
e / Example 2. The surfer is
dragging his hand in the water.

f / Example 3: a breaking
wave.

g / Example 4. The boat has
run up against a limit on its speed
because it can’t climb over its
own wave. Dolphins get around
the problem by leaping out of the
water.

The incorrect belief that the medium moves with the wave is often
reinforced by garbled secondhand knowledge of sur�ng. Anyone
who has actually surfed knows that the front of the board pushes
the water to the sides, creating a wake � the surfer can even
drag his hand through the water, as in in �gure e. If the water was
moving along with the wave and the surfer, this wouldn’t happen.
The surfer is carried forward because forward is downhill, not be-
cause of any forward �ow of the water. If the water was �owing
forward, then a person �oating in the water up to her neck would
be carried along just as quickly as someone on a surfboard. In
fact, it is even possible to surf down the back side of a wave, al-
though the ride wouldn’t last very long because the surfer and the
wave would quickly part company.

3. A wave’s velocity depends on the medium.

A material object can move with any velocity, and can be sped
up or slowed down by a force that increases or decreases its kinetic
energy. Not so with waves. The speed of a wave, depends on the
properties of the medium (and perhaps also on the shape of the
wave, for certain types of waves). Sound waves travel at about 340
m/s in air, 1000 m/s in helium. If you kick up water waves in a
pool, you will �nd that kicking harder makes waves that are taller
(and therefore carry more energy), not faster. The sound waves
from an exploding stick of dynamite carry a lot of energy, but are
no faster than any other waves. In the following section we will give
an example of the physical relationship between the wave speed and
the properties of the medium.

Breaking waves example 3
The velocity of water waves increases with depth. The crest of a
wave travels faster than the trough, and this can cause the wave
to break.

Once a wave is created, the only reason its speed will change is
if it enters a di�erent medium or if the properties of the medium
change. It is not so surprising that a change in medium can slow
down a wave, but the reverse can also happen. A sound wave trav-
eling through a helium balloon will slow down when it emerges into
the air, but if it enters another balloon it will speed back up again!
Similarly, water waves travel more quickly over deeper water, so a
wave will slow down as it passes over an underwater ridge, but speed
up again as it emerges into deeper water.

Hull speed example 4
The speeds of most boats, and of some surface-swimming ani-
mals, are limited by the fact that they make a wave due to their
motion through the water. The boat in �gure g is going at the
same speed as its own waves, and can’t go any faster. No mat-
ter how hard the boat pushes against the water, it can’t make
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h / Circular and linear wave
patterns.

i / Plane and spherical wave
patterns.

the wave move ahead faster and get out of the way. The wave’s
speed depends only on the medium. Adding energy to the wave
doesn’t speed it up, it just increases its amplitude.

A water wave, unlike many other types of wave, has a speed that
depends on its shape: a broader wave moves faster. The shape
of the wave made by a boat tends to mold itself to the shape of
the boat’s hull, so a boat with a longer hull makes a broader wave
that moves faster. The maximum speed of a boat whose speed is
limited by this effect is therefore closely related to the length of its
hull, and the maximum speed is called the hull speed. Sailboats
designed for racing are not just long and skinny to make them
more streamlined � they are also long so that their hull speeds
will be high.

Wave patterns

If the magnitude of a wave’s velocity vector is preordained, what
about its direction? Waves spread out in all directions from every
point on the disturbance that created them. If the disturbance is
small, we may consider it as a single point, and in the case of water
waves the resulting wave pattern is the familiar circular ripple, h/1.
If, on the other hand, we lay a pole on the surface of the water
and wiggle it up and down, we create a linear wave pattern, h/2.
For a three-dimensional wave such as a sound wave, the analogous
patterns would be spherical waves and plane waves, i.

In�nitely many patterns are possible, but linear or plane waves
are often the simplest to analyze, because the velocity vector is in
the same direction no matter what part of the wave we look at. Since
all the velocity vectors are parallel to one another, the problem is
e�ectively one-dimensional. Throughout this chapter and the next,
we will restrict ourselves mainly to wave motion in one dimension,
while not hesitating to broaden our horizons when it can be done
without too much complication.
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Discussion Questions

A The left panel of the �gure shows a sequence of snapshots of two
positive pulses on a coil spring as they move through each other. In the
right panel, which shows a positive pulse and a negative one, the �fth
frame has the spring just about perfectly �at. If the two pulses have es-
sentially canceled each other out perfectly, then why does the motion pick
up again? Why doesn’t the spring just stay �at?

j / Discussion question A.

B Sketch two positive wave pulses on a string that are overlapping but
not right on top of each other, and draw their superposition. Do the same
for a positive pulse running into a negative pulse.

C A traveling wave pulse is moving to the right on a string. Sketch the
velocity vectors of the various parts of the string. Now do the same for a
pulse moving to the left.

D In a spherical sound wave spreading out from a point, how would
the energy of the wave fall off with distance?
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k / Hitting a key on a piano
causes a hammer to come up
from underneath and hit a string
(actually a set of three). The
result is a pair of pulses moving
away from the point of impact.

l / A pulse on a string splits
in two and heads off in both
directions.

m / Modeling a string as a
series of masses connected by
springs.

6.1.2 Waves on a string

So far you’ve learned some counterintuitive things about the
behavior of waves, but intuition can be trained. The �rst half of
this subsection aims to build your intuition by investigating a simple,
one-dimensional type of wave: a wave on a string. If you have ever
stretched a string between the bottoms of two open-mouthed cans to
talk to a friend, you were putting this type of wave to work. Stringed
instruments are another good example. Although we usually think
of a piano wire simply as vibrating, the hammer actually strikes
it quickly and makes a dent in it, which then ripples out in both
directions. Since this chapter is about free waves, not bounded ones,
we pretend that our string is in�nitely long.

After the qualitative discussion, we will use simple approxima-
tions to investigate the speed of a wave pulse on a string. This quick
and dirty treatment is then followed by a rigorous attack using the
methods of calculus, which turns out to be both simpler and more
general.

Intuitive ideas

Consider a string that has been struck, l/1, resulting in the cre-
ation of two wave pulses, l/2, one traveling to the left and one to
the right. This is analogous to the way ripples spread out in all
directions from a splash in water, but on a one-dimensional string,
\all directions" becomes \both directions."

We can gain insight by modeling the string as a series of masses
connected by springs, m. (In the actual string the mass and the
springiness are both contributed by the molecules themselves.) If
we look at various microscopic portions of the string, there will be
some areas that are at, 1, some that are sloping but not curved, 2,
and some that are curved, 3 and 4. In example 1 it is clear that both
the forces on the central mass cancel out, so it will not accelerate.
The same is true of 2, however. Only in curved regions such as 3
and 4 is an acceleration produced. In these examples, the vector
sum of the two forces acting on the central mass is not zero. The
important concept is that curvature makes force: the curved areas of
a wave tend to experience forces resulting in an acceleration toward
the mouth of the curve. Note, however, that an uncurved portion
of the string need not remain motionless. It may move at constant
velocity to either side.

Approximate treatment

We now carry out an approximate treatment of the speed at
which two pulses will spread out from an initial indentation on a
string. For simplicity, we imagine a hammer blow that creates a tri-
angular dent, n/1. We will estimate the amount of time, t, required
until each of the pulses has traveled a distance equal to the width
of the pulse itself. The velocity of the pulses is then� w=t.
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n / A triangular pulse spreads out.

As always, the velocity of a wave depends on the properties of
the medium, in this case the string. The properties of the string can
be summarized by two variables: the tension,T , and the mass per
unit length, � (Greek letter mu).

If we consider the part of the string encompassed by the initial
dent as a single object, then this object has a mass of approxi-
mately �w (mass/length � length=mass). (Here, and throughout
the derivation, we assume thath is much less thanw, so that we can
ignore the fact that this segment of the string has a length slightly
greater than w.) Although the downward acceleration of this seg-
ment of the string will be neither constant over time nor uniform
across the pulse, we will pretend that it is constant for the sake of
our simple estimate. Roughly speaking, the time interval between
n/1 and n/2 is the amount of time required for the initial dent to ac-
celerate from rest and reach its normal, attened position. Of course
the tip of the triangle has a longer distance to travel than the edges,
but again we ignore the complications and simply assume that the
segment as a whole must travel a distanceh. Indeed, it might seem
surprising that the triangle would so neatly spring back to a per-
fectly at shape. It is an experimental fact that it does, but our
analysis is too crude to address such details.

The string is kinked, i.e., tightly curved, at the edges of the
triangle, so it is here that there will be large forces that do not
cancel out to zero. There are two forces acting on the triangular
hump, one of magnitudeT acting down and to the right, and one
of the same magnitude acting down and to the left. If the angle
of the sloping sides is� , then the total force on the segment equals
2T sin � . Dividing the triangle into two right triangles, we see that
sin � equalsh divided by the length of one of the sloping sides. Since
h is much less thanw, the length of the sloping side is essentially
the same asw=2, so we have sin� = 2h=w, and F = 4T h=w. The
acceleration of the segment (actually the acceleration of its center
of mass) is

a =
F
m

=
4T h
�w 2 .

The time required to move a distanceh under constant acceleration
a is found by solving h = (1 =2)at2 to yield

t =
p

2h=a

= w
r

�
2T

.
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Our �nal result for the speed of the pulses is

v = w=t

=

s
2T
�

.

The remarkable feature of this result is that the velocity of the
pulses does not depend at all onw or h, i.e., any triangular pulse
has the same speed. It is an experimental fact (and we will also
prove rigorously below) that any pulse of any kind, triangular or
otherwise, travels along the string at the same speed. Of course,
after so many approximations we cannot expect to have gotten all
the numerical factors right. The correct result for the speed of the
pulses is

v =

s
T
�

.

The importance of the above derivation lies in the insight it
brings |that all pulses move with the same speed | rather than in
the details of the numerical result. The reason for our too-high value
for the velocity is not hard to guess. It comes from the assumption
that the acceleration was constant, when actually the total force on
the segment would diminish as it attened out.

Treatment using calculus

After expending considerable e�ort for an approximate solution,
we now display the power of calculus with a rigorous and completely
general treatment that is nevertheless much shorter and easier. Let
the at position of the string de�ne the x axis, so that y measures
how far a point on the string is from equilibrium. The motion of
the string is characterized by y(x, t), a function of two variables.
Knowing that the force on any small segment of string depends
on the curvature of the string in that area, and that the second
derivative is a measure of curvature, it is not surprising to �nd that
the in�nitesimal force d F acting on an in�nitesimal segment dx is
given by

dF = T
@2y
@x2

dx.

(This can be proved by vector addition of the two in�nitesimal forces
acting on either side.) The symbol@stands for a partial derivative,
e.g., @=@xmeans a derivative with respect to x that is evaluated
while treating t as a constant. The acceleration is thena = d F=dm,
or, substituting d m = � dx,

@2y
@t2

=
T
�

@2y
@x2

.

The second derivative with respect to time is related to the second
derivative with respect to position. This is no more than a fancy
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mathematical statement of the intuitive fact developed above, that
the string accelerates so as to atten out its curves.

Before even bothering to look for solutions to this equation, we
note that it already proves the principle of superposition, because
the derivative of a sum is the sum of the derivatives. Therefore the
sum of any two solutions will also be a solution.

Based on experiment, we expect that this equation will be sat-
is�ed by any function y(x, t) that describes a pulse or wave pattern
moving to the left or right at the correct speed v. In general, such
a function will be of the form y = f (x � vt) or y = f (x + vt), where
f is any function of one variable. Because of the chain rule, each
derivative with respect to time brings out a factor of v. Evaluating
the second derivatives on both sides of the equation gives

(� v)2 f 00=
T
�

f 00.

Squaring gets rid of the sign, and we �nd that we have a valid
solution for any function f , provided that v is given by

v =

s
T
�

.

6.1.3 Sound and light waves

Sound waves

The phenomenon of sound is easily found to have all the char-
acteristics we expect from a wave phenomenon:

- Sound waves obey superposition. Sounds do not knock other
sounds out of the way when they collide, and we can hear more than
one sound at once if they both reach our ear simultaneously.

- The medium does not move with the sound. Even standing in
front of a titanic speaker playing earsplitting music, we do not feel
the slightest breeze.

- The velocity of sound depends on the medium. Sound travels
faster in helium than in air, and faster in water than in helium.
Putting more energy into the wave makes it more intense, not faster.
For example, you can easily detect an echo when you clap your hands
a short distance from a large, at wall, and the delay of the echo is
no shorter for a louder clap.

Although not all waves have a speed that is independent of the
shape of the wave, and this property therefore is irrelevant to our
collection of evidence that sound is a wave phenomenon, sound does
nevertheless have this property. For instance, the music in a large
concert hall or stadium may take on the order of a second to reach
someone seated in the nosebleed section, but we do not notice or
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care, because the delay is the same for every sound. Bass, drums,
and vocals all head outward from the stage at 340 m/s, regardless of
their di�ering wave shapes. (The speed of sound in a gas is related
to the gas’s physical properties in example 13 on p. 383.)

If sound has all the properties we expect from a wave, then what
type of wave is it? It is a series of compressions and expansions of the
air. Even for a very loud sound, the increase or decrease compared
to normal atmospheric pressure is no more than a part per million,
so our ears are apparently very sensitive instruments. In a vacuum,
there is no medium for the sound waves, and so they cannot exist.
The roars and whooshes of space ships in Hollywood movies are fun,
but scienti�cally wrong.

Light waves

Entirely similar observations lead us to believe that light is a
wave, although the concept of light as a wave had a long and tortu-
ous history. It is interesting to note that Isaac Newton very inuen-
tially advocated a contrary idea about light. The belief that matter
was made of atoms was stylish at the time among radical thinkers
(although there was no experimental evidence for their existence),
and it seemed logical to Newton that light as well should be made of
tiny particles, which he called corpuscles (Latin for \small objects").
Newton’s triumphs in the science of mechanics, i.e., the study of
matter, brought him such great prestige that nobody bothered to
question his incorrect theory of light for 150 years. One persua-
sive proof that light is a wave is that according to Newton’s theory,
two intersecting beams of light should experience at least some dis-
ruption because of collisions between their corpuscles. Even if the
corpuscles were extremely small, and collisions therefore very infre-
quent, at least some dimming should have been measurable. In fact,
very delicate experiments have shown that there is no dimming.

The wave theory of light was entirely successful up until the 20th
century, when it was discovered that not all the phenomena of light
could be explained with a pure wave theory. It is now believed that
both light and matter are made out of tiny chunks which have both
wave and particle properties. For now, we will content ourselves
with the wave theory of light, which is capable of explaining a great
many things, from cameras to rainbows.

If light is a wave, what is waving? What is the medium that
wiggles when a light wave goes by? It isn’t air. A vacuum is impen-
etrable to sound, but light from the stars travels happily through
zillions of miles of empty space. Light bulbs have no air inside them,
but that doesn’t prevent the light waves from leaving the �lament.
For a long time, physicists assumed that there must be a mysteri-
ous medium for light waves, and they called it the ether (not to be
confused with the chemical). Supposedly the ether existed every-
where in space, and was immune to vacuum pumps. The details of
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o / A graph of pressure ver-
sus time for a periodic sound
wave, the vowel �ah.�

p / A similar graph for a non-
periodic wave, �sh.�

q / A strip chart recorder.

r / A water wave pro�le cre-
ated by a series of repeating
pulses.

the story are more �ttingly reserved for later in this course, but the
end result was that a long series of experiments failed to detect any
evidence for the ether, and it is no longer believed to exist. Instead,
light can be explained as a wave pattern made up of electrical and
magnetic �elds.

6.1.4 Periodic waves

Period and frequency of a periodic wave

You choose a radio station by selecting a certain frequency. We
have already de�ned period and frequency for vibrations,

T = period = seconds per cycle
f = frequency = 1=T = cycles per second
! = angular frequency = 2 �f = radians per second

but what do they signify in the case of a wave? We can recycle our
previous de�nition simply by stating it in terms of the vibrations
that the wave causes as it passes a receiving instrument at a certain
point in space. For a sound wave, this receiver could be an eardrum
or a microphone. If the vibrations of the eardrum repeat themselves
over and over, i.e., are periodic, then we describe the sound wave
that caused them as periodic. Likewise we can de�ne the period
and frequency of a wave in terms of the period and frequency of
the vibrations it causes. As another example, a periodic water wave
would be one that caused a rubber duck to bob in a periodic manner
as they passed by it.

The period of a sound wave correlates with our sensory impres-
sion of musical pitch. A high frequency (short period) is a high note.
The sounds that really de�ne the musical notes of a song are only
the ones that are periodic. It is not possible to sing a nonperiodic
sound like \sh" with a de�nite pitch.

The frequency of a light wave corresponds to color. Violet is the
high-frequency end of the rainbow, red the low-frequency end. A
color like brown that does not occur in a rainbow is not a periodic
light wave. Many phenomena that we do not normally think of as
light are actually just forms of light that are invisible because they
fall outside the range of frequencies our eyes can detect. Beyond the
red end of the visible rainbow, there are infrared and radio waves.
Past the violet end, we have ultraviolet, x-rays, and gamma rays.

Graphs of waves as a function of position

Some waves, like sound waves, are easy to study by placing a
detector at a certain location in space and studying the motion as
a function of time. The result is a graph whose horizontal axis is
time. With a water wave, on the other hand, it is simpler just to
look at the wave directly. This visual snapshot amounts to a graph
of the height of the water wave as a function of position. Any wave
can be represented in either way.
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s / Wavelengths of linear and
circular waves.

An easy way to visualize this is in terms of a strip chart recorder,
an obsolescing device consisting of a pen that wiggles back and forth
as a roll of paper is fed under it. It can be used to record a per-
son’s electrocardiogram, or seismic waves too small to be felt as a
noticeable earthquake but detectable by a seismometer. Taking the
seismometer as an example, the chart is essentially a record of the
ground’s wave motion as a function of time, but if the paper was set
to feed at the same velocity as the motion of an earthquake wave, it
would also be a full-scale representation of the pro�le of the actual
wave pattern itself. Assuming, as is usually the case, that the wave
velocity is a constant number regardless of the wave’s shape, know-
ing the wave motion as a function of time is equivalent to knowing
it as a function of position.

Wavelength

Any wave that is periodic will also display a repeating pattern
when graphed as a function of position. The distance spanned by
one repetition is referred to as one wavelength. The usual notation
for wavelength is � , the Greek letter lambda. Wavelength is to space
as period is to time.

Wave velocity related to frequency and wavelength

Suppose that we create a repetitive disturbance by kicking the
surface of a swimming pool. We are essentially making a series of
wave pulses. The wavelength is simply the distance a pulse is able to
travel before we make the next pulse. The distance between pulses
is � , and the time between pulses is the period,T , so the speed of
the wave is the distance divided by the time,

v = �=T .

This important and useful relationship is more commonly written
in terms of the frequency,

v = f � .

Wavelength of radio waves example 5
. The speed of light is 3.0 � 108 m/s. What is the wavelength of
the radio waves emitted by KMHD, a station whose frequency is
89.1 MHz?

. Solving for wavelength, we have

� = v=f

= (3.0 � 108 m/s) /(89.1 � 106 s� 1)
= 3.4 m
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t / Ultrasound, i.e., sound with
frequencies higher than the range
of human hearing, was used to
make this image of a fetus. The
resolution of the image is related
to the wavelength, since details
smaller than about one wave-
length cannot be resolved. High
resolution therefore requires a
short wavelength, corresponding
to a high frequency.

u / A water wave traveling
into a region with different depth
will change its wavelength.

The size of a radio antenna is closely related to the wavelength
of the waves it is intended to receive. The match need not be exact
(since after all one antenna can receive more than one wavelength!),
but the ordinary \whip" antenna such as a car’s is 1/4 of a wave-
length. An antenna optimized to receive KMHD’s signal would have
a length of (3.4 m)/4 = 0.85 m.

The equationv = f � de�nes a �xed relationship between any two
of the variables if the other is held �xed. The speed of radio waves
in air is almost exactly the same for all wavelengths and frequencies
(it is exactly the same if they are in a vacuum), so there is a �xed
relationship between their frequency and wavelength. Thus we can
say either \Are we on the same wavelength?" or \Are we on the
same frequency?"

A di�erent example is the behavior of a wave that travels from
a region where the medium has one set of properties to an area
where the medium behaves di�erently. The frequency is now �xed,
because otherwise the two portions of the wave would otherwise
get out of step, causing a kink or discontinuity at the boundary,
which would be unphysical. (A more careful argument is that a
kink or discontinuity would have in�nite curvature, and waves tend
to atten out their curvature. An in�nite curvature would atten
out in�nitely fast, i.e., it could never occur in the �rst place.) Since
the frequency must stay the same, any change in the velocity that
results from the new medium must cause a change in wavelength.

The velocity of water waves depends on the depth of the water,
so based on� = v=f , we see that water waves that move into a
region of di�erent depth must change their wavelength, as shown in
�gure u. This e�ect can be observed when ocean waves come up to
the shore. If the deceleration of the wave pattern is sudden enough,
the tip of the wave can curl over, resulting in a breaking wave.

A note on dispersive waves

The discussion of wave velocity given here is actually a little bit
of an oversimpli�cation for a wave whose velocity depends on its
frequency and wavelength. Such a wave is called a dispersive wave.
Nearly all the waves we deal with in this course are nondispersive,
but the issue becomes important in chapter 13, where it is discussed
in detail.

Sinusoidal waves

Sinusoidal waves are the most important special case of periodic
waves. In fact, many scientists and engineers would be uncomfort-
able with de�ning a waveform like the \ah" vowel sound as having
a de�nite frequency and wavelength, because they consider only
sine waves to be pure examples of a certain frequency and wave-
lengths. Their bias is not unreasonable, since the French mathe-
matician Fourier showed that any periodic wave with frequency f
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w / The pattern of waves made
by a point source moving to the
right across the water. Note
the shorter wavelength of the
forward-emitted waves and
the longer wavelength of the
backward-going ones.

can be constructed as a superposition of sine waves with frequencies
f , 2f , 3f , : : : In this sense, sine waves are the basic, pure building
blocks of all waves. (Fourier’s result so surprised the mathematical
community of France that he was ridiculed the �rst time he publicly
presented his theorem.)

However, what de�nition to use is really a matter of convenience.
Our sense of hearing perceives any two sounds having the same
period as possessing the same pitch, regardless of whether they are
sine waves or not. This is undoubtedly because our ear-brain system
evolved to be able to interpret human speech and animal noises,
which are periodic but not sinusoidal. Our eyes, on the other hand,
judge a color as pure (belonging to the rainbow set of colors) only
if it is a sine wave.

Discussion Questions

A Suppose we superimpose two sine waves with equal amplitudes
but slightly different frequencies, as shown in the �gure. What will the
superposition look like? What would this sound like if they were sound
waves?

v / Discussion question A.

6.1.5 The Doppler effect

Figure 7.2.8 shows the wave pattern made by the tip of a vi-
brating rod which is moving across the water. If the rod had been
vibrating in one place, we would have seen the familiar pattern of
concentric circles, all centered on the same point. But since the
source of the waves is moving, the wavelength is shortened on one
side and lengthened on the other. This is known as the Doppler
e�ect.

Note that the velocity of the waves is a �xed property of the
medium, so for example the forward-going waves do not get an extra
boost in speed as would a material object like a bullet being shot
forward from an airplane.

We can also infer a change in frequency. Since the velocity is
constant, the equation v = f � tells us that the change in wave-
length must be matched by an opposite change in frequency: higher
frequency for the waves emitted forward, and lower for the ones
emitted backward. The frequency Doppler e�ect is the reason for
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the familiar dropping-pitch sound of a race car going by. As the car
approaches us, we hear a higher pitch, but after it passes us we hear
a frequency that is lower than normal.

The Doppler e�ect will also occur if the observer is moving but
the source is stationary. For instance, an observer moving toward a
stationary source will perceive one crest of the wave, and will then be
surrounded by the next crest sooner than she otherwise would have,
because she has moved toward it and hastened her encounter with
it. Roughly speaking, the Doppler e�ect depends only the relative
motion of the source and the observer, not on their absolute state
of motion (which is not a well-de�ned notion in physics) or on their
velocity relative to the medium.

Restricting ourselves to the case of a moving source, and to waves
emitted either directly along or directly against the direction of mo-
tion, we can easily calculate the wavelength, or equivalently the
frequency, of the Doppler-shifted waves. Letu be the velocity of the
source. The wavelength of the forward-emitted waves is shortened
by an amount uT equal to the distance traveled by the source over
the course of one period. Using the de�nitionf = 1=T and the equa-
tion v = f � , we �nd for the wavelength � 0 of the Doppler-shifted
wave the equation

� 0 =
�

1 �
u
v

�
� .

A similar equation can be used for the backward-emitted waves, but
with a plus sign rather than a minus sign.

Doppler-shifted sound from a race car example 6
. If a race car moves at a velocity of 50 m/s, and the velocity of
sound is 340 m/s, by what percentage are the wavelength and
frequency of its sound waves shifted for an observer lying along
its line of motion?

. For an observer whom the car is approaching, we �nd

1 �
u
v

= 0.85,

so the shift in wavelength is 15%. Since the frequency is inversely
proportional to the wavelength for a �xed value of the speed of
sound, the frequency is shifted upward by

1/0.85 = 1.18,

i.e., a change of 18%. (For velocities that are small compared
to the wave velocities, the Doppler shifts of the wavelength and
frequency are about the same.)

Doppler shift of the light emitted by a race car example 7
. What is the percent shift in the wavelength of the light waves
emitted by a race car’s headlights?
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x / The galaxy M100 in the
constellation Coma Berenices.
Under higher magni�cation, the
milky clouds reveal themselves to
be composed of trillions of stars.

y / The telescope at Mount
Wilson used by Hubble.

. Looking up the speed of light in the back of the book, v = 3.0 �
108 m/s, we �nd

1 �
u
v

= 0.99999983,

i.e., the percentage shift is only 0.000017%.

The second example shows that under ordinary earthbound cir-
cumstances, Doppler shifts of light are negligible because ordinary
things go so much slower than the speed of light. It’s a di�erent
story, however, when it comes to stars and galaxies, and this leads
us to a story that has profound implications for our understanding
of the origin of the universe.

The Big Bang

As soon as astronomers began looking at the sky through tele-
scopes, they began noticing certain objects that looked like clouds
in deep space. The fact that they looked the same night after night
meant that they were beyond the earth’s atmosphere. Not know-
ing what they really were, but wanting to sound o�cial, they called
them \nebulae," a Latin word meaning \clouds" but sounding more
impressive. In the early 20th century, astronomers realized that al-
though some really were clouds of gas (e.g., the middle \star" of
Orion’s sword, which is visibly fuzzy even to the naked eye when
conditions are good), others were what we now call galaxies: virtual
island universes consisting of trillions of stars (for example the An-
dromeda Galaxy, which is visible as a fuzzy patch through binoc-
ulars). Three hundred years after Galileo had resolved the Milky
Way into individual stars through his telescope, astronomers real-
ized that the universe is made of galaxies of stars, and the Milky
Way is simply the visible part of the at disk of our own galaxy,
seen from inside.

This opened up the scienti�c study of cosmology, the structure
and history of the universe as a whole, a �eld that had not been
seriously attacked since the days of Newton. Newton had realized
that if gravity was always attractive, never repulsive, the universe
would have a tendency to collapse. His solution to the problem was
to posit a universe that was in�nite and uniformly populated with
matter, so that it would have no geometrical center. The gravita-
tional forces in such a universe would always tend to cancel out by
symmetry, so there would be no collapse. By the 20th century, the
belief in an unchanging and in�nite universe had become conven-
tional wisdom in science, partly as a reaction against the time that
had been wasted trying to �nd explanations of ancient geological
phenomena based on catastrophes suggested by biblical events like
Noah’s ood.

In the 1920’s astronomer Edwin Hubble began studying the
Doppler shifts of the light emitted by galaxies. A former college
football player with a serious nicotine addiction, Hubble did not
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z / How do astronomers know
what mixture of wavelengths a
star emitted originally, so that
they can tell how much the
Doppler shift was? This image
(obtained by the author with
equipment costing about $5, and
no telescope) shows the mixture
of colors emitted by the star
Sirius. (If you have the book in
black and white, blue is on the left
and red on the right.) The star
appears white or bluish-white to
the eye, but any light looks white
if it contains roughly an equal
mixture of the rainbow colors,
i.e., of all the pure sinusoidal
waves with wavelengths lying in
the visible range. Note the black
�gap teeth.� These are the �n-
gerprint of hydrogen in the outer
atmosphere of Sirius. These
wavelengths are selectively ab-
sorbed by hydrogen. Sirius is in
our own galaxy, but similar stars
in other galaxies would have
the whole pattern shifted toward
the red end, indicating they are
moving away from us.

set out to change our image of the beginning of the universe. His
autobiography seldom even mentions the cosmological discovery for
which he is now remembered. When astronomers began to study the
Doppler shifts of galaxies, they expected that each galaxy’s direction
and velocity of motion would be essentially random. Some would be
approaching us, and their light would therefore be Doppler-shifted
to the blue end of the spectrum, while an equal number would be
expected to have red shifts. What Hubble discovered instead was
that except for a few very nearby ones, all the galaxies had red
shifts, indicating that they were receding from us at a hefty frac-
tion of the speed of light. Not only that, but the ones farther away
were receding more quickly. The speeds were directly proportional
to their distance from us.

Did this mean that the earth (or at least our galaxy) was the
center of the universe? No, because Doppler shifts of light only
depend on the relative motion of the source and the observer. If
we see a distant galaxy moving away from us at 10% of the speed
of light, we can be assured that the astronomers who live in that
galaxy will see ours receding from them at the same speed in the
opposite direction. The whole universe can be envisioned as a rising
loaf of raisin bread. As the bread expands, there is more and more
space between the raisins. The farther apart two raisins are, the
greater the speed with which they move apart.

The universe’s expansion is presumably decelerating because of
gravitational attraction among the galaxies. We do not presently
know whether there is enough mass in the universe to cause enough
attraction to halt the expansion eventually. But perhaps more in-
teresting than the distant future of the universe is what its present
expansion implies about its past. Extrapolating backward in time
using the known laws of physics, the universe must have been denser
and denser at earlier and earlier times. At some point, it must have
been extremely dense and hot, and we can even detect the radia-
tion from this early �reball, in the form of microwave radiation that
permeates space. The phrase Big Bang was originally coined by the
doubters of the theory to make it sound ridiculous, but it stuck,
and today essentially all astronomers accept the Big Bang theory
based on the very direct evidence of the red shifts and the cosmic
microwave background radiation.

Finally it should be noted what the Big Bang theory is not. It is
not an explanation of why the universe exists. Such questions belong
to the realm of religion, not science. Science can �nd ever simpler
and ever more fundamental explanations for a variety of phenom-
ena, but ultimately science takes the universe as it is according to
observations.

Furthermore, there is an unfortunate tendency, even among many
scientists, to speak of the Big Bang theory as a description of the
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aa / Shock waves are cre-
ated by the X-15 rocket plane,
�ying at 3.5 times the speed of
sound.

ab / This �ghter jet has just
accelerated past the speed of
sound. The sudden decom-
pression of the air causes water
droplets to condense, forming a
cloud.

very �rst event in the universe, which caused everything after it.
Although it is true that time may have had a beginning (Einstein’s
theory of general relativity admits such a possibility), the methods
of science can only work within a certain range of conditions such
as temperature and density. Beyond a temperature of about 109 K,
the random thermal motion of subatomic particles becomes so rapid
that its velocity is comparable to the speed of light. Early enough in
the history of the universe, when these temperatures existed, New-
tonian physics becomes less accurate, and we must describe nature
using the more general description given by Einstein’s theory of
relativity, which encompasses Newtonian physics as a special case.
At even higher temperatures, beyond about 1033 degrees, physicists
know that Einstein’s theory as well begins to fall apart, but we don’t
know how to construct the even more general theory of nature that
would work at those temperatures. No matter how far physics pro-
gresses, we will never be able to describe nature at in�nitely high
temperatures, since there is a limit to the temperatures we can ex-
plore by experiment and observation in order to guide us to the
right theory. We are con�dent that we understand the basic physics
involved in the evolution of the universe starting a few minutes after
the Big Bang, and we may be able to push back to milliseconds or
microseconds after it, but we cannot use the methods of science to
deal with the beginning of time itself.

A note on Doppler shifts of light

If Doppler shifts depend only on the relative motion of the source
and receiver, then there is no way for a person moving with the
source and another person moving with the receiver to determine
who is moving and who isn’t. Either can blame the Doppler shift
entirely on the other’s motion and claim to be at rest herself. This is
entirely in agreement with the principle stated originally by Galileo
that all motion is relative.

On the other hand, a careful analysis of the Doppler shifts of
water or sound waves shows that it is only approximately true, at
low speeds, that the shifts just depend on the relative motion of the
source and observer. For instance, it is possible for a jet plane to
keep up with its own sound waves, so that the sound waves appear
to stand still to the pilot of the plane. The pilot then knows she
is moving at exactly the speed of sound. The reason this doesn’t
disprove the relativity of motion is that the pilot is not really de-
termining her absolute motion but rather her motion relative to the
air, which is the medium of the sound waves.

Einstein realized that this solved the problem for sound or water
waves, but would not salvage the principle of relative motion in the
case of light waves, since light is not a vibration of any physical
medium such as water or air. Beginning by imagining what a beam
of light would look like to a person riding a motorcycle alongside it,
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Einstein eventually came up with a radical new way of describing
the universe, in which space and time are distorted as measured
by observers in di�erent states of motion. As a consequence of this
Theory of Relativity, he showed that light waves would have Doppler
shifts that would exactly, not just approximately, depend only on
the relative motion of the source and receiver.

Discussion Questions

A If an airplane travels at exactly the speed of sound, what would be
the wavelength of the forward-emitted part of the sound waves it emitted?
How should this be interpreted, and what would actually happen? What
happens if it’s going faster than the speed of sound? Can you use this to
explain what you see in �gures aa and ab?

B If bullets go slower than the speed of sound, why can a supersonic
�ghter plane catch up to its own sound, but not to its own bullets?

C If someone inside a plane is talking to you, should their speech be
Doppler shifted?
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a / A cross-sectional view of
a human body, showing the vocal
tract.

b / Circular water waves are
re�ected from a boundary on the
left. (PSSC Physics)

6.2 Bounded waves
Speech is what separates humans most decisively from animals. No
other species can master syntax, and even though chimpanzees can
learn a vocabulary of hand signs, there is an unmistakable di�erence
between a human infant and a baby chimp: starting from birth, the
human experiments with the production of complex speech sounds.

Since speech sounds are instinctive for us, we seldom think about
them consciously. How do we control sound waves so skillfully?
Mostly we do it by changing the shape of a connected set of hollow
cavities in our chest, throat, and head. Somehow by moving the
boundaries of this space in and out, we can produce all the vowel
sounds. Up until now, we have been studying only those properties
of waves that can be understood as if they existed in an in�nite,
open space with no boundaries. In this chapter we address what
happens when a wave is con�ned within a certain space, or when a
wave pattern encounters the boundary between two di�erent media,
such as when a light wave moving through air encounters a glass
windowpane.

6.2.1 Re�ection, transmission, and absorption

Reection and transmission

Sound waves can echo back from a cli�, and light waves are
reected from the surface of a pond. We use the word reection,
normally applied only to light waves in ordinary speech, to describe
any such case of a wave rebounding from a barrier. Figure (a) shows
a circular water wave being reected from a straight wall. In this
chapter, we will concentrate mainly on reection of waves that move
in one dimension, as in �gure c/1.

Wave reection does not surprise us. After all, a material object
such as a rubber ball would bounce back in the same way. But waves
are not objects, and there are some surprises in store.

First, only part of the wave is usually reected. Looking out
through a window, we see light waves that passed through it, but a
person standing outside would also be able to see her reection in
the glass. A light wave that strikes the glass is partly reected and
partly transmitted (passed) by the glass. The energy of the original
wave is split between the two. This is di�erent from the behavior of
the rubber ball, which must go one way or the other, not both.

Second, consider what you see if you are swimming underwater
and you look up at the surface. You see your own reection. This
is utterly counterintuitive, since we would expect the light waves to
burst forth to freedom in the wide-open air. A material projectile
shot up toward the surface would never rebound from the water-air
boundary!

What is it about the di�erence between two media that causes
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waves to be partly reected at the boundary between them? Is it
their density? Their chemical composition? Typically all that mat-
ters is the speed of the wave in the two media.2 A wave is partially
reected and partially transmitted at the boundary between media in
which it has di�erent speeds. For example, the speed of light waves
in window glass is about 30% less than in air, which explains why
windows always make reections. Figure c shows examples of wave
pulses being reected at the boundary between two coil springs of
di�erent weights, in which the wave speed is di�erent.

c / 1. A wave on a coil spring,
initially traveling to the left, is re-
�ected from the �xed end. 2. A
wave in the lighter spring, where
the wave speed is greater, trav-
els to the left and is then partly
re�ected and partly transmitted at
the boundary with the heavier coil
spring, which has a lower wave
speed. The re�ection is inverted.
3. A wave moving to the right
in the heavier spring is partly re-
�ected at the boundary with the
lighter spring. The re�ection is
uninverted. (PSSC Physics)

Reections such as b and c/1, where a wave encounters a massive
�xed object, can usually be understood on the same basis as cases
like c/2 and c/3 where two media meet. Example c/1, for instance,
is like a more extreme version of example c/2. If the heavy coil
spring in c/2 was made heavier and heavier, it would end up acting
like the �xed wall to which the light spring in c/1 has been attached.

self-check B
In �gure c/1, the re�ected pulse is upside-down, but its depth is just as
big as the original pulse’s height. How does the energy of the re�ected
pulse compare with that of the original? . Answer, p. 1047

Fish have internal ears. example 8
Why don’t �sh have ear-holes? The speed of sound waves in
a �sh’s body is not much different from their speed in water, so
sound waves are not strongly re�ected from a �sh’s skin. They
pass right through its body, so �sh can have internal ears.

2Some exceptions are described in sec. 6.2.5, p. 383.
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d / An uninverted re�ection. The
re�ected pulse is reversed front
to back, but is not upside-down.

e / An inverted re�ection. The
re�ected pulse is reversed both
front to back and top to bottom.

Whale songs traveling long distances example 9
Sound waves travel at drastically different speeds through rock,
water, and air. Whale songs are thus strongly re�ected both at
both the bottom and the surface. The sound waves can travel
hundreds of miles, bouncing repeatedly between the bottom and
the surface, and still be detectable. Sadly, noise pollution from
ships has nearly shut down this cetacean version of the inter-
net.

Long-distance radio communication example 10
Radio communication can occur between stations on opposite
sides of the planet. The mechanism is entirely similar to the one
explained in the previous example, but the three media involved
are the earth, the atmosphere, and the ionosphere.

self-check C
Sonar is a method for ships and submarines to detect each other by
producing sound waves and listening for echoes. What properties would
an underwater object have to have in order to be invisible to sonar? .
Answer, p. 1047

The use of the word \reection" naturally brings to mind the cre-
ation of an image by a mirror, but this might be confusing, because
we do not normally refer to \reection" when we look at surfaces
that are not shiny. Nevertheless, reection is how we see the surfaces
of all objects, not just polished ones. When we look at a sidewalk,
for example, we are actually seeing the reecting of the sun from
the concrete. The reason we don’t see an image of the sun at our
feet is simply that the rough surface blurs the image so drastically.

Inverted and uninverted reections

Notice how the pulse reected back to the right in example c/2
comes back upside-down, whereas the one reected back to the left
in c/3 returns in its original upright form. This is true for other
waves as well. In general, there are two possible types of reections,
a reection back into a faster medium and a reection back into a
slower medium. One type will always be an inverting reection and
one noninverting.

It’s important to realize that when we discuss inverted and un-
inverted reections on a string, we are talking about whether the
wave is ipped across the direction of motion (i.e., upside-down in
these drawings). The reected pulse will always be reversed front
to back, as shown in �gures d and e. This is because it is traveling
in the other direction. The leading edge of the pulse is what gets
reected �rst, so it is still ahead when it starts back to the left |
it’s just that \ahead" is now in the opposite direction.
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f / A pulse traveling through
a highly absorptive medium.

Absorption

So far we have tacitly assumed that wave energy remains as wave
energy, and is not converted to any other form. If this was true, then
the world would become more and more full of sound waves, which
could never escape into the vacuum of outer space. In reality, any
mechanical wave consists of a traveling pattern of vibrations of some
physical medium, and vibrations of matter always produce heat, as
when you bend a coathangar back and forth and it becomes hot.
We can thus expect that in mechanical waves such as water waves,
sound waves, or waves on a string, the wave energy will gradually
be converted into heat. This is referred to as absorption. The
reduction in the wave’s energy can also be described as a reduction in
amplitude, the relationship between them being, as with a vibrating
object, E / A2.

The wave su�ers a decrease in amplitude, as shown in �gure f.
The decrease in amplitude amounts to the same fractional change
for each unit of distance covered. For example, if a wave decreases
from amplitude 2 to amplitude 1 over a distance of 1 meter, then
after traveling another meter it will have an amplitude of 1/2. That
is, the reduction in amplitude is exponential. This can be proved
as follows. By the principle of superposition, we know that a wave
of amplitude 2 must behave like the superposition of two identical
waves of amplitude 1. If a single amplitude-1 wave would die down to
amplitude 1/2 over a certain distance, then two amplitude-1 waves
superposed on top of one another to make amplitude 1+1=2 must
die down to amplitude 1/2+1/2=1 over the same distance.

self-check D
As a wave undergoes absorption, it loses energy. Does this mean that
it slows down? . Answer, p. 1047

In many cases, this frictional heating e�ect is quite weak. Sound
waves in air, for instance, dissipate into heat extremely slowly, and
the sound of church music in a cathedral may reverberate for as much
as 3 or 4 seconds before it becomes inaudible. During this time it
has traveled over a kilometer! Even this very gradual dissipation
of energy occurs mostly as heating of the church’s walls and by the
leaking of sound to the outside (where it will eventually end up as
heat). Under the right conditions (humid air and low frequency), a
sound wave in a straight pipe could theoretically travel hundreds of
kilometers before being noticeable attenuated.

In general, the absorption of mechanical waves depends a great
deal on the chemical composition and microscopic structure of the
medium. Ripples on the surface of antifreeze, for instance, die out
extremely rapidly compared to ripples on water. For sound waves
and surface waves in liquids and gases, what matters is the viscosity
of the substance, i.e., whether it ows easily like water or mercury
or more sluggishly like molasses or antifreeze. This explains why
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our intuitive expectation of strong absorption of sound in water is
incorrect. Water is a very weak absorber of sound (viz. whale songs
and sonar), and our incorrect intuition arises from focusing on the
wrong property of the substance: water’s high density, which is
irrelevant, rather than its low viscosity, which is what matters.

Light is an interesting case, since although it can travel through
matter, it is not itself a vibration of any material substance. Thus
we can look at the star Sirius, 1014 km away from us, and be as-
sured that none of its light was absorbed in the vacuum of outer
space during its 9-year journey to us. The Hubble Space Telescope
routinely observes light that has been on its way to us since the
early history of the universe, billions of years ago. Of course the
energy of light can be dissipated if it does pass through matter (and
the light from distant galaxies is often absorbed if there happen to
be clouds of gas or dust in between).

Soundproo�ng example 11
Typical amateur musicians setting out to soundproof their garages
tend to think that they should simply cover the walls with the
densest possible substance. In fact, sound is not absorbed very
strongly even by passing through several inches of wood. A better
strategy for soundproo�ng is to create a sandwich of alternating
layers of materials in which the speed of sound is very different,
to encourage re�ection.

The classic design is alternating layers of �berglass and plywood.
The speed of sound in plywood is very high, due to its stiffness,
while its speed in �berglass is essentially the same as its speed
in air. Both materials are fairly good sound absorbers, but sound
waves passing through a few inches of them are still not going
to be absorbed suf�ciently. The point of combining them is that
a sound wave that tries to get out will be strongly re�ected at
each of the �berglass-plywood boundaries, and will bounce back
and forth many times like a ping pong ball. Due to all the back-
and-forth motion, the sound may end up traveling a total distance
equal to ten times the actual thickness of the soundproo�ng be-
fore it escapes. This is the equivalent of having ten times the
thickness of sound-absorbing material.

Radio transmission example 12
A radio transmitting station must have a length of wire or cable
connecting the ampli�er to the antenna. The cable and the an-
tenna act as two different media for radio waves, and there will
therefore be partial re�ection of the waves as they come from the
cable to the antenna. If the waves bounce back and forth many
times between the ampli�er and the antenna, a great deal of their
energy will be absorbed. There are two ways to attack the prob-
lem. One possibility is to design the antenna so that the speed of
the waves in it is as close as possible to the speed of the waves
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g / 1. A change in frequency
without a change in wavelength
would produce a discontinuity in
the wave. 2. A simple change in
wavelength without a re�ection
would result in a sharp kink in the
wave.

in the cable; this minimizes the amount of re�ection. The other
method is to connect the ampli�er to the antenna using a type
of wire or cable that does not strongly absorb the waves. Partial
re�ection then becomes irrelevant, since all the wave energy will
eventually exit through the antenna.

Discussion Questions

A A sound wave that underwent a pressure-inverting re�ection would
have its compressions converted to expansions and vice versa. How
would its energy and frequency compare with those of the original sound?
Would it sound any different? What happens if you swap the two wires
where they connect to a stereo speaker, resulting in waves that vibrate in
the opposite way?

6.2.2 Quantitative treatment of re�ection

In this section we use the example of waves on a string to analyze
the reasons why a reection occurs at the boundary between media,
predict quantitatively the intensities of reection and transmission,
and discuss how to tell which reections are inverting and which
are noninverting. Some technical details are relegated to sec. 6.2.5,
p. 383.

Why reection occurs

To understand the fundamental reasons for what does occur at
the boundary between media, let’s �rst discuss what doesn’t happen.
For the sake of concreteness, consider a sinusoidal wave on a string.
If the wave progresses from a heavier portion of the string, in which
its velocity is low, to a lighter-weight part, in which it is high, then
the equation v = f � tells us that it must change its frequency, or
its wavelength, or both. If only the frequency changed, then the
parts of the wave in the two di�erent portions of the string would
quickly get out of step with each other, producing a discontinuity in
the wave, g/1. This is unphysical, so we know that the wavelength
must change while the frequency remains constant, g/2.

But there is still something unphysical about �gure g/2. The
sudden change in the shape of the wave has resulted in a sharp kink
at the boundary. This can’t really happen, because the medium
tends to accelerate in such a way as to eliminate curvature. A sharp
kink corresponds to an in�nite curvature at one point, which would
produce an in�nite acceleration, which would not be consistent with
the smooth pattern of wave motion envisioned in �g. g/2. Waves
can have kinks, but not stationary kinks.

We conclude that without positing partial reection of the wave,
we cannot simultaneously satisfy the requirements of (1) continuity
of the wave, and (2) no sudden changes in the slope of the wave. In
other words, we assume that both the wave and its derivative are
continuous functions.)
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h / A pulse being partially re-
�ected and partially transmitted
at the boundary between two
strings in which the wave speed
is different. The top drawing
shows the pulse heading to the
right, toward the heaver string.
For clarity, all but the �rst and
last drawings are schematic.
Once the re�ected pulse begins
to emerge from the boundary,
it adds together with the trailing
parts of the incident pulse. Their
sum, shown as a wider line, is
what is actually observed.

Does this amount to a proof that reection occurs? Not quite.
We have only proved that certain types of wave motion are not
valid solutions. In the following subsection, we prove that a valid
solution can always be found in which a reection occurs. Now in
physics, we normally assume (but seldom prove formally) that the
equations of motion have a unique solution, since otherwise a given
set of initial conditions could lead to di�erent behavior later on,
but the Newtonian universe is supposed to be deterministic. Since
the solution must be unique, and we derive below a valid solution
involving a reected pulse, we will have ended up with what amounts
to a proof of reection.

Intensity of reection

I will now show, in the case of waves on a string, that it is possible
to satisfy the physical requirements given above by constructing a
reected wave, and as a bonus this will produce an equation for
the proportions of reection and transmission and a prediction as
to which conditions will lead to inverted and which to uninverted
reection. We assume only that the principle of superposition holds,
which is a good approximation for waves on a string of su�ciently
small amplitude.

Let the unknown amplitudes of the reected and transmitted
waves beR and T , respectively. An inverted reection would be
represented by a negative value ofR. We can without loss of gen-
erality take the incident (original) wave to have unit amplitude.
Superposition tells us that if, for instance, the incident wave had
double this amplitude, we could immediately �nd a corresponding
solution simply by doubling R and T .

Just to the left of the boundary, the height of the wave is given
by the height 1 of the incident wave, plus the height R of the part
of the reected wave that has just been created and begun heading
back, for a total height of 1+ R. On the right side immediately next
to the boundary, the transmitted wave has a height T . To avoid a
discontinuity, we must have

1 + R = T .

Next we turn to the requirement of equal slopes on both sides of
the boundary. Let the slope of the incoming wave be s immediately
to the left of the junction. If the wave was 100% reected, and
without inversion, then the slope of the reected wave would be� s,
since the wave has been reversed in direction. In general, the slope
of the reected wave equals� sR, and the slopes of the superposed
waves on the left side add up tos � sR. On the right, the slope
depends on the amplitude,T , but is also changed by the stretching
or compression of the wave due to the change in speed. If, for
example, the wave speed is twice as great on the right side, then
the slope is cut in half by this e�ect. The slope on the right is
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therefore s(v1=v2)T , wherev1 is the velocity in the original medium
and v2 the velocity in the new medium. Equality of slopes gives
s � sR = s(v1=v2)T , or

1 � R =
v1

v2
T .

Solving the two equations for the unknownsR and T gives

R =
v2 � v1

v2 + v1

and

T =
2v2

v2 + v1
.

The �rst equation shows that there is no reection unless the
two wave speeds are di�erent, and that the reection is inverted in
reection back into a fast medium.

The energies of the transmitted and reected wavers always add
up to the same as the energy of the original wave. There is never
any abrupt loss (or gain) in energy when a wave crosses a boundary;
conversion of wave energy to heat occurs for many types of waves,
but it occurs throughout the medium. The equation for T , surpris-
ingly, allows the amplitude of the transmitted wave to be greater
than 1, i.e., greater than that of the incident wave. This does not
violate conservation of energy, because this occurs when the second
string is less massive, reducing its kinetic energy, and the trans-
mitted pulse is broader and less strongly curved, which lessens its
potential energy.

We have attempted to develop some general facts about wave
reection by using the speci�c example of a wave on a string, which
raises the question of whether these facts really are general. These
issues are discussed in more detail in optional section 6.2.5, p. 383,
but here is a brief summary.

The following facts are more generally true for wave reection
in one dimension.

� The wave is partially reected and partially transmitted, with
the reected and transmitted parts sharing the energy.

� For an interface between media 1 and 2, there are two possible
reections: back into 1, and back into 2. One of these is
inverting ( R < 0) and the other is noninverting (R > 0).

The following aspects of our analysis may need to be modi�ed
for di�erent types of waves.
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i / A pulse encounters two
boundaries.

j / A sine wave has been re�ected
at two different boundaries, and
the two re�ections interfere.

� In some cases, the expressions for the reected and transmit-
ted amplitudes depend not on the ratio v1=v2 but on some
more complicated ratio v1 : : : =v2 : : :, where : : : stands for some
additional property of the medium.

� The sign of R, depends not just on this ratio but also on
the type of the wave and on what we choose as a measure of
amplitude.

6.2.3 Interference effects

If you look at the front of a pair of high-quality binoculars, you
will notice a greenish-blue coating on the lenses. This is advertised
as a coating to prevent reection. Now reection is clearly undesir-
able | we want the light to go in the binoculars | but so far I’ve
described reection as an unalterable fact of nature, depending only
on the properties of the two wave media. The coating can’t change
the speed of light in air or in glass, so how can it work? The key is
that the coating itself is a wave medium. In other words, we have
a three-layer sandwich of materials: air, coating, and glass. We will
analyze the way the coating works, not because optical coatings are
an important part of your education but because it provides a good
example of the general phenomenon of wave interference e�ects.

There are two di�erent interfaces between media: an air-coating
boundary and a coating-glass boundary. Partial reection and par-
tial transmission will occur at each boundary. For ease of visual-
ization let’s start by considering an equivalent system consisting of
three dissimilar pieces of string tied together, and a wave pattern
consisting initially of a single pulse. Figure i/1 shows the incident
pulse moving through the heavy rope, in which its velocity is low.
When it encounters the lighter-weight rope in the middle, a faster
medium, it is partially reected and partially transmitted. (The
transmitted pulse is bigger, but nevertheless has only part of the
original energy.) The pulse transmitted by the �rst interface is then
partially reected and partially transmitted by the second bound-
ary, i/3. In �gure i/4, two pulses are on the way back out to the
left, and a single pulse is heading o� to the right. (There is still a
weak pulse caught between the two boundaries, and this will rattle
back and forth, rapidly getting too weak to detect as it leaks energy
to the outside with each partial reection.)

Note how, of the two reected pulses in i/4, one is inverted and
one uninverted. One underwent reection at the �rst boundary (a
reection back into a slower medium is uninverted), but the other
was reected at the second boundary (reection back into a faster
medium is inverted).

Now let’s imagine what would have happened if the incoming
wave pattern had been a long sinusoidal wave train instead of a
single pulse. The �rst two waves to reemerge on the left could be
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k / A pulse bounces back and
forth.

l / We model a guitar string
attached to the guitar’s body at
both ends as a light-weight string
attached to extremely heavy
strings at its ends.

in phase, j/1, or out of phase, j/2, or anywhere in between. The
amount of lag between them depends entirely on the width of the
middle segment of string. If we choose the width of the middle string
segment correctly, then we can arrange for destructive interference
to occur, j/2, with cancellation resulting in a very weak reected
wave.

This whole analysis applies directly to our original case of optical
coatings. Visible light from most sources does consist of a stream
of short sinusoidal wave-trains such as the ones drawn above. The
only real di�erence between the waves-on-a-rope example and the
case of an optical coating is that the �rst and third media are air
and glass, in which light does not have the same speed. However,
the general result is the same as long as the air and the glass have
light-wave speeds that are either both greater than the coating’s or
both less than the coating’s.

The business of optical coatings turns out to be a very arcane
one, with a plethora of trade secrets and \black magic" techniques
handed down from master to apprentice. Nevertheless, the ideas
you have learned about waves in general are su�cient to allow you
to come to some de�nite conclusions without any further technical
knowledge. The self-check and discussion questions will direct you
along these lines of thought.

self-check E
Color corresponds to wavelength of light waves. Is it possible to choose
a thickness for an optical coating that will produce destructive interfer-
ence for all colors of light? . Answer, p.
1048

This example was typical of a wide variety of wave interference
e�ects. With a little guidance, you are now ready to �gure out
for yourself other examples such as the rainbow pattern made by a
compact disc or by a layer of oil on a puddle.

Discussion Questions

A Is it possible to get complete destructive interference in an optical
coating, at least for light of one speci�c wavelength?

B Sunlight consists of sinusoidal wave-trains containing on the order
of a hundred cycles back-to-back, for a length of something like a tenth of
a millimeter. What happens if you try to make an optical coating thicker
than this?

C Suppose you take two microscope slides and lay one on top of the
other so that one of its edges is resting on the corresponding edge of the
bottom one. If you insert a sliver of paper or a hair at the opposite end,
a wedge-shaped layer of air will exist in the middle, with a thickness that
changes gradually from one end to the other. What would you expect to
see if the slides were illuminated from above by light of a single color?
How would this change if you gradually lifted the lower edge of the top
slide until the two slides were �nally parallel?
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D An observation like the one described in discussion question C was
used by Newton as evidence against the wave theory of light! If Newton
didn’t know about inverting and noninverting re�ections, what would have
seemed inexplicable to him about the region where the air layer had zero
or nearly zero thickness?

6.2.4 Waves bounded on both sides

In the example of the previous section, it was theoretically true
that a pulse would be trapped permanently in the middle medium,
but that pulse was not central to our discussion, and in any case it
was weakening severely with each partial reection. Now consider
a guitar string. At its ends it is tied to the body of the instrument
itself, and since the body is very massive, the behavior of the waves
when they reach the end of the string can be understood in the
same way as if the actual guitar string was attached on the ends to
strings that were extremely massive. Reections are most intense
when the two media are very dissimilar. Because the wave speed in
the body is so radically di�erent from the speed in the string, we
should expect nearly 100% reection.

Although this may seem like a rather bizarre physical model of
the actual guitar string, it already tells us something interesting
about the behavior of a guitar that we would not otherwise have
understood. The body, far from being a passive frame for attaching
the strings to, is actually the exit path for the wave energy in the
strings. With every reection, the wave pattern on the string loses
a tiny fraction of its energy, which is then conducted through the
body and out into the air. (The string has too little cross-section to
make sound waves e�ciently by itself.) By changing the properties
of the body, moreover, we should expect to have an e�ect on the
manner in which sound escapes from the instrument. This is clearly
demonstrated by the electric guitar, which has an extremely massive,
solid wooden body. Here the dissimilarity between the two wave
media is even more pronounced, with the result that wave energy
leaks out of the string even more slowly. This is why an electric
guitar with no electric pickup can hardly be heard at all, and it is
also the reason why notes on an electric guitar can be sustained for
longer than notes on an acoustic guitar.

If we initially create a disturbance on a guitar string, how will
the reections behave? In reality, the �nger or pick will give the
string a triangular shape before letting it go, and we may think of
this triangular shape as a very broad \dent" in the string which
will spread out in both directions. For simplicity, however, let’s just
imagine a wave pattern that initially consists of a single, narrow
pulse traveling up the neck, k/1. After reection from the top end,
it is inverted, k/3. Now something interesting happens: �gure k/5
is identical to �gure k/1. After two reections, the pulse has been
inverted twice and has changed direction twice. It is now back where
it started. The motion is periodic. This is why a guitar produces
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m / The period of this double-
pulse pattern is half of what we’d
otherwise expect.

n / Any wave can be made
by superposing sine waves.

sounds that have a de�nite sensation of pitch.

self-check F
Notice that from k/1 to k/5, the pulse has passed by every point on the
string exactly twice. This means that the total distance it has traveled
equals 2 L, where L is the length of the string. Given this fact, what are
the period and frequency of the sound it produces, expressed in terms
of L and v, the velocity of the wave? . Answer, p. 1048

Note that if the waves on the string obey the principle of super-
position, then the velocity must be independent of amplitude, and
the guitar will produce the same pitch regardless of whether it is
played loudly or softly. In reality, waves on a string obey the prin-
ciple of superposition approximately, but not exactly. The guitar,
like just about any acoustic instrument, is a little out of tune when
played loudly. (The e�ect is more pronounced for wind instruments
than for strings, but wind players are able to compensate for it.)

Now there is only one hole in our reasoning. Suppose we some-
how arrange to have an initial setup consisting of two identical pulses
heading toward each other, as in �gure (g). They will pass through
each other, undergo a single inverting reection, and come back to
a con�guration in which their positions have been exactly inter-
changed. This means that the period of vibration is half as long.
The frequency is twice as high.

This might seem like a purely academic possibility, since nobody
actually plays the guitar with two picks at once! But in fact it is an
example of a very general fact about waves that are bounded on both
sides. A mathematical theorem called Fourier’s theorem states that
any wave can be created by superposing sine waves. Figure n shows
how even by using only four sine waves with appropriately chosen
amplitudes, we can arrive at a sum which is a decent approximation
to the realistic triangular shape of a guitar string being plucked.
The one-hump wave, in which half a wavelength �ts on the string,
will behave like the single pulse we originally discussed. We call
its frequency f o. The two-hump wave, with one whole wavelength,
is very much like the two-pulse example. For the reasons discussed
above, its frequency is 2f o. Similarly, the three-hump and four-hump
waves have frequencies of 3f o and 4f o.

Theoretically we would need to add together in�nitely many
such wave patterns to describe the initial triangular shape of the
string exactly, although the amplitudes required for the very high
frequency parts would be very small, and an excellent approximation
could be achieved with as few as ten waves.

We thus arrive at the following very general conclusion. When-
ever a wave pattern exists in a medium bounded on both sides by
media in which the wave speed is very di�erent, the motion can be
broken down into the motion of a (theoretically in�nite) series of sine

Section 6.2 Bounded waves 379



o / Graphs of loudness ver-
sus frequency for the vowel �ah,�
sung as three different musical
notes. G is consonant with D,
since every overtone of G that
is close to an overtone of D
(marked �*�) is at exactly the
same frequency. G and C] are
dissonant together, since some
of the overtones of G (marked
�x�) are close to, but not right on
top of, those of C] .

waves, with frequenciesf o, 2f o, 3f o, : : : Except for some technical
details, to be discussed below, this analysis applies to a vast range of
sound-producing systems, including the air column within the hu-
man vocal tract. Because sounds composed of this kind of pattern
of frequencies are so common, our ear-brain system has evolved so
as to perceive them as a single, fused sensation of tone.

Musical applications

Many musicians claim to be able to pick out by ear several of the
frequencies 2f o, 3f o, ..., called overtones orharmonics of the funda-
mental f o, but they are kidding themselves. In reality, the overtone
series has two important roles in music, neither of which depends
on this �ctitious ability to \hear out" the individual overtones.

First, the relative strengths of the overtones is an important
part of the personality of a sound, called its timbre (rhymes with
\amber"). The characteristic tone of the brass instruments, for ex-
ample, is a sound that starts out with a very strong harmonic series
extending up to very high frequencies, but whose higher harmonics
die down drastically as the attack changes to the sustained portion
of the note.

Second, although the ear cannot separate the individual harmon-
ics of a single musical tone, it is very sensitive to clashes between
the overtones of notes played simultaneously, i.e., in harmony. We
tend to perceive a combination of notes as being dissonant if they
have overtones that are close but not the same. Roughly speaking,
strong overtones whose frequencies di�er by more than 1% and less
than 10% cause the notes to sound dissonant. It is important to re-
alize that the term \dissonance" is not a negative one in music. No
matter how long you search the radio dial, you will never hear more
than three seconds of music without at least one dissonant combi-
nation of notes. Dissonance is a necessary ingredient in the creation
of a musical cycle of tension and release. Musically knowledgeable
people do not usually use the word \dissonant" as a criticism of mu-
sic, and if they do, what they are really saying is that the dissonance
has been used in a clumsy way, or without providing any contrast
between dissonance and consonance.

Standing waves

Figure p shows sinusoidal wave patterns made by shaking a rope.
I used to enjoy doing this at the bank with the pens on chains, back
in the days when people actually went to the bank. You might think
that I and the person in the photos had to practice for a long time
in order to get such nice sine waves. In fact, a sine wave is the only
shape that can create this kind of wave pattern, called astanding
wave, which simply vibrates back and forth in one place without
moving. The sine wave just creates itself automatically when you
�nd the right frequency, because no other shape is possible.
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q / If you take a sine wave
and make a copy of it shifted
over, their sum is still a sine wave.
The same is not true for a square
wave.

p / Standing waves on a rope. (PSSC Physics.)

If you think about it, it’s not even obvious that sine waves should
be able to do this trick. After all, waves are supposed to travel at a
set speed, aren’t they? The speed isn’t supposed to be zero! Well, we
can actually think of a standing wave as a superposition of a moving
sine wave with its own reection, which is moving the opposite way.
Sine waves have the unique mathematical property that the sum of
sine waves of equal wavelength is simply a new sine wave with the
same wavelength. As the two sine waves go back and forth, they
always cancel perfectly at the ends, and their sum appears to stand
still.

Standing wave patterns are rather important, since atoms are
really standing-wave patterns of electron waves. You are a standing
wave!

Standing-wave patterns of air columns

The air column inside a wind instrument behaves very much
like the wave-on-a-string example we’ve been concentrating on so
far, the main di�erence being that we may have either inverting or
noninverting reections at the ends.

Some organ pipes are closed at both ends. The speed of sound
is di�erent in metal than in air, so there is a strong reection at
the closed ends, and we can have standing waves. These reections
are both density-noninverting, so we get symmetric standing-wave
patterns, such as the one shown in �gure s/1.

Section 6.2 Bounded waves 381



r / Surprisingly, sound waves
undergo partial re�ection at the
open ends of tubes as well as
closed ones.

s / Graphs of excess density
versus position for the lowest-
frequency standing waves of
three types of air columns. Points
on the axis have normal air
density.

Figure r shows the sound waves in and around a bamboo Japanese
ute called a shakuhachi, which is open at both ends of the air col-
umn. We can only have a standing wave pattern if there are re-
ections at the ends, but that is very counterintuitive | why is
there any reection at all, if the sound wave is free to emerge into
open space, and there is no change in medium? Recall the reason
why we got reections at a change in medium: because the wave-
length changes, so the wave has to readjust itself from one pattern
to another, and the only way it can do that without developing a
kink is if there is a reection. Something similar is happening here.
The only di�erence is that the wave is adjusting from being a plane
wave to being a spherical wave. The reections at the open ends
are density-inverting, s/2, so the wave pattern is pinched o� at the
ends. Comparing panels 1 and 2 of the �gure, we see that although
the wave pattens are di�erent, in both cases the wavelength is the
same: in the lowest-frequency standing wave, half a wavelength �ts
inside the tube. Thus, it isn’t necessary to memorize which type of
reection is inverting and which is uninverting. It’s only necessary
to know that the tubes are symmetric.

Finally, we can have an asymmetric tube: closed at one end and
open at the other. A common example is the pan pipes, t, which are
closed at the bottom and open at the top. The standing wave with
the lowest frequency is therefore one in which 1/4 of a wavelength
�ts along the length of the tube, as shown in �gure s/3.

Sometimes an instrument’s physical appearance can be mislead-
ing. A concert ute, u, is closed at the mouth end and open at
the other, so we would expect it to behave like an asymmetric air
column; in reality, it behaves like a symmetric air column open at
both ends, because the embouchure hole (the hole the player blows
over) acts like an open end. The clarinet and the saxophone look
similar, having a mouthpiece and reed at one end and an open end
at the other, but they act di�erent. In fact the clarinet’s air col-
umn has patterns of vibration that are asymmetric, the saxophone
symmetric. The discrepancy comes from the di�erence between the
conical tube of the sax and the cylindrical tube of the clarinet. The
adjustment of the wave pattern from a plane wave to a spherical
wave is more gradual at the aring bell of the saxophone.

self-check G
Draw a graph of pressure versus position for the �rst overtone of the air
column in a tube open at one end and closed at the other. This will be
the next-to-longest possible wavelength that allows for a point of maxi-
mum vibration at one end and a point of no vibration at the other. How
many times shorter will its wavelength be compared to the frequency
of the lowest-frequency standing wave, shown in the �gure? Based on
this, how many times greater will its frequency be? . Answer, p.
1048
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t / A pan pipe is an asym-
metric air column, open at the top
and closed at the bottom.

u / A concert �ute looks like
an asymmetric air column, open
at the mouth end and closed at
the other. However, its patterns of
vibration are symmetric, because
the embouchure hole acts like an
open end.

The speed of sound example 13
We can get a rough and ready derivation of the equation for the

speed of sound by analyzing the standing waves in a cylindrical
air column as a special type of Helmholtz resonance (example
25 on page 339), in which the cavity happens to have the same
cross-sectional area as the neck. Roughly speaking, the regions
of maximum density variation act like the cavity. The regions of
minimum density variation, on the other hand, are the places
where the velocity of the air is varying the most; these regions
throttle back the speed of the vibration, because of the inertia of
the moving air. If the cylinder has cross-sectional area A, then the
�cavity� and �neck� parts of the wave both have lengths of some-
thing like � =2, and the volume of the �cavity� is about A� =2. We
get v = f � = (: : :)

p
 Po=� , where the factor (: : :) represents nu-

merical stuff that we can’t possibly hope to have gotten right with
such a crude argument. The correct result is in fact v =

p
 Po=� .

Isaac Newton attempted the same calculation, but didn’t under-
stand the thermodynamic effects involved, and therefore got a
result that didn’t have the correct factor of p  .

This chapter is summarized on page 1069. Notation and terminology
are tabulated on pages 1057-1058.

6.2.5 ? Some technical aspects of re�ection

In this section we address some technical details of the treatment
of reection and transmission of waves.

Dependence of reection on other variables besides velocity

In section 6.2.2 we derived the expressions for the transmitted
and reected amplitudes by demanding that two things match up
on both sides of the boundary: the height of the wave and the
slope of the wave. These requirements were stated purely in terms
of kinematics (the description of how the wave moves) rather than
dynamics (the explanation for the wave motion in terms of Newton’s
laws). For this reason, the results depended only on the purely
kinematic quantity � = v2=v1, as can be seen more clearly if we
rewrite the expressions in the following form:

R =
� � 1
� + 1

and T =
2�

� + 1
.

But this purely kinematical treatment only worked because of
a dynamical fact that we didn’t emphasize. We assumed equality
of the slopes,s1 = s2, because waves don’t like to have kinks. The
underlying dynamical reason for this, in the case of a wave on a
string, is that a kink is pointlike, so the portion of the string at the
kink is in�nitesimal in size, and therefore has essentially zero mass.
If the transverse forces acting on it di�ered by some �nite amount,
then its acceleration would be in�nite, which is not possible. The
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v / A disturbance in freeway
traf�c.

w / In the mirror image, the
areas of positive excess traf�c
density are still positive, but
the velocities of the cars have
all been reversed, so areas of
positive excess velocity have
been turned into negative ones.

di�erence between the two forces isT s1 � T s2, so s1 = s2. But this
relies on the assumption that T is the same on both sides of the
boundary. Now this is true, because we can’t put di�erent amounts
of tension on two ropes that are tied together end to end. Any excess
tension applied to one tope is distributed equally to the other. For
other types of waves, however, we cannot make a similar argument,
and therefore it need not be true that s1 = s2.

A more detailed analysis shows that in general we have not� =
v2=v1 but � = z2=z1, where z is a quantity called impedance which
is de�ned for this purpose. In a great many examples, as for the
waves on a string, it is true that v2=v1 = z2=z1, but this is not a
universal fact. Most of the exceptions are rather specialized and
technical, such as the reection of light waves when the media have
magnetic properties, but one fairly common and important example
is the case of sound waves, for whichz = �v depends not just on
the wave velocity v but also on the density � . A practical example
occurs in medical ultrasound scans, where the contrast of the image
is made possible because of the very large di�erences in impedance
between di�erent types of tissue. The speed of sound in various
tissues such as bone and muscle varies by abount a factor of 2, which
is not a particularly huge factor, but there are also large variations
in density. The lung, for example, is basically a sponge or sack �lled
with air. For this reason, the acoustic impedances of the tissues
show a huge amount of variation, with, e.g.,zbone=zlung � 40.

Inverted and uninverted reections in general

For waves on a string, reections back into a faster medium are
inverted, while those back into a slower medium are uninverted. Is
this true for all types of waves? The rather subtle answer is that it
depends on what property of the wave you are discussing.

Let’s start by considering wave disturbances of freeway tra�c.
Anyone who has driven frequently on crowded freeways has observed
the phenomenon in which one driver taps the brakes, starting a chain
reaction that travels backward down the freeway as each person in
turn exercises caution in order to avoid rear-ending anyone. The
reason why this type of wave is relevant is that it gives a simple,
easily visualized example of how our description of a wave depends
on which aspect of the wave we have in mind. In steadily owing
freeway tra�c, both the density of cars and their velocity are con-
stant all along the road. Since there is no disturbance in this pattern
of constant velocity and density, we say that there is no wave. Now
if a wave is touched o� by a person tapping the brakes, we can either
describe it as a region of high density or as a region of decreasing
velocity.

The freeway tra�c wave is in fact a good model of a sound wave,
and a sound wave can likewise be described either by the density
(or pressure) of the air or by its speed. Likewise many other types
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of waves can be described by either of two functions, one of which
is often the derivative of the other with respect to position.

Now let’s consider reections. If we observe the freeway wave in
a mirror, the high-density area will still appear high in density, but
velocity in the opposite direction will now be described by a neg-
ative number. A person observing the mirror image will draw the
same density graph, but the velocity graph will be ipped across the
x axis, and its original region of negative slope will now have posi-
tive slope. Although I don’t know any physical situation that would
correspond to the reection of a tra�c wave, we can immediately ap-
ply the same reasoning to sound waves, which often do get reected,
and determine that a reection can either be density-inverting and
velocity-noninverting or density-noninverting and velocity-inverting.

This same type of situation will occur over and over as one en-
counters new types of waves, and to apply the analogy we need
only determine which quantities, like velocity, become negated in a
mirror image and which, like density, stay the same.

A light wave, for instance, consists of a traveling pattern of elec-
tric and magnetic �elds. All you need to know in order to analyze the
reection of light waves is how electric and magnetic �elds behave
under reection; you don’t need to know any of the detailed physics
of electricity and magnetism. An electric �eld can be detected, for
example, by the way one’s hair stands on end. The direction of the
hair indicates the direction of the electric �eld. In a mirror image,
the hair points the other way, so the electric �eld is apparently re-
versed in a mirror image. The behavior of magnetic �elds, however,
is a little tricky. The magnetic properties of a bar magnet, for in-
stance, are caused by the aligned rotation of the outermost orbiting
electrons of the atoms. In a mirror image, the direction of rotation
is reversed, say from clockwise to counterclockwise, and so the mag-
netic �eld is reversed twice: once simply because the whole picture
is ipped and once because of the reversed rotation of the electrons.
In other words, magnetic �elds do not reverse themselves in a mirror
image. We can thus predict that there will be two possible types of
reection of light waves. In one, the electric �eld is inverted and the
magnetic �eld uninverted (example 23, p. 720). In the other, the
electric �eld is uninverted and the magnetic �eld inverted.
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Problem 3

Problems
The symbols

p
, , etc. are explained on page 390.

1 The musical note middle C has a frequency of 262 Hz. What
are its period and wavelength?

2 The following is a graph of the height of a water wave as a
function of position, at a certain moment in time.

Trace this graph onto another piece of paper, and then sketch
below it the corresponding graphs that would be obtained if

(a) the amplitude and frequency were doubled while the velocity
remained the same;

(b) the frequency and velocity were both doubled while the am-
plitude remained unchanged;

(c) the wavelength and amplitude were reduced by a factor of
three while the velocity was doubled.

Explain all your answers. [Problem by Arnold Arons.]

3 (a) The graph shows the height of a water wave pulse as a
function of position. Draw a graph of height as a function of time
for a speci�c point on the water. Assume the pulse is traveling to
the right.
(b) Repeat part a, but assume the pulse is traveling to the left.
(c) Now assume the original graph was of height as a function of
time, and draw a graph of height as a function of position, assuming
the pulse is traveling to the right.
(d) Repeat part c, but assume the pulse is traveling to the left.
Explain all your answers. [Problem by Arnold Arons.]

4 At a particular moment in time, a wave on a string has a shape
described byy = 3.5 cos(0.73�x + 0.45�t + 0.37� ). The stu� inside
the cosine is in radians. Assume that the units of the numerical
constants are such thatx, y, and t are in SI units. . Hint, p. 1023
(a) Is the wave moving in the positive x or the negative x direction?
(b) Find the wave’s period, frequency, wavelength.
(c) Find the wave’s velocity.
(d) Find the maximum velocity of any point on the string, and
compare with the magnitude and direction of the wave’s velocity.p
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Problem 5.

Problem 8.

5 The �gure shows one wavelength of a steady sinusoidal wave
traveling to the right along a string. De�ne a coordinate system
in which the positive x axis points to the right and the positive y
axis up, such that the attened string would have y = 0. Copy
the �gure, and label with y = 0 all the appropriate parts of the
string. Similarly, label with v = 0 all parts of the string whose
velocities are zero, and with a = 0 all parts whose accelerations
are zero. There is more than one point whose velocity is of the
greatest magnitude. Pick one of these, and indicate the direction of
its velocity vector. Do the same for a point having the maximum
magnitude of acceleration. Explain all your answers.

[Problem by Arnold Arons.]

6 (a) Find an equation for the relationship between the Doppler-
shifted frequency of a wave and the frequency of the original wave,
for the case of a stationary observer and a source moving directly
toward or away from the observer.
(b) Check that the units of your answer make sense.
(c) Check that the dependence onvs makes sense.

7 Suggest a quantitative experiment to look for any deviation
from the principle of superposition for surface waves in water. Try
to make your experiment simple and practical.

8 The simplest trick with a lasso is to spin a at loop in a
horizontal plane. The whirling loop of a lasso is kept under tension
mainly due to its own rotation. Although the spoke’s force on the
loop has an inward component, we’ll ignore it. The purpose of this
problem, which is based on one by A.P. French, is to prove a cute
fact about wave disturbances moving around the loop. As far as I
know, this fact has no practical implications for trick roping! Let the
loop have radius r and mass per unit length � , and let its angular
velocity be ! .
(a) Find the tension, T , in the loop in terms of r , � , and ! . Assume
the loop is a perfect circle, with no wave disturbances on it yet.

. Hint, p. 1023 . Answer, p. 1055
(b) Find the velocity of a wave pulse traveling around the loop.
Discuss what happens when the pulse moves is in the same direction
as the rotation, and when it travels contrary to the rotation.

9 A string hangs vertically, free at the bottom and attached at
the top.
(a) Find the velocity of waves on the string as a function of the
distance from the bottom
(b) Find the acceleration of waves on the string. . Answer, p. 1055
(c) Interpret your answers to parts a and b for the case where a pulse
comes down and reaches the end of the string. What happens next?
Check your answer against experiment and conservation of energy.
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C 261.6 Hz
D 293.7
E 329.6
F 349.2
G 392.0
A 440.0
B[ 466.2

Problem 15.

10 Singing that is o�-pitch by more than about 1% sounds bad.
How fast would a singer have to be moving relative to the rest of
a band to make this much of a change in pitch due to the Doppler
e�ect?

11 Light travels faster in warmer air. On a sunny day, the sun
can heat a road and create a layer of hot air above it. Let’s model
this layer as a uniform one with a sharp boundary separating it from
the cooler air above. Use this model to explain the formation of a
mirage appearing like the shiny surface of a pool of water.

12 (a) Compute the amplitude of light that is reected back
into air at an air-water interface, relative to the amplitude of the
incident wave. Assume that the light arrives in the direction directly
perpendicular to the surface.The speeds of light in air and water are
3.0 � 108 and 2.2� 108 m/s, respectively.
(b) Find the energy of the reected wave as a fraction of the incident
energy. . Hint, p. 1023

p

13 A concert ute produces its lowest note, at about 262 Hz,
when half of a wavelength �ts inside its tube. Compute the length
of the ute. . Answer, p. 1055

14 (a) A good tenor saxophone player can play all of the fol-
lowing notes without changing her �ngering, simply by altering the
tightness of her lips: E[ (150 Hz), E[ (300 Hz), B[ (450 Hz), and
E[ (600 Hz). How is this possible? (I’m not asking you to analyze
the coupling between the lips, the reed, the mouthpiece, and the air
column, which is very complicated.)
(b) Some saxophone players are known for their ability to use this
technique to play \freak notes," i.e., notes above the normal range
of the instrument. Why isn’t it possible to play notes below the
normal range using this technique?

15 The table gives the frequencies of the notes that make up
the key of F major, starting from middle C and going up through
all seven notes.
(a) Calculate the �rst four or �ve harmonics of C and G, and deter-
mine whether these two notes will be consonant or dissonant. (Re-
call that harmonics that di�er by about 1-10% cause dissonance.)
(b) Do the same for C and B[ .
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Problem 16.

16 A Fabry-Perot interferometer, shown in the �gure being used
to measure the diameter of a thin �lament, consists of two glass
plates with an air gap between them. As the top plate is moved
up or down with a screw, the light passing through the plates goes
through a cycle of constructive and destructive interference, which is
mainly due to interference between rays that pass straight through
and those that are reected twice back into the air gap. (Although
the dimensions in this drawing are distorted for legibility, the glass
plates would really be much thicker than the length of the wave-
trains of light, so no interference e�ects would be observed due to
reections within the glass.)
(a) If the top plate is cranked down so that the thickness, d, of
the air gap is much less than the wavelength� of the light, i.e., in
the limit d ! 0, what is the phase relationship between the two
rays? (Recall that the phase can be inverted by a reection.) Is the
interference constructive, or destructive?
(b) If d is now slowly increased, what is the �rst value ofd for which
the interference is the same as atd ! 0? Express your answer in
terms of � .
(c) Suppose the apparatus is �rst set up as shown in the �gure. The
�lament is then removed, and n cycles of brightening and dimming
are counted while the top plate is brought down to d = 0. What is
the thickness of the �lament, in terms of n and � ?
Based on a problem by D.J. Raymond.

17 (a) A wave pulse moves into a new medium, where its ve-
locity is greater by a factor � . Find an expression for the fraction,
f , of the wave energy that is transmitted, in terms of � . Note that,
as discussed in the text, you cannot simply �nd f by squaring the
amplitude of the transmitted wave. . Answer, p. 1055
(b) Suppose we wish to transmit a pulse from one medium to an-
other, maximizing the fraction of the wave energy transmitted. To
do so, we sandwich another layer in between them, so that the wave
moves from the initial medium, where its velocity is v1, through the
intermediate layer, where it is v2, and on into the �nal layer, where
it becomesv3. What is the optimal value of v2? (Assume that the
middle layer is thicker than the length of the pulse, so there are no
interference e�ects. Also, although there will be later echoes that
are transmitted after multiple reections back and forth across the
middle layer, you are only to optimize the strength of the transmit-
ted pulse that is �rst to emerge. In other words, it’s simply a matter
of applying your answer from part a twice to �nd the amount that
�nally gets through.) . Answer, p. 1055
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18 The expressions for the amplitudes of reected and trans-
mitted waves depend on the unitless ratiov2=v1 (or, more generally,
on the ratio of the impedances). Call this ratio � . (a) Show that
changing � to 1=� (e.g., by interchanging the roles of the two media)
has an e�ect on the reected amplitude that can be expressed in a
simple way, and discuss what this means in terms of inversion and
energy. (b) Find the two values of � for which jRj = 1=2.

Key to symbols:
easy typical challenging di�cult very di�cultp

An answer check is available at www.lightandmatter.com.
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a / This Global Positioning
System (GPS) system, running
on a smartphone attached to a
bike’s handlebar, depends on
Einstein’s theory of relativity.
Time �ows at a different rate
aboard a GPS satellite than it
does on the bike, and the GPS
software has to take this into
account.

b / The clock took up two seats,
and two tickets were bought for it
under the name of �Mr. Clock.�

Chapter 7

Relativity

7.1 Time is not absolute
When Einstein �rst began to develop the theory of relativity, around
1905, the only real-world observations he could draw on were am-
biguous and indirect. Today, the evidence is part of everyday life.
For example, every time you use a GPS receiver, a, you’re using
Einstein’s theory of relativity. Somewhere between 1905 and today,
technology became good enough to allow conceptuallysimple ex-
periments that students in the early 20th century could only discuss
in terms like \Imagine that we could. . . " A good jumping-on point
is 1971. In that year, J.C. Hafele and R.E. Keating brought atomic
clocks aboard commercial airliners, b, and went around the world,
once from east to west and once from west to east. Hafele and
Keating observed that there was a discrepancy between the times
measured by the traveling clocks and the times measured by similar
clocks that stayed home at the U.S. Naval Observatory in Wash-
ington. The east-going clock lost time, ending up o� by � 59 � 10
nanoseconds, while the west-going one gained 273� 7 ns.

7.1.1 The correspondence principle

This establishes that time doesn’t work the way Newton believed
it did when he wrote that \Absolute, true, and mathematical time,
of itself, and from its own nature ows equably without regard to
anything external. . . " We are used to thinking of time as absolute
and universal, so it is disturbing to �nd that it can ow at a di�erent
rate for observers in di�erent frames of reference. Nevertheless, the
e�ects that Hafele and Keating observed were small. This makes
sense: Newton’s laws have already been thoroughly tested by ex-
periments under a wide variety of conditions, so a new theory like
relativity must agree with Newton’s to a good approximation, within
the Newtonian theory’s realm of applicability. This requirement of
backward-compatibility is known as the correspondence principle.

7.1.2 Causality

It’s also reassuring that the e�ects on time were small compared
to the three-day lengths of the plane trips. There was therefore no
opportunity for paradoxical scenarios such as one in which the east-
going experimenter arrived back in Washington before he left and
then convinced himself not to take the trip. A theory that maintains
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c / Newton’s laws do not dis-
tinguish past from future. The
football could travel in either
direction while obeying Newton’s
laws.

d / All three clocks are mov-
ing to the east. Even though the
west-going plane is moving to the
west relative to the air, the air
is moving to the east due to the
earth’s rotation.

this kind of orderly relationship between cause and e�ect is said to
satisfy causality.

Causality is like a water-hungry front-yard lawn in Los Angeles:
we know we want it, but it’s not easy to explain why. Even in plain
old Newtonian physics, there is no clear distinction between past
and future. In �gure c, number 18 throws the football to number
25, and the ball obeys Newton’s laws of motion. If we took a video
of the pass and played it backward, we would see the ball ying from
25 to 18, and Newton’s laws would still be satis�ed. Nevertheless,
we have a strong psychological impression that there is a forward
arrow of time. I can remember what the stock market did last year,
but I can’t remember what it will do next year. Joan of Arc’s mil-
itary victories against England caused the English to burn her at
the stake; it’s hard to accept that Newton’s laws provide an equally
good description of a process in which her execution in 1431 caused
her to win a battle in 1429. There is no consensus at this point
among physicists on the origin and signi�cance of time’s arrow, and
for our present purposes we don’t need to solve this mystery. In-
stead, we merely note the empirical fact that, regardless of what
causality really means and where it really comes from, its behavior
is consistent. Speci�cally, experiments show that if an observer in a
certain frame of reference observes that event A causes event B, then
observers in other frames agree that A causes B, not the other way
around. This is merely a generalization about a large body of ex-
perimental results, not a logically necessary assumption. If Keating
had gone around the world and arrived back in Washington before
he left, it would have disproved this statement about causality.

7.1.3 Time distortion arising from motion and gravity

Hafele and Keating were testing speci�c quantitative predictions
of relativity, and they veri�ed them to within their experiment’s
error bars. Let’s work backward instead, and inspect the empirical
results for clues as to how time works.

The two traveling clocks experienced e�ects in opposite direc-
tions, and this suggests that the rate at which time ows depends
on the motion of the observer. The east-going clock was moving in
the same direction as the earth’s rotation, so its velocity relative to
the earth’s center was greater than that of the clock that remained
in Washington, while the west-going clock’s velocity was correspond-
ingly reduced. The fact that the east-going clock fell behind, and
the west-going one got ahead, shows that the e�ect of motion is to
make time go more slowly. This e�ect of motion on time was pre-
dicted by Einstein in his original 1905 paper on relativity, written
when he was 26.

If this had been the only e�ect in the Hafele-Keating experiment,
then we would have expected to see e�ects on the two ying clocks
that were equal in size. Making up some simple numbers to keep the
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arithmetic transparent, suppose that the earth rotates from west to
east at 1000 km/hr, and that the planes y at 300 km/hr. Then the
speed of the clock on the ground is 1000 km/hr, the speed of the
clock on the east-going plane is 1300 km/hr, and that of the west-
going clock 700 km/hr. Since the speeds of 700, 1000, and 1300
km/hr have equal spacing on either side of 1000, we would expect
the discrepancies of the moving clocks relative to the one in the lab
to be equal in size but opposite in sign.

e / A graph showing the time difference between two atomic clocks.
One clock was kept at Mitaka Observatory, at 58 m above sea level.
The other was moved back and forth to a second observatory, Norikura
Corona Station, at the peak of the Norikura volcano, 2876 m above sea
level. The plateaus on the graph are data from the periods when the
clocks were compared side by side at Mitaka. The difference between
one plateau and the next shows a gravitational effect on the rate of �ow
of time, accumulated during the period when the mobile clock was at the
top of Norikura. Cf. problem 25, p. 456.

In fact, the two e�ects are unequal in size: � 59 ns and 273 ns.
This implies that there is a second e�ect involved, simply due to
the planes’ being up in the air. This was veri�ed more directly
in a 1978 experiment by Iijima and Fujiwara, �gure e, in which
identical atomic clocks were kept at rest at the top and bottom of a
mountain near Tokyo. This experiment, unlike the Hafele-Keating
one, isolates one e�ect on time, the gravitational one: time’s rate
of ow increases with height in a gravitational �eld. Einstein didn’t
�gure out how to incorporate gravity into relativity until 1915, after
much frustration and many false starts. The simpler version of the
theory without gravity is known as special relativity, the full version
as general relativity. We’ll restrict ourselves to special relativity
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f / The correspondence prin-
ciple requires that the relativistic
distortion of time become small
for small velocities.

until section 7.4, and that means that what we want to focus on
right now is the distortion of time due to motion, not gravity.

We can now see in more detail how to apply the correspondence
principle. The behavior of the three clocks in the Hafele-Keating
experiment shows that the amount of time distortion increases as
the speed of the clock’s motion increases. Newton lived in an era
when the fastest mode of transportation was a galloping horse, and
the best pendulum clocks would accumulate errors of perhaps a
minute over the course of several days. A horse is much slower
than a jet plane, so the distortion of time would have had a relative
size of only � 10� 15 | much smaller than the clocks were capable
of detecting. At the speed of a passenger jet, the e�ect is about
10� 12, and state-of-the-art atomic clocks in 1971 were capable of
measuring that. A GPS satellite travels much faster than a jet air-
plane, and the e�ect on the satellite turns out to be � 10� 10. The
general idea here is that all physical laws are approximations, and
approximations aren’t simply right or wrong in di�erent situations.
Approximations are better or worse in di�erent situations, and the
question is whether a particular approximation is good enough in a
given situation to serve a particular purpose. The faster the motion,
the worse the Newtonian approximation of absolute time. Whether
the approximation is good enough depends on what you’re trying
to accomplish. The correspondence principle says that the approxi-
mation must have been good enough to explain all the experiments
done in the centuries before Einstein came up with relativity.

By the way, don’t get an inated idea of the importance of the
Hafele-Keating experiment. Special relativity had already been con-
�rmed by a vast and varied body of experiments decades before 1971.
The only reason I’m giving such a prominent role to this experiment,
which was actually more important as a test of general relativity, is
that it is conceptually very direct.

7.2 Distortion of space and time
7.2.1 The Lorentz transformation

Relativity says that when two observers are in di�erent frames of
reference, each observer considers the other one’s perception of time
to be distorted. We’ll also see that something similar happens to
their observations of distances, so both space and time are distorted.
What exactly is this distortion? How do we even conceptualize it?

The idea isn’t really as radical as it might seem at �rst. We
can visualize the structure of space and time using a graph with
position and time on its axes. These graphs are familiar by now,
but we’re going to look at them in a slightly di�erent way. Before, we
used them to describe the motion of objects. The grid underlying
the graph was merely the stage on which the actors played their
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a / Two events are given as
points on a graph of position
versus time. Joan of Arc helps to
restore Charles VII to the throne.
At a later time and a different
position, Joan of Arc is sentenced
to death.

b / A change of units distorts
an x-t graph. This graph depicts
exactly the same events as �gure
a. The only change is that the x
and t coordinates are measured
using different units, so the grid is
compressed in t and expanded in
x .

c / A convention we’ll use to
represent a distortion of time and
space.

parts. Now the background comes to the foreground: it’s time and
space themselves that we’re studying. We don’t necessarily need
to have a line or a curve drawn on top of the grid to represent a
particular object. We may, for example, just want to talk about
events, depicted as points on the graph as in �gure a. A distortion
of the Cartesian grid underlying the graph can arise for perfectly
ordinary reasons that Isaac Newton would have readily accepted.
For example, we can simply change the units used to measure time
and position, as in �gure b.

We’re going to have quite a few examples of this type, so I’ll
adopt the convention shown in �gure c for depicting them. Figure
c summarizes the relationship between �gures a and b in a more
compact form. The gray rectangle represents the original coordinate
grid of �gure a, while the grid of black lines represents the new
version from �gure b. Omitting the grid from the gray rectangle
makes the diagram easier to decode visually.

Our goal of unraveling the mysteries of special relativity amounts
to nothing more than �nding out how to draw a diagram like c
in the case where the two di�erent sets of coordinates represent
measurements of time and space made by two di�erent observers,
each in motion relative to the other. Galileo and Newton thought
they knew the answer to this question, but their answer turned
out to be only approximately right. To avoid repeating the same
mistakes, we need to clearly spell out what we think are the basic
properties of time and space that will be a reliable foundation for
our reasoning. I want to emphasize that there is no purely logical
way of deciding on this list of properties. The ones I’ll list are simply
a summary of the patterns observed in the results from a large body
of experiments. Furthermore, some of them are only approximate.
For example, property 1 below is only a good approximation when
the gravitational �eld is weak, so it is a property that applies to
special relativity, not to general relativity.

Experiments show that:

1. No point in time or space has properties that make it di�erent
from any other point.

2. Likewise, all directions in space have the same properties.

3. Motion is relative, i.e., all inertial frames of reference are
equally valid.

4. Causality holds, in the sense described on page 391.

5. Time depends on the state of motion of the observer.

Most of these are not very subversive. Properties 1 and 2 date
back to the time when Galileo and Newton started applying the
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d / A Galilean version of the
relationship between two frames
of reference. As in all such
graphs in this chapter, the original
coordinates, represented by the
gray rectangle, have a time axis
that goes to the right, and a
position axis that goes straight
up.

same universal laws of motion to the solar system and to the earth;
this contradicted Aristotle, who believed that, for example, a rock
would naturally want to move in a certain special direction (down)
in order to reach a certain special location (the earth’s surface).
Property 3 is the reason that Einstein called his theory \relativity,"
but Galileo and Newton believed exactly the same thing to be true,
as dramatized by Galileo’s run-in with the Church over the question
of whether the earth could really be in motion around the sun.
Property 4 would probably surprise most people only because it
asserts in such a weak and specialized way something that they feel
deeply must be true. The only really strange item on the list is 5,
but the Hafele-Keating experiment forces it upon us.

If it were not for property 5, we could imagine that �gure d
would give the correct transformation between frames of reference
in motion relative to one another. Let’s say that observer 1, whose
grid coincides with the gray rectangle, is a hitch-hiker standing by
the side of a road. Event A is a raindrop hitting his head, and
event B is another raindrop hitting his head. He says that A and B
occur at the same location in space. Observer 2 is a motorist who
drives by without stopping; to him, the passenger compartment of
his car is at rest, while the asphalt slides by underneath. He says
that A and B occur at di�erent points in space, because during the
time between the �rst raindrop and the second, the hitch-hiker has
moved backward. On the other hand, observer 2 says that events A
and C occur in the same place, while the hitch-hiker disagrees. The
slope of the grid-lines is simply the velocity of the relative motion
of each observer relative to the other.

Figure d has familiar, comforting, and eminently sensible behav-
ior, but it also happens to be wrong, because it violates property
5. The distortion of the coordinate grid has only moved the vertical
lines up and down, so both observers agree that events like B and
C are simultaneous. If this was really the way things worked, then
all observers could synchronize all their clocks with one another for
once and for all, and the clocks would never get out of sync. This
contradicts the results of the Hafele-Keating experiment, in which
all three clocks were initially synchronized in Washington, but later
went out of sync because of their di�erent states of motion.

It might seem as though we still had a huge amount of wiggle
room available for the correct form of the distortion. It turns out,
however, that properties 1-5 are su�cient to prove that there is only
one answer, which is the one found by Einstein in 1905. To see why
this is, let’s work by a process of elimination.

Figure e shows a transformation that might seem at �rst glance
to be as good a candidate as any other, but it violates property
3, that motion is relative, for the following reason. In observer 2’s
frame of reference, some of the grid lines cross one another. This
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e / A transformation that leads
to disagreements about whether
two events occur at the same
time and place. This is not just
a matter of opinion. Either the
arrow hit the bull’s-eye or it didn’t.

f / A nonlinear transformation.

means that observers 1 and 2 disagree on whether or not certain
events are the same. For instance, suppose that event A marks the
arrival of an arrow at the bull’s-eye of a target, and event B is the
location and time when the bull’s-eye is punctured. Events A and B
occur at the same location and at the same time. If one observer says
that A and B coincide, but another says that they don’t, we have
a direct contradiction. Since the two frames of reference in �gure
e give contradictory results, one of them is right and one is wrong.
This violates property 3, because all inertial frames of reference are
supposed to be equally valid. To avoid problems like this, we clearly
need to make sure that none of the grid lines ever cross one another.

The next type of transformation we want to kill o� is shown in
�gure f, in which the grid lines curve, but never cross one another.
The trouble with this one is that it violates property 1, the unifor-
mity of time and space. The transformation is unusually \twisty"
at A, whereas at B it’s much more smooth. This can’t be correct,
because the transformation is only supposed to depend on the rela-
tive state of motion of the two frames of reference, and that given
information doesn’t single out a special role for any particular point
in spacetime. If, for example, we had one frame of referencerotating
relative to the other, then there would be something special about
the axis of rotation. But we’re only talking about inertial frames of
reference here, as speci�ed in property 3, so we can’t have rotation;
each frame of reference has to be moving in a straight line at con-
stant speed. For frames related in this way, there is nothing that
could single out an event like A for special treatment compared to
B, so transformation f violates property 1.

The examples in �gures e and f show that the transformation
we’re looking for must be linear, meaning that it must transform
lines into lines, and furthermore that it has to take parallel lines to
parallel lines. Einstein wrote in his 1905 paper that \. . . on account
of the property of homogeneity [property 1] which we ascribe to time
and space, the [transformation] must be linear."1 Applying this to
our diagrams, the original gray rectangle, which is a special type
of parallelogram containing right angles, must be transformed into
another parallelogram. There are three types of transformations,
�gure g, that have this property. Case I is the Galilean transforma-
tion of �gure d on page 396, which we’ve already ruled out.

Case II can also be discarded. Here every point on the grid ro-
tates counterclockwise. What physical parameter would determine
the amount of rotation? The only thing that could be relevant would
bev, the relative velocity of the motion of the two frames of reference
with respect to one another. But if the angle of rotation was pro-

1A. Einstein, \On the Electrodynamics of Moving Bodies," Annalen der
Physik 17 (1905), p. 891, tr. Saha and Bose.
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h / In the units that are most
convenient for relativity, the trans-
formation has symmetry about a
45-degree diagonal line.

i / Interpretation of the Lorentz
transformation. The slope in-
dicated in the �gure gives the
relative velocity of the two frames
of reference. Events A and B that
were simultaneous in frame 1
are not simultaneous in frame 2,
where event A occurs to the right
of the t = 0 line represented by
the left edge of the grid, but event
B occurs to its left.

g / Three types of transformations that preserve parallelism. Their
distinguishing feature is what they do to simultaneity, as shown by what
happens to the left edge of the original rectangle. In I, the left edge
remains vertical, so simultaneous events remain simultaneous. In II, the
left edge turns counterclockwise. In III, it turns clockwise.

portional to v, then for large enough velocities the grid would have
left and right reversed, and this would violate property 4, causality:
one observer would say that event A caused a later event B, but
another observer would say that B came �rst and caused A.

The only remaining possibility is case III, which I’ve redrawn
in �gure h with a couple of changes. This is the one that Einstein
predicted in 1905. The transformation is known as the Lorentz
transformation, after Hendrik Lorentz (1853-1928), who partially
anticipated Einstein’s work, without arriving at the correct inter-
pretation. The distortion is a kind of smooshing and stretching,
as suggested by the hands. Also, we’ve already seen in �gures a-c
on page 395 that we’re free to stretch or compress everything as
much as we like in the horizontal and vertical directions, because
this simply corresponds to choosing di�erent units of measurement
for time and distance. In �gure h I’ve chosen units that give the
whole drawing a convenient symmetry about a 45-degree diagonal
line. Ordinarily it wouldn’t make sense to talk about a 45-degree
angle on a graph whose axes had di�erent units. But in relativity,
the symmetric appearance of the transformation tells us that space
and time ought to be treated on the same footing, and measured in
the same units.

As in our discussion of the Galilean transformation, slopes are
interpreted as velocities, and the slope of the near-horizontal lines
in �gure i is interpreted as the relative velocity of the two observers.
The di�erence between the Galilean version and the relativistic one
is that now there is smooshing happening from the other side as
well. Lines that were vertical in the original grid, representing si-
multaneous events, now slant over to the right. This tells us that, as
required by property 5, di�erent observers do not agree on whether
events that occur in di�erent places are simultaneous. The Hafele-
Keating experiment tells us that this non-simultaneity e�ect is fairly
small, even when the velocity is as big as that of a passenger jet,
and this is what we would have anticipated by the correspondence
principle. The way that this is expressed in the graph is that if we
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pick the time unit to be the second, then the distance unit turns out
to be hundreds of thousands of miles. In these units, the velocity
of a passenger jet is an extremely small number, so the slopev in
�gure i is extremely small, and the amount of distortion is tiny |
it would be much too small to see on this scale.

The only thing left to determine about the Lorentz transforma-
tion is the size of the transformed parallelogram relative to the size
of the original one. Although the drawing of the hands in �gure h
may suggest that the grid deforms like a framework made of rigid
coat-hanger wire, that is not the case. If you look carefully at the
�gure, you’ll see that the edges of the smooshed parallelogram are
actually a little longer than the edges of the original rectangle. In
fact what stays the same is not lengths butareas, as proved in the
caption to �gure j.

j / Proof that Lorentz transformations don’t change area: We �rst subject a square to a transformation
with velocity v , and this increases its area by a factor R(v ), which we want to prove equals 1. We chop the
resulting parallelogram up into little squares and �nally apply a � v transformation; this changes each little
square’s area by a factor R(� v ), so the whole �gure’s area is also scaled by R(� v ). The �nal result is to restore
the square to its original shape and area, so R(v )R(� v ) = 1. But R(v ) = R(� v ) by property 2 of spacetime on
page 395, which states that all directions in space have the same properties, so R(v ) = 1.

7.2.2 The  factor

With a little algebra and geometry (homework problem 7, page
452), one can use the equal-area property to show that the factor
(Greek letter gamma) de�ned in �gure k is given by the equation

 =
1

p
1 � v2

.

If you’ve had good training in physics, the �rst thing you probably
think when you look at this equation is that it must be nonsense,
because its units don’t make sense. How can we take something
with units of velocity squared, and subtract it from a unitless 1?
But remember that this is expressed in our special relativistic units,
in which the same units are used for distance and time. We refer
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k / The  factor.

l / The ruler is moving in frame
1, represented by a square, but
at rest in frame 2, shown as a
parallelogram. Each picture of
the ruler is a snapshot taken
at a certain moment as judged
according to frame 2’s notion
of simultaneity. An observer in
frame 1 judges the ruler’s length
instead according to frame 1’s
de�nition of simultaneity, i.e.,
using points that are lined up
vertically on the graph. The ruler
appears shorter in the frame in
which it is moving. As proved
in �gure m, the length contracts
from L to L= .

to these asnatural units. In this system, velocities are always unit-
less. This sort of thing happens frequently in physics. For instance,
before James Joule discovered conservation of energy, nobody knew
that heat and mechanical energy were di�erent forms of the same
thing, so instead of measuring them both in units of joules as we
would do now, they measured heat in one unit (such as calories)
and mechanical energy in another (such as foot-pounds). In ordi-
nary metric units, we just need an extra conversion factorc, and
the equation becomes

 =
1

q
1 �

� v
c

� 2
.

Here’s why we care about . Figure k de�nes it as the ratio of two
times: the time between two events as expressed in one coordinate
system, and the time between the same two events as measured in
the other one. The interpretation is:

Time dilation
A clock runs fastest in the frame of reference of an observer
who is at rest relative to the clock. An observer in motion
relative to the clock at speedv perceives the clock as running
more slowly by a factor of  .

m / This �gure proves, as claimed in �gure l, that the length con-
traction is x = 1= . First we slice the parallelogram vertically like a salami
and slide the slices down, making the top and bottom edges horizontal.
Then we do the same in the horizontal direction, forming a rectangle with
sides  and x . Since both the Lorentz transformation and the slicing
processes leave areas unchanged, the area  x of the rectangle must
equal the area of the original square, which is 1.

As proved in �gures l and m, lengths are also distorted:

Length contraction
A meter-stick appears longest to an observer who is at rest
relative to it. An observer moving relative to the meter-stick
at v observes the stick to be shortened by a factor of .

self-check A
What is  when v = 0? What does this mean? . Answer, p. 1048
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