melting point of water. The temperature scale used universally in
scienti�c work, called the Kelvin scale, is the same as the Celsius
scale, but shifted by 273 degrees to make its zero coincide with ab-
solute zero. Scientists use the Celsius scale only for comparisons or
when a change in temperature is all that is required for a calcula-
tion. Only on the Kelvin scale does it make sense to discuss ratios
of temperatures, e.g., to say that one temperature is twice as hot as
another.

Which temperature scale to use example 6
. You open an astronomy book and encounter the equation

(light emitted) = (constant) � T 4

for the light emitted by a star as a function of its surface tempera-
ture. What temperature scale is implied?

. The equation tells us that doubling the temperature results in
the emission of 16 times as much light. Such a ratio only makes
sense if the Kelvin scale is used.
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j / Discussion questions A-C.

Although we can achieve as good an approximation to an ideal
gas as we wish by making the pressure very low, it seems never-
theless that there should be some more fundamental way to de�ne
temperature. We will construct a more fundamental scale of tem-
perature in section 5.4.

Discussion Questions

A Figure j/1 shows objects 1 and 2, each with a certain temperature T
and a certain amount of thermal energy E . They are connected by a thin
rod, so that eventually they will reach thermal equilibrium. We expect that
the rate at which heat is transferred into object 1 will be given by some
equation dE1=dt = k (: : :), where k is a positive constant of proportionality
and �: : :� is some expression that depends on the temperatures. Suppose
that the following six forms are proposed for �. . . :�

1. T1

2. T2

3. T1 � T2

4. T2 � T1

5. T1=T2

6. T2=T1

Give physical reasons why �ve of these are not possible.

B How should the rate of heat conduction in j/2 compare with the rate
in j/1?

C The example in j/3 is different from the preceding ones because
when we add the third object in the middle, we don’t necessarily know the
intermediate temperature. We could in fact set up this third object with
any desired initial temperature. Suppose, however, that the �ow of heat
is steady. For example, the 36� object could be a human body, the 0�

object could be the air on a cold day, and the object in between could be
a simpli�ed physical model of the insulation provided by clothing or body
fat. Under this assumption, what is the intermediate temperature? How
does the rate of heat conduction compare in the two cases?

D Based on the conclusions of questions A-C, how should the rate
of heat conduction through an object depend on its length and cross-
sectional area? If all the linear dimensions of the object are doubled,
what happens to the rate of heat conduction through it? How would this
apply if we compare an elephant to a shrew?

5.2 Microscopic description of an ideal gas
5.2.1 Evidence for the kinetic theory

Why does matter have the thermal properties it does? The basic
answer must come from the fact that matter is made of atoms. How,
then, do the atoms give rise to the bulk properties we observe?
Gases, whose thermal properties are so simple, o�er the best chance
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for us to construct a simple connection between the microscopic and
macroscopic worlds.

A crucial observation is that although solids and liquids are
nearly incompressible, gases can be compressed, as when we in-
crease the amount of air in a car’s tire while hardly increasing its
volume at all. This makes us suspect that the atoms in a solid are
packed shoulder to shoulder, while a gas is mostly vacuum, with
large spaces between molecules. Most liquids and solids have den-
sities about 1000 times greater than most gases, so evidently each
molecule in a gas is separated from its nearest neighbors by a space
something like 10 times the size of the molecules themselves.

If gas molecules have nothing but empty space between them,
why don’t the molecules in the room around you just fall to the
oor? The only possible answer is that they are in rapid motion,
continually rebounding from the walls, oor and ceiling. In section
2.4 I have already given some of the evidence for the kinetic theory
of heat, which states that heat is the kinetic energy of randomly
moving molecules. This theory was proposed by Daniel Bernoulli
in 1738, and met with considerable opposition because it seemed
as though the molecules in a gas would eventually calm down and
settle into a thin �lm on the oor. There was no precedent for this
kind of perpetual motion. No rubber ball, however elastic, rebounds
from a wall with exactly as much energy as it originally had, nor
do we ever observe a collision between balls in which none of the
kinetic energy at all is converted to heat and sound. The analogy is
a false one, however. A rubber ball consists of atoms, and when it is
heated in a collision, the heat is a form of motion of those atoms. An
individual molecule, however, cannot possess heat. Likewise sound
is a form of bulk motion of molecules, so colliding molecules in a gas
cannot convert their kinetic energy to sound. Molecules can indeed
induce vibrations such as sound waves when they strike the walls of a
container, but the vibrations of the walls are just as likely to impart
energy to a gas molecule as to take energy from it. Indeed, this kind
of exchange of energy is the mechanism by which the temperatures
of the gas and its container become equilibrated.

5.2.2 Pressure, volume, and temperature

A gas exerts pressure on the walls of its container, and in the
kinetic theory we interpret this apparently constant pressure as the
averaged-out result of vast numbers of collisions occurring every
second between the gas molecules and the walls. The empirical
facts about gases can be summarized by the relation

P V / nT , [ideal gas]

which really only holds exactly for an ideal gas. Heren is the number
of molecules in the sample of gas.

Volume related to temperature example 7
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The proportionality of volume to temperature at �xed pressure
was the basis for our de�nition of temperature.

Pressure related to temperature example 8
Pressure is proportional to temperature when volume is held con-
stant. An example is the increase in pressure in a car’s tires when
the car has been driven on the freeway for a while and the tires
and air have become hot.

We now connect these empirical facts to the kinetic theory of
a classical ideal gas. For simplicity, we assume that the gas is
monoatomic (i.e., each molecule has only one atom), and that it
is con�ned to a cubical box of volume V , with L being the length
of each edge andA the area of any wall. An atom whose velocity
has anx componentvx will collide regularly with the left-hand wall,
traveling a distance 2L parallel to the x axis between collisions with
that wall. The time between collisions is � t = 2L=vx , and in each
collision the x component of the atom’s momentum is reversed from
� mvx to mvx . The total force on the wall is

F =
X � px ,i

� t i
[monoatomic ideal gas],

where the index i refers to the individual atoms. Substituting
� px ,i = 2mvx ,i and � t i = 2L=vx ,i , we have

F =
1
L

X
mv2

x ,i [monoatomic ideal gas].

The quantity mv2
x ,i is twice the contribution to the kinetic energy

from the part of the atoms’ center of mass motion that is parallel to
the x axis. Since we’re assuming a monoatomic gas, center of mass
motion is the only type of motion that gives rise to kinetic energy.
(A more complex molecule could rotate and vibrate as well.) If the
quantity inside the sum included the y and z components, the sum
would be twice the total kinetic energy of all the molecules. Since we
expect the energy to be equally shared amongx, y, and z motion,1

the quantity inside the sum must therefore equal 2/3 of the total
kinetic energy, so

F =
2K total

3L
[monoatomic ideal gas].

Dividing by A and using AL = V , we have

P =
2K total

3V
[monoatomic ideal gas].

This can be connected to the empirical relationP V / nT if we
multiply by V on both sides and rewriteK total as n �K , where �K is
the average kinetic energy per molecule:

P V =
2
3

n �K [monoatomic ideal gas].

1This equal sharing will be justi�ed more rigorously on page 331.
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For the �rst time we have an interpretation of temperature based on
a microscopic description of matter: in a monoatomic ideal gas, the
temperature is a measure of the average kinetic energy per molecule.
The proportionality between the two is �K = (3 =2)kT , where the
constant of proportionality k, known as Boltzmann’s constant, has
a numerical value of 1.38� 10� 23 J=K.

The Boltzmann constant has the value it does because the cel-
sius and kelvin scales were de�ned before the microscopic picture
of thermodynamics had been discovered. For some calculations, it
is more convenient to work in more natural units wherek = 1 by
de�nition, and then the units of temperature and energy are the
same. The Boltzmann constant is small because our energy scale of
joules is a macroscopic scale, so that when we express the thermal
energy of a single atom in joules, the number is very small.

Summarizing, we have the following two important facts.

Microscopic model of an ideal gas
For an ideal gas,

P V = nkT ,

which is known as the ideal gas law. The temperature of the gas is
a measure of the average kinetic energy per atom,

�K =
3
2

kT .

Although I won’t prove it here, the ideal gas law applies to all
ideal gases, even though the derivation assumed a monoatomic ideal
gas in a cubical box. (You may have seen it written elsewhere as
P V = NRT , where N = n=NA is the number of moles of atoms,
R = kNA , and NA = 6.0 � 1023, called Avogadro’s number, is
essentially the number of hydrogen atoms in 1 g of hydrogen.)

Pressure in a car tire example 9
. After driving on the freeway for a while, the air in your car’s
tires heats up from 10� C to 35� C. How much does the pressure
increase?

. The tires may expand a little, but we assume this effect is small,
so the volume is nearly constant. From the ideal gas law, the
ratio of the pressures is the same as the ratio of the absolute
temperatures,

P2=P1 = T2=T1

= (308 K)=(283 K)
= 1.09,

or a 9% increase.
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Discussion Questions

A Compare the amount of energy needed to heat 1 liter of helium by
1 degree with the energy needed to heat 1 liter of xenon. In both cases,
the heating is carried out in a sealed vessel that doesn’t allow the gas to
expand. (The vessel is also well insulated.)

B Repeat discussion question A if the comparison is 1 kg of helium
versus 1 kg of xenon (equal masses, rather than equal volumes).

C Repeat discussion question A, but now compare 1 liter of helium in
a vessel of constant volume with the same amount of helium in a vessel
that allows expansion beyond the initial volume of 1 liter. (This could be a
piston, or a balloon.)
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5.3 Entropy as a macroscopic quantity
5.3.1 Ef�ciency and grades of energy

Some forms of energy are more convenient than others in certain
situations. You can’t run a spring-powered mechanical clock on a
battery, and you can’t run a battery-powered clock with mechanical
energy. However, there is no fundamental physical principle that
prevents you from converting 100% of the electrical energy in a
battery into mechanical energy or vice-versa. More e�cient motors
and generators are being designed every year. In general, the laws
of physics permit perfectly e�cient conversion within a broad class
of forms of energy.

Heat is di�erent. Friction tends to convert other forms of energy
into heat even in the best lubricated machines. When we slide a
book on a table, friction brings it to a stop and converts all its kinetic
energy into heat, but we never observe the opposite process, in which
a book spontaneously converts heat energy into mechanical energy
and starts moving! Roughly speaking, heat is di�erent because it is
disorganized. Scrambling an egg is easy. Unscrambling it is harder.

We summarize these observations by saying that heat is a lower
grade of energy than other forms such as mechanical energy.

Of course it is possible to convert heat into other forms of energy
such as mechanical energy, and that is what a car engine does with
the heat created by exploding the air-gasoline mixture. But a car
engine is a tremendously ine�cient device, and a great deal of the
heat is simply wasted through the radiator and the exhaust. Engi-
neers have never succeeded in creating a perfectly e�cient device for
converting heat energy into mechanical energy, and we now know
that this is because of a deeper physical principle that is far more
basic than the design of an engine.
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b / A heat engine. Hot air
from the candles rises through
the fan blades, and makes the
angels spin.

c / Sadi Carnot (1796-1832)

a / 1. The temperature difference
between the hot and cold parts of
the air can be used to extract me-
chanical energy, for example with
a fan blade that spins because
of the rising hot air currents. 2.
If the temperature of the air is
�rst allowed to become uniform,
then no mechanical energy can
be extracted. The same amount
of heat energy is present, but it
is no longer accessible for doing
mechanical work.

5.3.2 Heat engines

Heat may be more useful in some forms than in others, i.e., there
are di�erent grades of heat energy. In �gure a/1, the di�erence in
temperature can be used to extract mechanical work with a fan
blade. This principle is used in power plants, where steam is heated
by burning oil or by nuclear reactions, and then allowed to expand
through a turbine which has cooler steam on the other side. On a
smaller scale, there is a Christmas toy, b, that consists of a small
propeller spun by the hot air rising from a set of candles, very much
like the setup shown in �gure a.

In �gure a/2, however, no mechanical work can be extracted
because there is no di�erence in temperature. Although the air in
a/2 has the same total amount of energy as the air in a/1, the heat
in a/2 is a lower grade of energy, since none of it is accessible for
doing mechanical work.

In general, we de�ne a heat engine as any device that takes heat
from a reservoir of hot matter, extracts some of the heat energy to do
mechanical work, and expels a lesser amount of heat into a reservoir
of cold matter. The e�ciency of a heat engine equals the amount of
useful work extracted, W , divided by the amount of energy we had
to pay for in order to heat the hot reservoir. This latter amount
of heat is the same as the amount of heat the engine extracts from
the high-temperature reservoir, QH . (The letter Q is the standard
notation for a transfer of heat.) By conservation of energy, we have
QH = W + QL , where QL is the amount of heat expelled into the
low-temperature reservoir, so the e�ciency of a heat engine,W=QH ,
can be rewritten as

e�ciency = 1 �
QL

QH
. [e�ciency of any heat engine]

It turns out that there is a particular type of heat engine, the
Carnot engine, which, although not 100% e�cient, is more e�cient
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d / The beginning of the �rst
expansion stroke, in which the
working gas is kept in thermal
equilibrium with the hot reservoir.

e / The beginning of the sec-
ond expansion stroke, in which
the working gas is thermally
insulated. The working gas cools
because it is doing work on the
piston and thus losing energy.

f / The beginning of the �rst
compression stroke. The working
gas begins the stroke at the same
temperature as the cold reservoir,
and remains in thermal contact
with it the whole time. The engine
does negative work.

g / The beginning of the sec-
ond compression stroke, in which
mechanical work is absorbed,
heating the working gas back up
to TH .

than any other. The grade of heat energy in a system can thus be
unambiguously de�ned in terms of the amount of heat energy in it
that cannot be extracted even by a Carnot engine.

How can we build the most e�cient possible engine? Let’s start
with an unnecessarily ine�cient engine like a car engine and see
how it could be improved. The radiator and exhaust expel hot
gases, which is a waste of heat energy. These gases are cooler than
the exploded air-gas mixture inside the cylinder, but hotter than
the air that surrounds the car. We could thus improve the engine’s
e�ciency by adding an auxiliary heat engine to it, which would
operate with the �rst engine’s exhaust as its hot reservoir and the
air as its cold reservoir. In general, any heat engine that expels
heat at an intermediate temperature can be made more e�cient by
changing it so that it expels heat only at the temperature of the
cold reservoir.

Similarly, any heat engine that absorbs some energy at an in-
termediate temperature can be made more e�cient by adding an
auxiliary heat engine to it which will operate between the hot reser-
voir and this intermediate temperature.

Based on these arguments, we de�ne a Carnot engine as a heat
engine that absorbs heat only from the hot reservoir and expels it
only into the cold reservoir. Figures d-g show a realization of a
Carnot engine using a piston in a cylinder �lled with a monoatomic
ideal gas. This gas, known as the working uid, is separate from,
but exchanges energy with, the hot and cold reservoirs. As proved
on page 334, this particular Carnot engine has an e�ciency given
by

e�ciency = 1 �
TL

TH
, [e�ciency of a Carnot engine]

where TL is the temperature of the cold reservoir andTH is the
temperature of the hot reservoir.

Even if you do not wish to dig into the details of the proof,
the basic reason for the temperature dependence is not so hard to
understand. Useful mechanical work is done on strokes d and e, in
which the gas expands. The motion of the piston is in the same
direction as the gas’s force on the piston, so positive work is done
on the piston. In strokes f and g, however, the gas does negative
work on the piston. We would like to avoid this negative work,
but we must design the engine to perform a complete cycle. Luckily
the pressures during the compression strokes are lower than the ones
during the expansion strokes, so the engine doesn’t undo all its work
with every cycle. The ratios of the pressures are in proportion to
the ratios of the temperatures, so ifTL is 20% ofTH , the engine is
80% e�cient.

We have already proved that any engine that is not a Carnot
engine is less than optimally e�cient, and it is also true that all
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h / Entropy can be understood
using the metaphor of a water
wheel. Letting the water levels
equalize is like letting the entropy
maximize. Taking water from the
high side and putting it into the
low side increases the entropy.
Water levels in this metaphor
correspond to temperatures in
the actual de�nition of entropy.

Carnot engines operating between a given pair of temperaturesTH
and TL have the same e�ciency. (This can be proved by the methods
of section 5.4.) Thus a Carnot engine is the most e�cient possible
heat engine.

5.3.3 Entropy

We would like to have some numerical way of measuring the
grade of energy in a system. We want this quantity, called entropy,
to have the following two properties:

(1) Entropy is additive. When we combine two systems and
consider them as one, the entropy of the combined system equals
the sum of the entropies of the two original systems. (Quantities
like mass and energy also have this property.)

(2) The entropy of a system is not changed by operating a Carnot
engine within it.

It turns out to be simpler and more useful to de�ne changes
in entropy than absolute entropies. Suppose as an example that a
system contains some hot matter and some cold matter. It has a
relatively high grade of energy because a heat engine could be used
to extract mechanical work from it. But if we allow the hot and
cold parts to equilibrate at some lukewarm temperature, the grade
of energy has gotten worse. Thus putting heat into a hotter area
is more useful than putting it into a cold area. Motivated by these
considerations, we de�ne a change in entropy as follows:

� S =
Q
T

[change in entropy when adding

heat Q to matter at temperature T ;
� S is negative if heat is taken out]

A system with a higher grade of energy has a lower entropy.

Entropy is additive. example 10
Since changes in entropy are de�ned by an additive quantity (heat)
divided by a non-additive one (temperature), entropy is additive.

Entropy isn’t changed by a Carnot engine. example 11
The ef�ciency of a heat engine is de�ned by

ef�ciency = 1 � QL=QH ,

and the ef�ciency of a Carnot engine is

ef�ciency = 1 � TL=TH ,

so for a Carnot engine we have QL=QH = TL=TH , which can be
rewritten as QL=TL = QH=TH . The entropy lost by the hot reservoir
is therefore the same as the entropy gained by the cold one.

Section 5.3 Entropy as a macroscopic quantity 321



Entropy increases in heat conduction. example 12
When a hot object gives up energy to a cold one, conservation
of energy tells us that the amount of heat lost by the hot object
is the same as the amount of heat gained by the cold one. The
change in entropy is � Q=TH + Q=TL, which is positive because
TL < TH .

Entropy is increased by a non-Carnot engine. example 13
The ef�ciency of a non-Carnot engine is less than 1 - TL=TH ,
so QL=QH > TL=TH and QL=TL > QH=TH . This means that the
entropy increase in the cold reservoir is greater than the entropy
decrease in the hot reservoir.

A book sliding to a stop example 14
A book slides across a table and comes to a stop. Once it stops,
all its kinetic energy has been transformed into heat. As the book
and table heat up, their entropies both increase, so the total en-
tropy increases as well.

All of these examples involved closed systems, and in all of them
the total entropy either increased or stayed the same. It never de-
creased. Here are two examples of schemes for decreasing the en-
tropy of a closed system, with explanations of why they don’t work.

Using a refrigerator to decrease entropy? example 15
. A refrigerator takes heat from a cold area and dumps it into a
hot area. (1) Does this lead to a net decrease in the entropy of
a closed system? (2) Could you make a Carnot engine more ef-
�cient by running a refrigerator to cool its low-temperature reser-
voir and eject heat into its high-temperature reservoir?

. (1) No. The heat that comes off of the radiator coils is a great
deal more than the heat the fridge removes from inside; the dif-
ference is what it costs to run your fridge. The heat radiated from
the coils is so much more than the heat removed from the inside
that the increase in the entropy of the air in the room is greater
than the decrease of the entropy inside the fridge. The most ef-
�cient refrigerator is actually a Carnot engine running in reverse,
which leads to neither an increase nor a decrease in entropy.

(2) No. The most ef�cient refrigerator is a reversed Carnot en-
gine. You will not achieve anything by running one Carnot engine
in reverse and another forward. They will just cancel each other
out.

Maxwell’s demon example 16
. Maxwell imagined a pair of rooms, their air being initially in ther-
mal equilibrium, having a partition across the middle with a tiny
door. A miniscule demon is posted at the door with a little ping-
pong paddle, and his duty is to try to build up faster-moving air
molecules in room B and slower moving ones in room A. For in-
stance, when a fast molecule is headed through the door, going
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from A to B, he lets it by, but when a slower than average molecule
tries the same thing, he hits it back into room A. Would this de-
crease the total entropy of the pair of rooms?

. No. The demon needs to eat, and we can think of his body
as a little heat engine, and his metabolism is less ef�cient than a
Carnot engine, so he ends up increasing the entropy rather than
decreasing it.

Observations such as these lead to the following hypothesis,
known as the second law of thermodynamics:

The entropy of a closed system always increases, or at best stays
the same: � S � 0.

At present our arguments to support this statement may seem
less than convincing, since they have so much to do with obscure
facts about heat engines. In the following section we will �nd a more
satisfying and fundamental explanation for the continual increase in
entropy. To emphasize the fundamental and universal nature of the
second law, here are a few exotic examples.

Entropy and evolution example 17
A favorite argument of many creationists who don’t believe in evo-
lution is that evolution would violate the second law of thermody-
namics: the death and decay of a living thing releases heat (as
when a compost heap gets hot) and lessens the amount of en-
ergy available for doing useful work, while the reverse process,
the emergence of life from nonliving matter, would require a de-
crease in entropy. Their argument is faulty, since the second law
only applies to closed systems, and the earth is not a closed sys-
tem. The earth is continuously receiving energy from the sun.

The heat death of the universe example 18
Living things have low entropy: to demonstrate this fact, observe
how a compost pile releases heat, which then equilibrates with
the cooler environment. We never observe dead things to leap
back to life after sucking some heat energy out of their environ-
ments! The only reason life was able to evolve on earth was that
the earth was not a closed system: it got energy from the sun,
which presumably gained more entropy than the earth lost.

Victorian philosophers spent a lot of time worrying about the heat
death of the universe: eventually the universe would have to be-
come a high-entropy, lukewarm soup, with no life or organized
motion of any kind. Fortunately (?), we now know a great many
other things that will make the universe inhospitable to life long
before its entropy is maximized. Life on earth, for instance, will
end when the sun evolves into a hotter state and boils away our
oceans.
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Hawking radiation example 19
Any process that could destroy heat (or convert it into noth-

ing but mechanical work) would lead to a reduction in entropy.
Black holes are supermassive stars whose gravity is so strong
that nothing, not even light, can escape from them once it gets
within a boundary known as the event horizon. Black holes are
commonly observed to suck hot gas into them. Does this lead to
a reduction in the entropy of the universe? Of course one could
argue that the entropy is still there inside the black hole, but being
able to �hide� entropy there amounts to the same thing as being
able to destroy entropy.

The physicist Steven Hawking was bothered by this question, and
�nally realized that although the actual stuff that enters a black
hole is lost forever, the black hole will gradually lose energy in the
form of light emitted from just outside the event horizon. This light
ends up reintroducing the original entropy back into the universe
at large.

Discussion Questions

A In this discussion question, you’ll think about a car engine in terms of
thermodynamics. Note that an internal combustion engine doesn’t �t very
well into the theoretical straightjacket of a heat engine. For instance, a
heat engine has a high-temperature heat reservoir at a single well-de�ned
temperature, TH . In a typical car engine, however, there are several very
different temperatures you could imagine using for TH : the temperature
of the engine block (� 100� C), the walls of the cylinder (� 250� C), or the
temperature of the exploding air-gas mixture (� 1000� C, with signi�cant
changes over a four-stroke cycle). Let’s use TH � 1000� C.

Burning gas supplies heat energy QH to your car’s engine. The engine
does mechanical work W , but also expels heat QL into the environment
through the radiator and the exhaust. Conservation of energy gives

QH = QL + W ,

and the relative proportions of QL and W are usually about 90% to 10%.
(Actually it depends quite a bit on the type of car, the driving conditions,
etc.)

(1) QL is obviously undesirable: you pay for it, but all it does is heat the
neighborhood. Suppose that engineers do a really good job of getting rid
of the effects that create QL, such as friction. Could QL ever be reduced
to zero, at least theoretically?

(2) A gallon of gas releases about 140 MJ of heat QH when burned. Es-
timate the change in entropy of the universe due to running a typical car
engine and burning one gallon of gas. (You’ll have to estimate how hot
the environment is. For the sake of argument, assume that the work done
by the engine, W , remains in the form of mechanical energy, although in
reality it probably ends up being changed into heat when you step on the
brakes.) Is your result consistent with the second law of thermodynamics?

(3) What would happen if you redid the calculation in #2, but assumed
QL = 0? Is this consistent with your answer to #1?
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a / A gas expands freely, doubling
its volume.

b / An unusual �uctuation in
the distribution of the atoms
between the two sides of the
box. There has been no external
manipulation as in �gure a/1.

B When we run the Carnot engine in �gures d-g, there are four parts
of the universe that undergo changes in their physical states: the hot
reservoir, the cold reservoir, the working gas, and the outside world to
which the shaft is connected in order to do physical work. Over one full
cycle, discuss which of these parts gain entropy, which ones lose entropy,
and which ones keep the same entropy. During which of the four strokes
do these changes occur?

5.4 Entropy as a microscopic quantity
5.4.1 A microscopic view of entropy

To understand why the second law of thermodynamics is always
true, we need to see what entropy really means at the microscopic
level. An example that is easy to visualize is the free expansion of
a monoatomic gas. Figure a/1 shows a box in which all the atoms
of the gas are con�ned on one side. We very quickly remove the
barrier between the two sides, a/2, and some time later, the system
has reached an equilibrium, a/3. Each snapshot shows both the po-
sitions and the momenta of the atoms, which is enough information
to allow us in theory to extrapolate the behavior of the system into
the future, or the past. However, with a realistic number of atoms,
rather than just six, this would be beyond the computational power
of any computer.2

But suppose we show �gure a/2 to a friend without any further
information, and ask her what she can say about the system’s behav-
ior in the future. She doesn’t know how the system was prepared.
Perhaps, she thinks, it was just a strange coincidence that all the
atoms happened to be in the right half of the box at this particular
moment. In any case, she knows that this unusual situation won’t
last for long. She can predict that after the passage of any signi�-
cant amount of time, a surprise inspection is likely to show roughly
half the atoms on each side. The same is true if you ask her to say
what happened in the past. She doesn’t know about the barrier,
so as far as she’s concerned, extrapolation into the past is exactly
the same kind of problem as extrapolation into the future. We just
have to imagine reversing all the momentum vectors, and then all
our reasoning works equally well for backwards extrapolation. She
would conclude, then, that the gas in the box underwent an unusual
uctuation, b, and she knows that the uctuation is very unlikely
to exist very far into the future, or to have existed very far into the
past.

What does this have to do with entropy? Well, state a/3 has
a greater entropy than state a/2. It would be easy to extract me-
chanical work from a/2, for instance by letting the gas expand while

2Even with smaller numbers of atoms, there is a problem with this kind of
brute-force computation, because the tiniest measurement errors in the initial
state would end up having large e�ects later on.

Section 5.4 Entropy as a microscopic quantity 325



d / The phase space for two
atoms in a box.

e / The phase space for three
atoms in a box.

c / Earth orbit is becoming clut-
tered with space junk, and the
pieces can be thought of as the
�molecules� comprising an exotic
kind of gas. These images show
the evolution of a cloud of debris
arising from a 2007 Chinese test
of an anti-satellite rocket. Pan-
els 1-4 show the cloud �ve min-
utes, one hour, one day, and one
month after the impact. The en-
tropy seems to have maximized
by panel 4.

pressing on a piston rather than simply releasing it suddenly into the
void. There is no way to extract mechanical work from state a/3.
Roughly speaking, our microscopic description of entropy relates to
the number of possible states. There are a lot more states like a/3
than there are states like a/2. Over long enough periods of time
| long enough for equilibration to occur | the system gets mixed
up, and is about equally likely to be in any of its possible states,
regardless of what state it was initially in. We de�ne some number
that describes an interesting property of the whole system, say the
number of atoms in the right half of the box, R. A high-entropy
value of R is one likeR = 3, which allows many possible states. We
are far more likely to encounterR = 3 than a low-entropy value like
R = 0 or R = 6.

5.4.2 Phase space

There is a problem with making this description of entropy into a
mathematical de�nition. The problem is that it refers to the number
of possible states, but that number is theoretically in�nite. To get
around the problem, we coarsen our description of the system. For
the atoms in �gure a, we don’t really care exactly where each atom
is. We only care whether it is in the right side or the left side. If a
particular atom’s left-right position is described by a coordinate x,
then the set of all possible values ofx is a line segment along the
x axis, containing an in�nite number of points. We break this line
segment down into two halves, each of width � x, and we consider
two di�erent values of x to be variations on the same state if they
both lie in the same half. For our present purposes, we can also
ignore completely they and z coordinates, and all three momentum
components,px , py , and pz.

Now let’s do a real calculation. Suppose there are only two atoms
in the box, with coordinates x1 and x2. We can give all the relevant
information about the state of the system by specifying one of the
cells in the grid shown in �gure d. This grid is known as the phase
space of the system.3 The lower right cell, for instance, describes

3The term is a little obscure. Basically the idea is the same as in \my toddler
is going through a phase where he always says no." The \phase" is a stage in
the evolution of the system, a snapshot of its state at a moment in time. The
usage is also related to the concept of Lissajous �gures, in which a particular
point on the trajectory is de�ned by the phases of the oscillations along the x
and y axes.
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f / A phase space for a sin-
gle atom in one dimension, taking
momentum into account.

g / Ludwig Boltzmann’s tomb,
inscribed with his equation for
entropy.

a state in which atom number 1 is in the right side of the box and
atom number 2 in the left. Since there are two possible states with
R = 1 and only one state with R = 2, we are twice as likely to
observeR = 1, and R = 1 has higher entropy than R = 2.

Figure e shows a corresponding calculation for three atoms, which
makes the phase space three-dimensional. Here, theR = 1 and 2
states are three times more likely thanR = 0 and 3. Four atoms
would require a four-dimensional phase space, which exceeds our
ability to visualize. Although our present example doesn’t require
it, a phase space can describe momentum as well as position, as
shown in �gure f. In general, a phase space for a monoatomic gas
has six dimensions per atom (one for each coordinate and one for
each momentum component).

5.4.3 Microscopic de�nitions of entropy and temperature

Two more issues need to be resolved in order to make a micro-
scopic de�nition of entropy.

First, if we de�ned entropy as the number of possible states,
it would be a multiplicative quantity, not an additive one: if an
ice cube in a glass of water hasM 1 states available to it, and the
number of states available to the water isM 2, then the number of
possible states of the whole system is the productM 1M 2. To get
around this problem, we take the natural logarithm of the number
of states, which makes the entropy additive because of the property
of the logarithm ln( M 1M 2) = ln M 1 + ln M 2.

The second issue is a more trivial one. The concept of entropy
was originally invented as a purely macroscopic quantity, and the
macroscopic de�nition � S = Q=T, which has units of J/K, has a
di�erent calibration than would result from de�ning S = ln M . The
calibration constant we need turns out to be simply the Boltzmann
constant, k.

Microscopic de�nition of entropy: The entropy of a system is
S = k ln M , where M is the number of available states.4

This also leads to a more fundamental de�nition of temperature.
Two systems are in thermal equilibrium when they have maximized
their combined entropy through the exchange of energy. Here the
energy possessed by one part of the system,E1 or E2, plays the
same role as the variableR in the examples of free expansion above.
A maximum of a function occurs when the derivative is zero, so the
maximum entropy occurs when

d(S1 + S2)
dE1

= 0.

We assume the systems are only able to exchange heat energy with
4This is the same relation as the one on Boltzmann’s tomb, just in a slightly

di�erent notation.
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h / A two-atom system has
the highest number of available
states when the energy is equally
divided. Equal energy division is
therefore the most likely possibil-
ity at any given moment in time.

i / When two systems of 10
atoms each interact, the graph of
the number of possible states is
narrower than with only one atom
in each system.

each other, dE1 = � dE2, so

dS1

dE1
=

dS2

dE2
,

and since the energy is being exchanged in the form of heat we can
make the equations look more familiar if we write dQ for an amount
of heat to be transferred into either system:

dS1

dQ1
=

dS2

dQ2
.

In terms of our previous de�nition of entropy, this is equivalent to
1=T1 = 1=T2, which makes perfect sense since the systems are in
thermal equilibrium. According to our new approach, entropy has
already been de�ned in a fundamental manner, so we can take this
as a de�nition of temperature:

1
T

=
dS
dQ

,

where dS represents the increase in the system’s entropy from adding
heat dQ to it.

Examples with small numbers of atoms

Let’s see how this applies to an ideal, monoatomic gas with a
small number of atoms. To start with, consider the phase space
available to one atom. Since we assume the atoms in an ideal gas
are noninteracting, their positions relative to each other are really ir-
relevant. We can therefore enumerate the number of states available
to each atom just by considering the number of momentum vectors
it can have, without considering its possible locations. The relation-
ship between momentum and kinetic energy isE = ( p2

x + p2
y+ p2

z)=2m,
so if for a �xed value of its energy, we arrange all of an atom’s possi-
ble momentum vectors with their tails at the origin, their tips all lie
on the surface of a sphere in phase space with radiusjp j =

p
2mE .

The number of possible states for that atom is proportional to the
sphere’s surface area, which in turn is proportional to the square of
the sphere’s radius,jp j2 = 2mE .

Now consider two atoms. For any given way of sharing the en-
ergy between the atoms,E = E1 + E2, the number of possible
combinations of states is proportional toE1E2. The result is shown
in �gure h. The greatest number of combinations occurs when we
divide the energy equally, so an equal division gives maximum en-
tropy.

By increasing the number of atoms, we get a graph whose peak
is narrower, i. With more than one atom in each system, the total
energy isE = ( p2

x ,1 + p2
y,1 + p2

z,1 + p2
x ,2 + p2

y,2 + p2
z,2 + ...) =2m. With n

atoms, a total of 3n momentum coordinates are needed in order to
specify their state, and such a set of numbers is like a single point
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in a 3n-dimensional space (which is impossible to visualize). For a
given total energy E , the possible states are like the surface of a
3n-dimensional sphere, with a surface area proportional top3n � 1,
or E (3n � 1)=2. The graph in �gure i, for example, was calculated
according to the formula E 29=2

1 E 29=2
2 = E 29=2

1 (E � E1)29=2.

Since graph i is narrower than graph h, the uctuations in energy
sharing are smaller. If we inspect the system at a random moment in
time, the energy sharing is very unlikely to be more lopsided than
a 40-60 split. Now suppose that, instead of 10 atoms interacting
with 10 atoms, we had a 1023 atoms interacting with 1023 atoms.
The graph would be extremely narrow, and it would be a statistical
certainty that the energy sharing would be nearly perfectly equal.
This is why we never observe a cold glass of water to change itself
into an ice cube sitting in some warm water!

By the way, note that although we’ve rede�ned temperature,
these examples show that things are coming out consistent with the
old de�nition, since we saw that the old de�nition of temperature
could be described in terms of the average energy per atom, and
here we’re �nding that equilibration results in each subset of the
atoms having an equal share of the energy.

Entropy of a monoatomic ideal gas

Let’s calculate the entropy of a monoatomic ideal gas ofn atoms.
This is an important example because it allows us to show that
our present microscopic treatment of thermodynamics is consistent
with our previous macroscopic approach, in which temperature was
de�ned in terms of an ideal gas thermometer.

The number of possible locations for each atom isV=� x3, where
� x is the size of the space cells in phase space. The number of pos-
sible combinations of locations for the atoms is therefore (V=� x3)n .

The possible momenta cover the surface of a 3n-dimensional
sphere, whose radius is

p
2mE , and whose surface area is therefore

proportional to E (3n � 1)=2. In terms of phase-space cells, this area
corresponds toE (3n � 1)=2=� p3n possible combinations of momenta,
multiplied by some constant of proportionality which depends on
m, the atomic mass, andn, the number of atoms. To avoid having
to calculate this constant of proportionality, we limit ourselves to
calculating the part of the entropy that does not depend on n, so
the resulting formula will not be useful for comparing entropies of
ideal gas samples with di�erent numbers of atoms.

The �nal result for the number of available states is

M =
�

V
� x3

� n E (3n � 1)=2

� p3n � 1 , [function of n]

so the entropy is

S = nk ln V +
3
2

nk ln E + (function of � x, � p, and n),
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where the distinction betweenn and n � 1 has been ignored. Using
P V = nkT and E = (3 =2)nkT , we can also rewrite this as

S =
5
2

nk ln T � nk ln P+ : : : , [entropy of a monoatomic ideal gas]

where \: : :" indicates terms that may depend on � x, � p, m, and
n, but that have no e�ect on comparisons of gas samples with the
same number of atoms.

self-check C
Why does it make sense that the temperature term has a positive sign
in the above example, while the pressure term is negative? Why does
it make sense that the whole thing is proportional to n? . Answer, p.
1044

To show consistency with the macroscopic approach to thermo-
dynamics, we need to show that these results are consistent with
the behavior of an ideal-gas thermometer. Using the new de�ni-
tion 1=T = d S=dQ, we have 1=T = d S=dE , since transferring an
amount of heat dQ into the gas increases its energy by a correspond-
ing amount. Evaluating the derivative, we �nd 1 =T = (3 =2)nk=E ,
or E = (3 =2)nkT , which is the correct relation for a monoatomic
ideal gas.

A mixture of molecules example 20
. Suppose we have a mixture of two different monoatomic gases,
say helium and argon. How would we �nd the entropy of such a
mixture (say, in terms of V and E)? How would the energy be
shared between the two types of molecules, i.e., would a more
massive argon atom have more energy on the average than a
less massive helium atom, the same, or less?

. Since entropy is additive, we simply need to add the entropies of
the two types of atom. However, the expression derived above for
the entropy omitted the dependence on the mass m of the atom,
which is different for the two constituents of the gas, so we need
to go back and �gure out how to put that m-dependence back in.
The only place where we threw away m’s was when we identi�ed
the radius of the sphere in momentum space with

p
2mE , but

then threw away the constant factor of m. In other words, the �nal
result can be generalized merely by replacing E everywhere with
the product mE . Since the log of a product is the sum of the logs,
the dependence of the �nal result on m and E can be broken
apart into two different terms, and we �nd

S = nk ln V +
3
2

nk ln m +
3
2

nk ln E + : : :

The total entropy of the mixture can then be written as

S = n1k ln V + n2k ln V +
3
2

n1k ln m1 +
3
2

n2k ln m2

+
3
2

n1k ln E1 +
3
2

n2k ln E2 + : : :
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Now what about the energy sharing? If the total energy is E =
E1 + E2, then the most ovewhelmingly probable sharing of energy
will the the one that maximizes the entropy. Notice that the depen-
dence of the entropy on the masses m1 and m2 occurs in terms
that are entirely separate from the energy terms. If we want to
maximize S with respect to E1 (with E2 = E � E1 by conservation
of energy), then we differentiate S with respect to E1 and set it
equal to zero. The terms that contain the masses don’t have any
dependence on E1, so their derivatives are zero, and we �nd that
the molecular masses can have no effect on the energy sharing.
Setting the derivative equal to zero, we have

0 =
@

@E1

�
n1k ln V + n2k ln V +

3
2

n1k ln m1 +
3
2

n2k ln m2

+
3
2

n1k ln E1 +
3
2

n2k ln(E � E1) + : : :
�

=
3
2

k
�

n1

E1
�

n2

E � E1

�

0 =
n1

E1
�

n2

E � E1
n1

E1
=

n2

E2
.

In other words, each gas gets a share of the energy in proportion
to the number of its atoms, and therefore every atom gets, on
average, the same amount of energy, regardless of its mass. The
result for the average energy per atom is exactly the same as for
an unmixed gas, flK = (3=2)kT .

Equipartition

Example 20 is a special case of a more general statement called
the equipartition theorem. Suppose we have only one argon atom,
named Alice, and one helium atom, named Harry. Their total ki-
netic energy isE = p2

x=2m + p2
y=2m + p2

z=2m + p02
x=2m0+ p02

y=2m0+
p02

z=2m0, where the primes indicate Harry. We have six terms that
all look alike. The only di�erence among them is that the constant
factors attached to the squares of the momenta have di�erent val-
ues, but we’ve just proved that those di�erences don’t matter. In
other words, if we have any system at all whose energy is of the
form E = ( : : :)p2

1 + ( : : :)p2
2 + : : :, with any number of terms, then

each term holds, on average, the same amount of energy,1
2kT . We

say that the system consisting of Alice and Harry has six degrees of
freedom. It doesn’t even matter whether the things being squared
are momenta: if you look back over the logical steps that went into
the argument, you’ll see that none of them depended on that. In a
solid, for example, the atoms aren’t free to wander around, but they
can vibrate from side to side. If an atom moves away from its equi-
librium position at x = 0 to some other value ofx, then its electrical
energy is (1=2)�x 2, where � is the spring constant (written as the
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j / An experiment for deter-
mining the shapes of molecules.

Greek letter kappa to distinguish it from the Boltzmann constant k).
We can conclude that each atom in the solid, on average, has12kT of
energy in the electrical energy due to itsx displacement along thex
axis, and equal amounts fory and z. This is known as equipartition,
meaning equal partitioning, or equal sharing. The equipartition the-
orem says that if the expression for the energy looks like a sum of
squared variables, then each degree of freedom has an average en-
ergy of 1

2kT . Thus, very generally, we can interpret temperature as
the average energy per degree of freedom (timesk=2).

An unexpected glimpse of the microcosm

You may have the feeling at this point that of course Boltzmann
was right about the literal existence of atoms, but only very so-
phisticated experiments could vindicate him de�nitively. After all,
the microscopic and macroscopic de�nitions of entropy are equiva-
lent, so it might seem as though there was no real advantage to the
microscopic approach. Surprisingly, very simple experiments are ca-
pable of revealing a picture of the microscopic world, and there is
no possible macroscopic explanation for their results.

In 1819, before Boltzmann was born, Cl�ement and Desormes did
an experiment like the one shown in �gure j. The gas in the ask
is pressurized using the syringe. This heats it slightly, so it is then
allowed to cool back down to room temperature. Its pressure is
measured using the manometer. The stopper on the ask is popped
and then immediately reinserted. Its pressure is now equalized with
that in the room, and the gas’s expansion has cooled it a little,
because it did mechanical work on its way out of the ask, causing
it to lose some of its internal energyE . The expansion is carried out
quickly enough so that there is not enough time for any signi�cant
amount of heat to ow in through the walls of the ask before the
stopper is reinserted. The gas is now allowed to come back up
to room temperature (which takes a much longer time), and as a
result regains a fraction b of its original overpressure. During this
constant-volume reheating, we haveP V = nkT , so the amount of
pressure regained is a direct indication of how much the gas cooled
down when it lost an amount of energy � E .

If the gas is monoatomic, then we know what to expect for this
relationship between energy and temperature: �E = (3 =2)nk � T ,
where the factor of 3 came ultimately from the fact that the gas
was in a three-dimensional space, k/1. Moving in this space, each
molecule can have momentum in the x, y, and z directions. It has
three degrees of freedom. What if the gas is not monoatomic?
Air, for example, is made of diatomic molecules, k/2. There is a
subtle di�erence between the two cases. An individual atom of a
monoatomic gas is a perfect sphere, so it is exactly the same no
matter how it is oriented. Because of this perfect symmetry, there
is thus no way to tell whether it is spinning or not, and in fact we
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k / The differing shapes of a
helium atom (1), a nitrogen
molecule (2), and a di�uo-
roethane molecule (3) have
surprising macroscopic effects.

�nd that it can’t rotate. The diatomic gas, on the other hand, can
rotate end over end about the x or y axis, but cannot rotate about
the z axis, which is its axis of symmetry. It has a total of �ve de-
grees of freedom. A polyatomic molecule with a more complicated,
asymmetric shape, k/3, can rotate about all three axis, so it has a
total of six degrees of freedom.

Because a polyatomic molecule has more degrees of freedom than
a monoatomic one, it has more possible states for a given amount of
energy. That is, its entropy is higher for the same energy. From the
de�nition of temperature, 1 =T = d S=dE , we conclude that it has a
lower temperature for the same energy. In other words, it is more
di�cult to heat n molecules of diuoroethane than it is to heat n
atoms of helium. When the Cl�ement-Desormes experiment is carried
out, the result b therefore depends on the shape of the molecule!
Who would have dreamed that such simple observations, correctly
interpreted, could give us this kind of glimpse of the microcosm?

Lets go ahead and calculate how this works. Suppose a gas is
allowed to expand without being able to exchange heat with the
rest of the universe. The loss of thermal energy from the gas equals
the work it does as it expands, and using the result of homework
problem 2 on page 344, the work done in an in�nitesimal expansion
equalsP dV , so

dE + P dV = 0.

(If the gas had not been insulated, then there would have been a
third term for the heat gained or lost by heat conduction.)

From section 5.2 we haveE = (3 =2)P V for a monoatomic ideal
gas. More generally, the equipartition theorem tells us that the 3
simply needs to be replaced with the number of degrees of freedom� ,
so dE = ( �= 2)P dV + ( �= 2)V dP , and the equation above becomes

0 =
� + 2

2
P dV +

�
2

V dP .
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Rearranging, we have

(� + 2)
dV
V

= � �
dP
P

.

Integrating both sides gives

(� + 2) ln V = � � ln P + constant,

and taking exponentials on both sides yields

V � +2 / P � � .

We now wish to reexpress this in terms of pressure and temper-
ature. Eliminating V / (T=P) gives

T / Pb,

where b = 2=(� + 2) is equal to 2/5, 2/7, or 1/4, respectively, for a
monoatomic, diatomic, or polyatomic gas.

Ef�ciency of the Carnot engine example 21
As an application, we now prove the result claimed earlier for the
ef�ciency of a Carnot engine. First consider the work done dur-
ing the constant-temperature strokes. Integrating the equation
dW = P dV , we have W =

R
P dV . Since the thermal energy of

an ideal gas depends only on its temperature, there is no change
in the thermal energy of the gas during this constant-temperature
process. Conservation of energy therefore tells us that work done
by the gas must be exactly balanced by the amount of heat trans-
ferred in from the reservoir.

Q = W

=
Z

P dV

For our proof of the ef�ciency of the Carnot engine, we need only
the ratio of QH to QL, so we neglect constants of proportionality,
and simply subsitutde P / T =V , giving

Q /
Z

T
V

dV / T ln
V2

V1
/ T ln

P1

P2
.

The ef�ciency of a heat engine is

ef�ciency = 1 �
QL

QH
.

Making use of the result from the previous proof for a Carnot en-
gine with a monoatomic ideal gas as its working gas, we have

ef�ciency = 1 �
TL ln(P4=P3)
TH ln(P1=P2)

,
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where the subscripts 1, 2, 3, and 4 refer to �gures d�g on page
320. We have shown above that the temperature is proportional
to Pb on the insulated strokes 2-3 and 4-1, the pressures must be
related by P2=P3 = P1=P4, which can be rearranged as P4=P3 =
P1=P2, and we therefore have

ef�ciency = 1 �
TL

TH
.

5.4.4 The arrow of time, or �this way to the Big Bang�

Now that we have a microscopic understanding of entropy, what
does that tell us about the second law of thermodynamics? The
second law de�nes a forward direction to time, \time’s arrow." The
microscopic treatment of entropy, however, seems to have mysteri-
ously sidestepped that whole issue. A graph like �gure b on page
325, showing a uctuation away from equilibrium, would look just
as natural if we ipped it over to reverse the direction of time. Af-
ter all, the basic laws of physics are conservation laws, which don’t
distinguish between past and future. Our present picture of entropy
suggests that we restate the second law of thermodynamics as fol-
lows: low-entropy states are short-lived. An ice cube can’t exist
forever in warm water. We no longer have to distinguish past from
future.

But how do we reconcile this with our strong psychological sense
of the direction of time, including our ability to remember the past
but not the future? Why do we observe ice cubes melting in water,
but not the time-reversed version of the same process?

The answer is that there is no past-future asymmetry in the laws
of physics, but there is a past-future asymmetry in the universe. The
universe started out with the Big Bang. (Some of the evidence for
the Big Bang theory is given on page 366.) The early universe had
a very low entropy, and low-entropy states are short-lived. What
does \short-lived" mean here, however? Hot co�ee left in a paper
cup will equilibrate with the air within ten minutes or so. Hot co�ee
in a thermos bottle maintains its low-entropy state for much longer,
because the co�ee is insulated by a vacuum between the inner and
outer walls of the thermos. The universe has been mostly vacuum
for a long time, so it’s well insulated. Also, it takes billions of years
for a low-entropy normal star like our sun to evolve into the high-
entropy cinder known as a white dwarf.

The universe, then, is still in the process of equilibrating, and
all the ways we have of telling the past from the future are really
just ways of determining which direction in time points toward the
Big Bang, i.e., which direction points to lower entropy. The psy-
chological arrow of time, for instance, is ultimately based on the
thermodynamic arrow. In some general sense, your brain is like
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a computer, and computation has thermodynamic e�ects. In even
the most e�cient possible computer, for example, erasing one bit
of memory decreases its entropy fromk ln 2 (two possible states) to
k ln 1 (one state), for a drop of about 10� 23 J/K. One way of de-
termining the direction of the psychological arrow of time is that
forward in psychological time is the direction in which, billions of
years from now, all consciousness will have ceased; if consciousness
was to exist forever in the universe, then there would have to be a
never-ending decrease in the universe’s entropy. This can’t happen,
because low-entropy states are short-lived.

Relating the direction of the thermodynamic arrow of time to the
existence of the Big Bang is a satisfying way to avoid the paradox of
how the second law can come from basic laws of physics that don’t
distinguish past from future. There is a remaining mystery, however:
why did our universe have a Big Bang that was low in entropy? It
could just as easily have been a maximum-entropy state, and in fact
the number of possible high-entropy Big Bangs is vastly greater than
the number of possible low-entropy ones. The question, however, is
probably not one that can be answered using the methods of science.
All we can say is that if the universe had started with a maximum-
entropy Big Bang, then we wouldn’t be here to wonder about it. A
longer, less mathematical discussion of these concepts, along with
some speculative ideas, is given in \The Cosmic Origins of Time’s
Arrow," Sean M. Carroll, Scienti�c American, June 2008, p. 48.

5.4.5 Quantum mechanics and zero entropy

The previous discussion would seem to imply that absolute en-
tropies are never well de�ned, since any calculation of entropy will
always end up having terms that depend on � p and � x. For in-
stance, we might think that cooling an ideal gas to absolute zero
would give zero entropy, since there is then only one available mo-
mentum state, but there would still be many possible position states.
We’ll see later in this book, however, that the quantum mechanical
uncertainty principle makes it impossible to know the location and
position of a particle simultaneously with perfect accuracy. The
best we can do is to determine them with an accuracy such that
the product � p� x is equal to a constant called Planck’s constant.
According to quantum physics, then, there is a natural minimum
size for rectangles in phase space, and entropy can be de�ned in
absolute terms. Another way of looking at it is that according to
quantum physics, the gas as a whole has some well-de�ned ground
state, which is its state of minimum energy. When the gas is cooled
to absolute zero, the scene is not at all like what we would picture
in classical physics, with a lot of atoms lying around motionless. It
might, for instance, be a strange quantum-mechanical state called
the Bose-Einstein condensate, which was achieved for the �rst time
recently with macroscopic amounts of atoms. Classically, the gas
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has many possible states available to it at zero temperature, since
the positions of the atoms can be chosen in a variety of ways. The
classical picture is a bad approximation under these circumstances,
however. Quantum mechanically there is only one ground state, in
which each atom is spread out over the available volume in a cloud
of probability. The entropy is therefore zero at zero temperature.
This fact, which cannot be understood in terms of classical physics,
is known as the third law of thermodynamics.

5.4.6 Summary of the laws of thermodynamics

Here is a summary of the laws of thermodynamics:

The zeroth law of thermodynamics (page 311) If object A is
at the same temperature as object B, and B is at the same
temperature as C, then A is at the same temperature as C.

The �rst law of thermodynamics (page 306) Energy is
conserved.

The second law of thermodynamics (page 323) The entropy
of a closed system always increases, or at best stays the same:
� S � 0.

The third law of thermodynamics (page 337) The entropy of
a system approaches zero as its temperature approaches abso-
lute zero.

From a modern point of view, only the �rst law deserves to be called
a fundamental law of physics. Once Boltmann discovered the mi-
croscopic nature of entropy, the zeroth and second laws could be
understood as statements about probability: a system containing a
large number of particles is overwhelmingly likely to do a certain
thing, simply because the number of possible ways to do it is ex-
tremely large compared to the other possibilities. The third law
is also now understood to be a consequence of more basic physical
principles, but to explain the third law, it’s not su�cient simply to
know that matter is made of atoms: we also need to understand the
quantum-mechanical nature of those atoms, discussed in chapter 13.
Historically, however, the laws of thermodynamics were discovered
in the eighteenth century, when the atomic theory of matter was
generally considered to be a hypothesis that couldn’t be tested ex-
perimentally. Ideally, with the publication of Boltzmann’s work on
entropy in 1877, the zeroth and second laws would have been imme-
diately demoted from the status of physical laws, and likewise the
development of quantum mechanics in the 1920’s would have done
the same for the third law.
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l / The Otto cycle. 1. In the ex-
haust stroke, the piston expels the
burned air-gas mixture left over
from the preceding cycle. 2. In
the intake stroke, the piston sucks
in fresh air-gas mixture. 3. In
the compression stroke, the pis-
ton compresses the mixture, and
heats it. 4. At the beginning of
the power stroke, the spark plug
�res, causing the air-gas mixture
to burn explosively and heat up
much more. The heated mix-
ture expands, and does a large
amount of positive mechanical
work on the piston. An ani-
mated version can be viewed in
the Wikipedia article �Four-stroke
engine.�

5.5 More about heat engines
So far, the only heat engine we’ve discussed in any detail has been
a �ctitious Carnot engine, with a monoatomic ideal gas as its work-
ing gas. As a more realistic example, �gure l shows one full cycle
of a cylinder in a standard gas-burning automobile engine. This
four-stroke cycle is called the Otto cycle, after its inventor, German
engineer Nikolaus Otto. The Otto cycle is more complicated than a
Carnot cycle, in a number of ways:

� The working gas is physically pumped in and out of the cylin-
der through valves, rather than being sealed and reused indef-
initely as in the Carnot engine.

� The cylinders are not perfectly insulated from the engine block,
so heat energy is lost from each cylinder by conduction. This
makes the engine less e�cient that a Carnot engine, because
heat is being discharged at a temperature that is not as cool
as the environment.

� Rather than being heated by contact with an external heat
reservoir, the air-gas mixture inside each cylinder is heated
by internal combusion: a spark from a spark plug burns the
gasoline, releasing heat.
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a / P-V diagrams for a Carnot
engine and an Otto engine.

� The working gas is not monoatomic. Air consists of diatomic
molecules (N2 and O2), and gasoline of polyatomic molecules
such as octane (C8H18).

� The working gas is not ideal. An ideal gas is one in which
the molecules never interact with one another, but only with
the walls of the vessel, when they collide with it. In a car en-
gine, the molecules are interacting very dramatically with one
another when the air-gas mixture explodes (and less dramat-
ically at other times as well, since, for example, the gasoline
may be in the form of microscopic droplets rather than indi-
vidual molecules).

This is all extremely complicated, and it would be nice to have
some way of understanding and visualizing the important proper-
ties of such a heat engine without trying to handle every detail at
once. A good method of doing this is a type of graph known as
a P-V diagram. As proved in homework problem 2, the equation
dW = F dx for mechanical work can be rewritten as dW = P dV in
the case of work done by a piston. HereP represents the pressure
of the working gas, andV its volume. Thus, on a graph ofP versus
V , the area under the curve represents the work done. When the
gas expands, dx is positive, and the gas does positive work. When
the gas is being compressed, dx is negative, and the gas does neg-
ative work, i.e., it absorbs energy. Notice how, in the diagram of
the Carnot engine in the top panel of �gure a, the cycle goes clock-
wise around the curve, and therefore the part of the curve in which
negative work is being done (arrowheads pointing to the left) are
below the ones in which positive work is being done. This means
that over all, the engine does a positive amount of work. This net
work equals the area under the top part of the curve, minus the
area under the bottom part of the curve, which is simply the area
enclosed by the curve. Although the diagram for the Otto engine is
more complicated, we can at least compare it on the same footing
with the Carnot engine. The curve forms a �gure-eight, because it
cuts across itself. The top loop goes clockwise, so as in the case
of the Carnot engine, it represents positive work. The bottom loop
goes counterclockwise, so it represents a net negative contribution
to the work. This is because more work is expended in forcing out
the exhaust than is generated in the intake stroke.

To make an engine as e�cient as possible, we would like to make
the loop have as much area as possible. What is it that determines
the actual shape of the curve? First let’s consider the constant-
temperature expansion stroke that forms the top of the Carnot en-
gine’s P-V plot. This is analogous to the power stroke of an Otto
engine. Heat is being sucked in from the hot reservoir, and since
the working gas is always in thermal equilibrium with the hot reser-
voir, its temperature is constant. Regardless of the type of gas, we
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therefore haveP V = nkT with T held constant, and thus P / V � 1

is the mathematical shape of this curve | a y = 1=x graph, which
is a hyperbola. This is all true regardless of whether the working
gas is monoatomic, diatomic, or polyatomic. (The bottom of the
loop is likewise of the formP / V � 1, but with a smaller constant
of proportionality due to the lower temperature.)

Now consider the insulated expansion stroke that forms the right
side of the curve for the Carnot engine. As shown on page 333,
the relationship between pressure and temperature in an insulated
compression or expansion isT / Pb, with b = 2=5, 2/7, or 1/4,
respectively, for a monoatomic, diatomic, or polyatomic gas. ForP
as a function of V at constant T , the ideal gas law givesP / T=V,
so P / V �  , where  = 1=(1 � b) takes on the values 5/3, 7/5, and
4/3. The number  can be interpreted as the ratio CP =CV , where
CP , the heat capacity at constant pressure, is the amount of heat
required to raise the temperature of the gas by one degree while
keeping its pressure constant, andCV is the corresponding quantity
under conditions of constant volume.

The compression ratio example 22
Operating along a constant-temperature stroke, the amount of
mechanical work done by a heat engine can be calculated as
follows:

PV = nkT

Setting c = nkT to simplify the writing,

P = cV � 1

W =
Z Vf

Vi

P dV

= c
Z Vf

Vi

V � 1 dV

= c ln Vf � c ln Vi

= c ln(Vf =Vi )

The ratio Vf =Vi is called the compression ratio of the engine, and
higher values result in more power along this stroke. Along an
insulated stroke, we have P / V �  , with  6= 1, so the result for
the work no longer has this perfect mathematical property of de-
pending only on the ratio Vf =Vi . Nevertheless, the compression
ratio is still a good �gure of merit for predicting the performance of
any heat engine, including an internal combustion engine. High
compression ratios tend to make the working gas of an internal
combustion engine heat up so much that it spontaneously ex-
plodes. When this happens in an Otto-cycle engine, it can cause
ignition before the sparkplug �res, an undesirable effect known as
pinging. For this reason, the compression ratio of an Otto-cycle
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b / Example 23,

c / Example 24.

automobile engine cannot normally exceed about 10. In a diesel
engine, however, this effect is used intentionally, as an alternative
to sparkplugs, and compression ratios can be 20 or more.

Sound example 23
Figure b shows a P-V plot for a sound wave. As the pressure
oscillates up and down, the air is heated and cooled by its com-
pression and expansion. Heat conduction is a relatively slow pro-
cess, so typically there is not enough time over each cycle for any
signi�cant amount of heat to �ow from the hot areas to the cold
areas. (This is analogous to insulated compression or expansion
of a heat engine; in general, a compression or expansion of this
type, with no transfer of heat, is called adiabatic.) The pressure
and volume of a particular little piece of the air are therefore re-
lated according to P / V �  . The cycle of oscillation consists
of motion back and forth along a single curve in the P-V plane,
and since this curve encloses zero volume, no mechanical work
is being done: the wave (under the assumed ideal conditions)
propagates without any loss of energy due to friction.

The speed of sound is also related to  . See example 13 on
p. 385.

Measuring  using the �spring of air� example 24
Figure c shows an experiment that can be used to measure the
 of a gas. When the mass m is inserted into bottle’s neck,
which has cross-sectional area A, the mass drops until it com-
presses the air enough so that the pressure is enough to support
its weight. The observed frequency ! of oscillations about this
equilibrium position yo can be used to extract the  of the gas.

! 2 =
k
m

= �
1
m

dF
dy

����
yo

= �
A
m

dP
dy

����
yo

= �
A2

m
dP
dV

����
Vo

We make the bottle big enough so that its large surface-to-volume
ratio prevents the conduction of any signi�cant amount of heat
through its walls during one cycle, so P / V �  , and dP=dV =
�  P=V . Thus,

! 2 = 
A2

m
Po

Vo
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The Helmholtz resonator example 25
When you blow over the top of a beer bottle, you produce a pure
tone. As you drink more of the beer, the pitch goes down. This
is similar to example 24, except that instead of a solid mass m
sitting inside the neck of the bottle, the moving mass is the air
itself. As air rushes in and out of the bottle, its velocity is highest
at the bottleneck, and since kinetic energy is proportional to the
square of the velocity, essentially all of the kinetic energy is that
of the air that’s in the neck. In other words, we can replace m with
AL� , where L is the length of the neck, and � is the density of the
air. Substituting into the earlier result, we �nd that the resonant
frequency is

! 2 = 
Po

�
A

LVo
.

This is known as a Helmholtz resonator. As shown in �gure d, a
violin or an acoustic guitar has a Helmholtz resonance, since air
can move in and out through the f-holes. Problem 10 is a more
quantitative exploration of this.

d / The resonance curve of a
1713 Stradivarius violin, mea-
sured by Carleen Hutchins. There
are a number of different reso-
nance peaks, some strong and
some weak; the ones near 200
and 400 Hz are vibrations of the
wood, but the one near 300 Hz
is a resonance of the air moving
in and out through those holes
shaped like the letter F. The white
lines show the frequencies of the
four strings.

We have already seen, based on the microscopic nature of en-
tropy, that any Carnot engine has the same e�ciency, and the ar-
gument only employed the assumption that the engine met the def-
inition of a Carnot cycle: two insulated strokes, and two constant-
temperature strokes. Since we didn’t have to make any assumptions
about the nature of the working gas being used, the result is evi-
dently true for diatomic or polyatomic molecules, or for a gas that is
not ideal. This result is surprisingly simple and general, and a little
mysterious | it even applies to possibilities that we have not even
considered, such as a Carnot engine designed so that the working
\gas" actually consists of a mixture of liquid droplets and vapor, as
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e / A T-S diagram for a Carnot
engine.

in a steam engine. How can it always turn out so simple, given the
kind of mathematical complications that were swept under the rug
in example 22? A better way to understand this result is by switch-
ing from P-V diagrams to a diagram of temperature versus entropy,
as shown in �gure e. An in�nitesimal transfer of heat d Q gives rise
to a change in entropy dS = d Q=T, so the area under the curve on
a T-S plot gives the amount of heat transferred. The area under the
top edge of the box in �gure e, extending all the way down to the
axis, represents the amount of heat absorbed from the hot reservoir,
while the smaller area under the bottom edge represents the heat
wasted into the cold reservoir. By conservation of energy, the area
enclosed by the box therefore represents the amount of mechanical
work being done, as for a P-V diagram. We can now see why the
e�ciency of a Carnot engine is independent of any of the physical
details: the de�nition of a Carnot engine guarantees that the T-S
diagram will be a rectangular box, and the e�ciency depends only
on the relative heights of the top and bottom of the box.

This chapter is summarized on page 1064. Notation and terminology
are tabulated on pages 1053-1054.
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Problems
The symbols

p
, , etc. are explained on page 347.

1 (a) Show that under conditions of standard pressure and tem-
perature, the volume of a sample of an ideal gas depends only on
the number of molecules in it.
(b) One mole is de�ned as 6.0� 1023 atoms. Find the volume of one
mole of an ideal gas, in units of liters, at standard temperature and
pressure (0� C and 101 kPa).

p

2 A gas in a cylinder expands its volume by an amount dV ,
pushing out a piston. Show that the work done by the gas on the
piston is given by dW = P dV .

3 (a) A helium atom contains 2 protons, 2 electrons, and 2
neutrons. Find the mass of a helium atom.

p

(b) Find the number of atoms in 1.0 kg of helium.
p

(c) Helium gas is monoatomic. Find the amount of heat needed to
raise the temperature of 1.0 kg of helium by 1.0 degree C. (This is
known as helium’s heat capacity at constant volume.)

p

4 A sample of gas is enclosed in a sealed chamber. The gas
consists of molecules, which are then split in half through some
process such as exposure to ultraviolet light, or passing an electric
spark through the gas. The gas returns to thermal equilibrium with
the surrounding room. How does its pressure now compare with its
pressure before the molecules were split?

5 Most of the atoms in the universe are in the form of gas that
is not part of any star or galaxy: the intergalactic medium (IGM).
The IGM consists of about 10� 5 atoms per cubic centimeter, with
a typical temperature of about 103 K. These are, in some sense, the
density and temperature of the universe (not counting light, or the
exotic particles known as \dark matter"). Calculate the pressure of
the universe (or, speaking more carefully, the typical pressure due
to the IGM).

p

6 Estimate the pressure at the center of the Earth, assuming it
is of constant density throughout. Note that g is not constant with
respect to depth | as shown in example 19 on page 107,g equals
Gmr=b3 for r , the distance from the center, less thanb, the earth’s
radius.
(a) State your result in terms of G, m, and b.

p

(b) Show that your answer from part a has the right units for pres-
sure.
(c) Evaluate the result numerically.

p

(d) Given that the earth’s atmosphere is on the order of one thou-
sandth the earth’s radius, and that the density of the earth is several
thousand times greater than the density of the lower atmosphere,
check that your result is of a reasonable order of magnitude.
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7 (a) Determine the ratio between the escape velocities from the
surfaces of the earth and the moon.

p

(b) The temperature during the lunar daytime gets up to about
130� C. In the extremely thin (almost nonexistent) lunar atmosphere,
estimate how the typical velocity of a molecule would compare with
that of the same type of molecule in the earth’s atmosphere. As-
sume that the earth’s atmosphere has a temperature of 0� C.

p

(c) Suppose you were to go to the moon and release some uo-
rocarbon gas, with molecular formula CnF2n+2 . Estimate what is
the smallest uorocarbon molecule (lowestn) whose typical velocity
would be lower than that of an N2 molecule on earth in proportion
to the moon’s lower escape velocity. The moon would be able to
retain an atmosphere made of these molecules.

p

8 Refrigerators, air conditioners, and heat pumps are heat en-
gines that work in reverse. You put in mechanical work, and the
e�ect is to take heat out of a cooler reservoir and deposit heat in a
warmer one: QL + W = QH . As with the heat engines discussed pre-
viously, the e�ciency is de�ned as the energy transfer you want (QL
for a refrigerator or air conditioner, QH for a heat pump) divided
by the energy transfer you pay for (W ).

E�ciencies are supposed to be unitless, but the e�ciency of an
air conditioner is normally given in terms of an EER rating (or
a more complex version called an SEER). The EER is de�ned as
QL =W, but expressed in the barbaric units of of Btu/watt-hour.
A typical EER rating for a residential air conditioner is about 10
Btu/watt-hour, corresponding to an e�ciency of about 3. The stan-
dard temperatures used for testing an air conditioner’s e�ciency are
80� F (27� C) inside and 95� F (35� C) outside.

(a) What would be the EER rating of a reversed Carnot engine used
as an air conditioner?

p

(b) If you ran a 3-kW residential air conditioner, with an e�ciency
of 3, for one hour, what would be the e�ect on the total entropy
of the universe? Is your answer consistent with the second law of
thermodynamics?

p

9 Even when resting, the human body needs to do a certain
amount of mechanical work to keep the heart beating. This quan-
tity is di�cult to de�ne and measure with high precision, and also
depends on the individual and her level of activity, but it’s estimated
to be about 1 to 5 watts. Suppose we consider the human body as
nothing more than a pump. A person who is just lying in bed all
day needs about 1000 kcal/day worth of food to stay alive. (a) Es-
timate the person’s thermodynamic e�ciency as a pump, and (b)
compare with the maximum possible e�ciency imposed by the laws
of thermodynamics for a heat engine operating across the di�erence
between a body temperature of 37� C and an ambient temperature
of 22� C. (c) Interpret your answer. . Answer, p. 1052
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10 Example 25 on page 342 suggests analyzing the resonance
of a violin at 300 Hz as a Helmholtz resonance. However, we might
expect the equation for the frequency of a Helmholtz resonator to
be a rather crude approximation here, since the f-holes are not long
tubes, but slits cut through the face of the instrument, which is only
about 2.5 mm thick. (a) Estimate the frequency that way anyway,
for a violin with a volume of about 1.6 liters, and f-holes with a total
area of 10 cm2. (b) A common rule of thumb is that at an open end
of an air column, such as the neck of a real Helmholtz resonator,
some air beyond the mouth also vibrates as if it was inside the
tube, and that this e�ect can be taken into account by adding 0.4
times the diameter of the tube for each open end (i.e., 0.8 times the
diameter when both ends are open). Applying this to the violin’s
f-holes results in a huge change inL , since the � 7 mm width of the
f-hole is considerably greater than the thickness of the wood. Try
it, and see if the result is a better approximation to the observed
frequency of the resonance. . Answer, p. 1052

11 (a) Atmospheric pressure at sea level is 101 kPa. The deepest
spot in the world’s oceans is a valley called the Challenger Deep, in
the Marianas Trench, with a depth of 11.0 km. Find the pressure
at this depth, in units of atmospheres. Although water under this
amount of pressure does compress by a few percent, assume for the
purposes of this problem that it is incompressible.
(b) Suppose that an air bubble is formed at this depth and then
rises to the surface. Estimate the change in its volume and radius.

. Solution, p. 1028

12 Our sun is powered by nuclear fusion reactions, and as a �rst
step in these reactions, one proton must approach another proton to
within a short enough range r . This is di�cult to achieve, because
the protons have electric charge +e and therefore repel one another
electrically. (It’s a good thing that it’s so di�cult, because other-
wise the sun would use up all of its fuel very rapidly and explode.)
To make fusion possible, the protons must be moving fast enough
to come within the required range. Even at the high temperatures
present in the core of our sun, almost none of the protons are mov-
ing fast enough.
(a) For comparison, the early universe, soon after the Big Bang,
had extremely high temperatures. Estimate the temperature T
that would have been required so that protons with average en-
ergies could fuse. State your result in terms ofr , the massm of the
proton, and universal constants.
(b) Show that the units of your answer to part a make sense.
(c) Evaluate your result from part a numerically, using r = 10 � 15 m
and m = 1.7 � 10� 27 kg. As a check, you should �nd that this is
much hotter than the sun’s core temperature of� 107 K.

. Solution, p. 1029
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13 Object A is a brick. Object B is half of a similar brick. If A
is heated, we have �S = Q=T. Show that if this equation is valid
for A, then it is also valid for B. . Solution, p. 1029

14 Typically the atmosphere gets colder with increasing altitude.
However, sometimes there is aninversion layer, in which this trend
is reversed, e.g., because a less dense mass of warm air moves into a
certain area, and rises above the denser colder air that was already
present. Suppose that this causes the pressureP as a function of
height y to be given by a function of the form P = Poe� ky (1 + by),
where constant temperature would giveb = 0 and an inversion layer
would give b > 0. (a) Infer the units of the constants Po, k, and b.
(b) Find the density of the air as a function of y, of the constants,
and of the acceleration of gravityg. (c) Check that the units of your
answer to part b make sense. . Solution, p. 1029

15 (a) Consider a one-dimensional ideal gas consisting ofn
material particles, at temperature T . Trace back through the logic
of the equipartition theorem on p. 331 to determine the total energy.
(b) Explain why it should matter how many dimensions there are.
(c) Gases that we encounter in everyday life are made of atoms, but
there are gases made out of other things. For example, soon after
the big bang, there was a period when the universe was very hot and
dominated by light rather than matter. A particle of light is called
a photon, so the early universe was a \photon gas." For simplicity,
consider a photon gas in one dimension. Photons are massless, and
we will see in ch. 7 on relativity that for a massless particle, the
energy is related to the momentum byE = pc, where c is the speed
of light. (Note that p = mv doesnot hold for a photon.) Again,
trace back through the logic of equipartition on p. 331. Does the
photon gas have the same heat capacity as the one you found in
part a?

16 You use a spoon at room temperature, 22� C, to mix your
co�ee, which is at 80� C. During this brief period of thermal contact,
1.3 J of heat is transferred from the co�ee to the spoon. Find the
total change in the entropy of the universe.

p

Key to symbols:
easy typical challenging di�cult very di�cultp

An answer check is available at www.lightandmatter.com.
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The vibrations of this electric bass string are converted to electrical vibra-
tions, then to sound vibrations, and �nally to vibrations of our eardrums.

Chapter 6

Waves

Dandelion. Cello. Read those two words, and your brain instantly
conjures a stream of associations, the most prominent of which have
to do with vibrations. Our mental category of \dandelion-ness" is
strongly linked to the color of light waves that vibrate about half a
million billion times a second: yellow. The velvety throb of a cello
has as its most obvious characteristic a relatively low musical pitch
| the note you’re spontaneously imagining right now might be one
whose sound vibrations repeat at a rate of a hundred times a second.

Evolution seems to have designed our two most important senses
around the assumption that our environment is made of waves,
whereas up until now, we’ve mostly taken the view that Nature can
be understood by breaking her down into smaller and smaller parts,
ending up with particles as her most fundamental building blocks.
Does that work for light and sound? Sound waves are disturbances
in air, which is made of atoms, but light, on the other hand, isn’t a
vibration of atoms. Light, unlike sound, can travel through a vac-
uum: if you’re reading this by sunlight, you’re taking advantage of
light that had to make it through millions of miles of vacuum to get
to you. Waves, then, are not just a trick that vibrating atoms can
do. Waves are one of the basic phenomena of the universe. At the
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a / Your �nger makes a de-
pression in the surface of the
water, 1. The wave patterns
starts evolving, 2, after you
remove your �nger.

end of this book, we’ll even see that the things we’ve been calling
particles, such as electrons, are really waves!1

6.1 Free waves
6.1.1 Wave motion

Let’s start with an intuition-building exercise that deals with
waves in matter, since they’re easier than light waves to get your
hands on. Put your �ngertip in the middle of a cup of water and
then remove it suddenly. You’ll have noticed two results that are
surprising to most people. First, the at surface of the water does
not simply sink uniformly to �ll in the volume vacated by your
�nger. Instead, ripples spread out, and the process of attening out
occurs over a long period of time, during which the water at the
center vibrates above and below the normal water level. This type
of wave motion is the topic of the present section. Second, you’ve
found that the ripples bounce o� of the walls of the cup, in much
the same way that a ball would bounce o� of a wall. In the next
section we discuss what happens to waves that have a boundary
around them. Until then, we con�ne ourselves to wave phenomena
that can be analyzed as if the medium (e.g., the water) was in�nite
and the same everywhere.

It isn’t hard to understand why removing your �ngertip creates
ripples rather than simply allowing the water to sink back down
uniformly. The initial crater, a/1, left behind by your �nger has
sloping sides, and the water next to the crater ows downhill to �ll
in the hole. The water far away, on the other hand, initially has
no way of knowing what has happened, because there is no slope
for it to ow down. As the hole �lls up, the rising water at the
center gains upward momentum, and overshoots, creating a little
hill where there had been a hole originally. The area just outside of
this region has been robbed of some of its water in order to build
the hill, so a depressed \moat" is formed, a/2. This e�ect cascades
outward, producing ripples.

There are three main ways in which wave motion di�ers from
the motion of objects made of matter.

1. Superposition

If you watched the water in the cup carefully, you noticed the
ghostlike behavior of the reected ripples coming back toward the
center of the cup and the outgoing ripples that hadn’t yet been re-
ected: they passed right through each other. This is the �rst, and
the most profound, di�erence between wave motion and the mo-

1Speaking more carefully, I should say that every basic building block of light
and matter has both wave and particle properties.
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