
b / Example 19.

c / Example B. Part of the
outside sphere has been drawn
as if it is transparent, in order to
show the inside sphere.

No. Consider, for instance, an alternative universe in which elec-
tric forces are twice as strong as in ours. The numerical value of
k is doubled. Because k is doubled, all the electric field strengths
are doubled as well, which quadruples the quantity E2. In the ex-
pression E2/8πk , we’ve quadrupled something on top and dou-
bled something on the bottom, which makes the energy twice as
big. That makes perfect sense.

Potential energy of a pair of opposite charges example 19
Imagine taking two opposite charges, b, that were initially far
apart and allowing them to come together under the influence
of their electrical attraction.

According to our old approach, electrical energy is lost because
the electric force did positive work as it brought the charges to-
gether. (This makes sense because as they come together and
accelerate it is their electrical energy that is being lost and con-
verted to kinetic energy.)

By the new method, we must ask how the energy stored in the
electric field has changed. In the region indicated approximately
by the shading in the figure, the superposing fields of the two
charges undergo partial cancellation because they are in oppos-
ing directions. The energy in the shaded region is reduced by
this effect. In the unshaded region, the fields reinforce, and the
energy is increased.

It would be quite a project to do an actual numerical calculation of
the energy gained and lost in the two regions (this is a case where
the old method of finding energy gives greater ease of computa-
tion), but it is fairly easy to convince oneself that the energy is
less when the charges are closer. This is because bringing the
charges together shrinks the high-energy unshaded region and
enlarges the low-energy shaded region.

A spherical capacitor example 20
. A spherical capacitor, c, consists of two concentric spheres of

radii a and b. Find the energy required to charge up the capacitor
so that the plates hold charges +q and −q.

. On page 102, I proved that for gravitational forces, the inter-
action of a spherical shell of mass with other masses outside it
is the same as if the shell’s mass was concentrated at its cen-
ter. On the interior of such a shell, the forces cancel out exactly.
Since gravity and the electric force both vary as 1/r2, the same
proof carries over immediately to electrical forces. The magnitude
of the outward electric field contributed by the charge +q of the
central sphere is therefore

|E+| =
{

0, r < a
kq/r2, r > a

,

where r is the distance from the center. Similarly, the magnitude
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of the inward field contributed by the outside sphere is

|E−| =
{

0, r < b
kq/r2, r > b

.

In the region outside the whole capacitor, the two fields are equal
in magnitude, but opposite in direction, so they cancel. We then
have for the total field

|E| =


0, r < a
kq/r2, a < r < b
0, r > b

,

so to calculate the energy, we only need to worry about the region
a < r < b. The energy density in this region is

dUe

dv
=

1
8πk

E2

=
kq2

8π
r−4.

This expression only depends on r , so the energy density is con-
stant across any sphere of radius r . We can slice the region
a < r < b into concentric spherical layers, like an onion, and
the energy within one such layer, extending from r to r + dr is

dUe =
dUe

dv
dv

=
dUe

dv
(area of shell)(thickness of shell)

= (
kq2

8π
r−4)(4πr2)(dr )

=
kq2

2
r−2 dr .

Integrating over all the layers to find the total energy, we have

Ue =
∫

dUe

=
∫ b

a

kq2

2
r−2 dr

= −kq2

2
r−1
∣∣∣∣b
a

=
kq2

2

(
1
a
− 1

b

)
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d / Discussion question A.

e / Discussion question B.

Discussion Questions

A The figure shows a positive charge in the gap between two capacitor
plates. Compare the energy of the electric fields in the two cases. Does
this agree with what you would have expected based on your knowledge
of electrical forces?

B The figure shows a spherical capacitor. In the text, the energy stored
in its electric field is shown to be

Ue =
kq2

2

(
1
a
− 1

b

)
.

What happens if the difference between b and a is very small? Does this
make sense in terms of the mechanical work needed in order to separate
the charges? Does it make sense in terms of the energy stored in the
electric field? Should these two energies be added together?

Similarly, discuss the cases of b →∞ and a→ 0.

C Criticize the following statement: “A solenoid makes a charge in the
space surrounding it, which dissipates when you release the energy.”

D In example 19 on page 601, I argued that for the charges shown
in the figure, the fields contain less energy when the charges are closer
together, because the region of cancellation expanded, while the region
of reinforcing fields shrank. Perhaps a simpler approach is to consider
the two extreme possibilities: the case where the charges are infinitely
far apart, and the one in which they are at zero distance from each other,
i.e., right on top of each other. Carry out this reasoning for the case of
(1) a positive charge and a negative charge of equal magnitude, (2) two
positive charges of equal magnitude, (3) the gravitational energy of two
equal masses.

10.4.2 Gravitational field energy

Example B depended on the close analogy between electric and
gravitational forces. In fact, every argument, proof, and example
discussed so far in this section is equally valid as a gravitational
example, provided we take into account one fact: only positive mass
exists, and the gravitational force between two masses is attractive.
This is the opposite of what happens with electrical forces, which
are repulsive in the case of two positive charges. As a consequence of
this, we need to assign a negative energy density to the gravitational
field! For a gravitational field, we have

dUg = − 1

8πG
g2 dv,

where g2 = g · g is the square of the magnitude of the gravitational
field.

10.4.3 Magnetic field energy

So far we’ve only touched in passing on the topic of magnetic
fields, which will deal with in detail in chapter 11. Magnetism is
an interaction between moving charge and moving charge, i.e., be-
tween currents and currents. Since a current has a direction in
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space,2 while charge doesn’t, we can anticipate that the mathemat-
ical rule connecting a magnetic field to its source-currents will have
to be completely different from the one relating the electric field to
its source-charges. However, if you look carefully at the argument
leading to the relation dUe/ dv = E2/8πk, you’ll see that these
mathematical details were only necessary to the part of the argu-
ment in which we fixed the constant of proportionality. To establish
dUe/ dv ∝ E2, we only had to use three simple facts:

• The field is proportional to the source.

• Forces are proportional to fields.

• Field contributed by multiple sources add like vectors.

All three of these statements are true for the magnetic field as well,
so without knowing anything more specific about magnetic fields —
not even what units are used to measure them! — we can state
with certainty that the energy density in the magnetic field is pro-
portional to the square of the magnitude of the magnetic field. The
constant of proportionality is given on p. 685.

2Current is a scalar, since the de�nition I = dq=dt is the derivative of a
scalar. However, there is a closely related quantity called the current density, J,
which is a vector, and J is in fact the more fundamentally important quantity.
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10.5 Lrc circuits
The long road leading from the light bulb to the computer started
with one very important step: the introduction of feedback into
electronic circuits. Although the principle of feedback has been un-
derstood and and applied to mechanical systems for centuries, and
to electrical ones since the early twentieth century, for most of us
the word evokes an image of Jimi Hendrix (or some more recent
guitar hero) intentionally creating earsplitting screeches, or of the
school principal doing the same inadvertently in the auditorium. In
the guitar example, the musician stands in front of the amp and
turns it up so high that the sound waves coming from the speaker
come back to the guitar string and make it shake harder. This is
an example of positive feedback: the harder the string vibrates, the
stronger the sound waves, and the stronger the sound waves, the
harder the string vibrates. The only limit is the power-handling
ability of the amplifier.

Negative feedback is equally important. Your thermostat, for
example, provides negative feedback by kicking the heater off when
the house gets warm enough, and by firing it up again when it
gets too cold. This causes the house’s temperature to oscillate back
and forth within a certain range. Just as out-of-control exponential
freak-outs are a characteristic behavior of positive-feedback systems,
oscillation is typical in cases of negative feedback. You have already
studied negative feedback extensively in section 3.3 in the case of a
mechanical system, although we didn’t call it that.

10.5.1 Capacitance and inductance

In a mechanical oscillation, energy is exchanged repetitively be-
tween potential and kinetic forms, and may also be siphoned off in
the form of heat dissipated by friction. In an electrical circuit, re-
sistors are the circuit elements that dissipate heat. What are the
electrical analogs of storing and releasing the potential and kinetic
energy of a vibrating object? When you think of energy storage in
an electrical circuit, you are likely to imagine a battery, but even
rechargeable batteries can only go through 10 or 100 cycles before
they wear out. In addition, batteries are not able to exchange en-
ergy on a short enough time scale for most applications. The circuit
in a musical synthesizer may be called upon to oscillate thousands
of times a second, and your microwave oven operates at gigahertz
frequencies. Instead of batteries, we generally use capacitors and
inductors to store energy in oscillating circuits. Capacitors, which
you’ve already encountered, store energy in electric fields. An in-
ductor does the same with magnetic fields.

Capacitors

A capacitor’s energy exists in its surrounding electric fields. It is
proportional to the square of the field strength, which is proportional
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a / The symbol for a capaci-
tor.

b / Some capacitors.

c / Two common geometries
for inductors. The cylindrical
shape on the left is called a
solenoid.

d / The symbol for an induc-
tor.

e / Some inductors.

to the charges on the plates. If we assume the plates carry charges
that are the same in magnitude, +q and −q, then the energy stored
in the capacitor must be proportional to q2. For historical reasons,
we write the constant of proportionality as 1/2C,

UC =
1

2C
q2.

The constant C is a geometrical property of the capacitor, called its
capacitance.

Based on this definition, the units of capacitance must be coulombs
squared per joule, and this combination is more conveniently abbre-
viated as the farad, 1 F = 1 C2/J. “Condenser” is a less formal
term for a capacitor. Note that the labels printed on capacitors
often use MF to mean µF, even though MF should really be the
symbol for megafarads, not microfarads. Confusion doesn’t result
from this nonstandard notation, since picofarad and microfarad val-
ues are the most common, and it wasn’t until the 1990’s that even
millifarad and farad values became available in practical physical
sizes. Figure a shows the symbol used in schematics to represent a
capacitor.

A parallel-plate capacitor example 21
. Suppose a capacitor consists of two parallel metal plates with
area A, and the gap between them is h. The gap is small com-
pared to the dimensions of the plates. What is the capacitance?

. Since the plates are metal, the charges on each plate are free
to move, and will tend to cluster themselves more densely near
the edges due to the mutual repulsion of the other charges in the
same plate. However, it turns out that if the gap is small, this is
a small effect, so we can get away with assuming uniform charge
density on each plate. The result of example 17 then applies, and
for the region between the plates, we have E = 4πkσ = 4πkq/A
and Ue = (1/8πk )E2Ah. Substituting the first expression into the
second, we find Ue = 2πkq2h/A. Comparing this to the definition
of capacitance, we end up with C = A/4πkh.

Inductors

Any current will create a magnetic field, so in fact every current-
carrying wire in a circuit acts as an inductor! However, this type
of “stray” inductance is typically negligible, just as we can usually
ignore the stray resistance of our wires and only take into account
the actual resistors. To store any appreciable amount of magnetic
energy, one usually uses a coil of wire designed specifically to be
an inductor. All the loops’ contribution to the magnetic field add
together to make a stronger field. Unlike capacitors and resistors,
practical inductors are easy to make by hand. One can for instance
spool some wire around a short wooden dowel. An inductor like
this, in the form cylindrical coil of wire, is called a solenoid, c, and
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f / Inductances in series add.

g / Capacitances in parallel
add.

a stylized solenoid, d, is the symbol used to represent an inductor
in a circuit regardless of its actual geometry.

How much energy does an inductor store? The energy density is
proportional to the square of the magnetic field strength, which is
in turn proportional to the current flowing through the coiled wire,
so the energy stored in the inductor must be proportional to I2. We
write L/2 for the constant of proportionality, giving

UL =
L

2
I2.

As in the definition of capacitance, we have a factor of 1/2,
which is purely a matter of definition. The quantity L is called the
inductance of the inductor, and we see that its units must be joules
per ampere squared. This clumsy combination of units is more
commonly abbreviated as the henry, 1 henry = 1 J/A2. Rather
than memorizing this definition, it makes more sense to derive it
when needed from the definition of inductance. Many people know
inductors simply as “coils,” or “chokes,” and will not understand
you if you refer to an “inductor,” but they will still refer to L as the
“inductance,” not the “coilance” or “chokeance!”

There is a lumped circuit approximation for inductors, just like
the one for capacitors (p. 595). For a capacitor, this means assuming
that the electric fields are completely internal, so that components
only interact via currents that flow through wires, not due to the
physical overlapping of their fields in space. Similarly for an induc-
tor, the lumped circuit approximation is the assumption that the
magnetic fields are completely internal.

Identical inductances in series example 22
If two inductors are placed in series, any current that passes
through the combined double inductor must pass through both
its parts. If we assume the lumped circuit approximation, the
two inductors’ fields don’t interfere with each other, so the energy
is doubled for a given current. Thus by the definition of induc-
tance, the inductance is doubled as well. In general, inductances
in series add, just like resistances. The same kind of reason-
ing also shows that the inductance of a solenoid is approximately
proportional to its length, assuming the number of turns per unit
length is kept constant. (This is only approximately true, because
putting two solenoids end-to-end causes the fields just outside
their mouths to overlap and add together in a complicated man-
ner. In other words, the lumped-circuit approximation may not be
very good.)

Identical capacitances in parallel example 23
When two identical capacitances are placed in parallel, any charge
deposited at the terminals of the combined double capacitor will
divide itself evenly between the two parts. The electric fields sur-

Section 10.5 Lrc circuits 607



h / A variable capacitor.

i / Discussion question B.

rounding each capacitor will be half the intensity, and therefore
store one quarter the energy. Two capacitors, each storing one
quarter the energy, give half the total energy storage. Since ca-
pacitance is inversely related to energy storage, this implies that
identical capacitances in parallel give double the capacitance. In
general, capacitances in parallel add. This is unlike the behav-
ior of inductors and resistors, for which series configurations give
addition.

This is consistent with the result of example 21, which had the
capacitance of a single parallel-plate capacitor proportional to the
area of the plates. If we have two parallel-plate capacitors, and
we combine them in parallel and bring them very close together
side by side, we have produced a single capacitor with plates of
double the area, and it has approximately double the capacitance,
subject to any violation of the lumped-circuit approximation due to
the interaction of the fields where the edges of the capacitors are
joined together.

Inductances in parallel and capacitances in series are explored
in homework problems 36 and 33.

A variable capacitor example 24
Figure h/1 shows the construction of a variable capacitor out of
two parallel semicircles of metal. One plate is fixed, while the
other can be rotated about their common axis with a knob. The
opposite charges on the two plates are attracted to one another,
and therefore tend to gather in the overlapping area. This over-
lapping area, then, is the only area that effectively contributes to
the capacitance, and turning the knob changes the capacitance.
The simple design can only provide very small capacitance val-
ues, so in practice one usually uses a bank of capacitors, wired
in parallel, with all the moving parts on the same shaft.

Discussion Questions

A Suppose that two parallel-plate capacitors are wired in parallel, and
are placed very close together, side by side, so that the lumped circuit
approximation is not very accurate. Will the resulting capacitance be too
small, or too big? Could you twist the circuit into a different shape and
make the effect be the other way around, or make the effect vanish? How
about the case of two inductors in series?

B Most practical capacitors do not have an air gap or vacuum gap
between the plates; instead, they have an insulating substance called a
dielectric. We can think of the molecules in this substance as dipoles that
are free to rotate (at least a little), but that are not free to move around,
since it is a solid. The figure shows a highly stylized and unrealistic way
of visualizing this. We imagine that all the dipoles are intially turned side-
ways, (1), and that as the capacitor is charged, they all respond by turning
through a certain angle, (2). (In reality, the scene might be much more
random, and the alignment effect much weaker.)

For simplicity, imagine inserting just one electric dipole into the vacuum
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j / A series LRC circuit.

k / A mechanical analogy for
the LRC circuit.

gap. For a given amount of charge on the plates, how does this affect
the amount of energy stored in the electric field? How does this affect the
capacitance?

Now redo the analysis in terms of the mechanical work needed in order
to charge up the plates.

10.5.2 Oscillations

Figure j shows the simplest possible oscillating circuit. For any
useful application it would actually need to include more compo-
nents. For example, if it was a radio tuner, it would need to be
connected to an antenna and an amplifier. Nevertheless, all the
essential physics is there.

We can analyze it without any sweat or tears whatsoever, sim-
ply by constructing an analogy with a mechanical system. In a
mechanical oscillator, k, we have two forms of stored energy,

Uspring =
1

2
kx2 (1)

K =
1

2
mv2. (2)

In the case of a mechanical oscillator, we have usually assumed
a friction force of the form that turns out to give the nicest math-
ematical results, F = −bv. In the circuit, the dissipation of energy
into heat occurs via the resistor, with no mechanical force involved,
so in order to make the analogy, we need to restate the role of the
friction force in terms of energy. The power dissipated by friction
equals the mechanical work it does in a time interval dt, divided by
dt, P = W/dt = F dx/dt = Fv = −bv2, so

rate of heat dissipation = −bv2. (3)

self-check F
Equation (1) has x squared, and equations (2) and (3) have v squared.
Because they’re squared, the results don’t depend on whether these
variables are positive or negative. Does this make physical sense? .

Answer, p. 1050

In the circuit, the stored forms of energy are

UC =
1

2C
q2 (1′)

UL =
1

2
LI2, (2′)

and the rate of heat dissipation in the resistor is

rate of heat dissipation = −RI2. (3′)

Comparing the two sets of equations, we first form analogies between
quantities that represent the state of the system at some moment
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in time:

x↔ q

v ↔ I

self-check G
How is v related mathematically to x? How is I connected to q? Are the
two relationships analogous? . Answer, p. 1050

Next we relate the ones that describe the system’s permanent
characteristics:

k ↔ 1/C

m↔ L

b↔ R

Since the mechanical system naturally oscillates with a frequency3

ω ≈
√
k/m , we can immediately solve the electrical version by anal-

ogy, giving

ω ≈ 1√
LC

.

Since the resistance R is analogous to b in the mechanical case,
we find that the Q (quality factor, not charge) of the resonance
is inversely proportional to R, and the width of the resonance is
directly proportional to R.

Tuning a radio receiver example 25
A radio receiver uses this kind of circuit to pick out the desired
station. Since the receiver resonates at a particular frequency,
stations whose frequencies are far off will not excite any response
in the circuit. The value of R has to be small enough so that only
one station at a time is picked up, but big enough so that the
tuner isn’t too touchy. The resonant frequency can be tuned by
adjusting either L or C, but variable capacitors are easier to build
than variable inductors.

A numerical calculation example 26
The phone company sends more than one conversation at a time
over the same wire, which is accomplished by shifting each voice
signal into different range of frequencies during transmission. The
number of signals per wire can be maximized by making each
range of frequencies (known as a bandwidth) as small as possi-
ble. It turns out that only a relatively narrow range of frequencies
is necessary in order to make a human voice intelligible, so the

3As in chapter 2, we use the word \frequency" to mean either f or ! = 2�f
when the context makes it clear which is being referred to.
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phone company filters out all the extreme highs and lows. (This is
why your phone voice sounds different from your normal voice.)

. If the filter consists of an LRC circuit with a broad resonance
centered around 1.0 kHz, and the capacitor is 1 µF (microfarad),
what inductance value must be used?

. Solving for L, we have

L =
1

Cω2

=
1

(10−6 F)(2π× 103 s−1)2

= 2.5× 10−3 F−1s2

Checking that these really are the same units as henries is a little
tedious, but it builds character:

F−1s2 = (C2/J)−1s2

= J · C−2s2

= J/A2

= H

The result is 25 mH (millihenries).

This is actually quite a large inductance value, and would require
a big, heavy, expensive coil. In fact, there is a trick for making
this kind of circuit small and cheap. There is a kind of silicon
chip called an op-amp, which, among other things, can be used
to simulate the behavior of an inductor. The main limitation of the
op-amp is that it is restricted to low-power applications.

10.5.3 Voltage and current

What is physically happening in one of these oscillating circuits?
Let’s first look at the mechanical case, and then draw the analogy
to the circuit. For simplicity, let’s ignore the existence of damping,
so there is no friction in the mechanical oscillator, and no resistance
in the electrical one.

Suppose we take the mechanical oscillator and pull the mass
away from equilibrium, then release it. Since friction tends to resist
the spring’s force, we might naively expect that having zero friction
would allow the mass to leap instantaneously to the equilibrium
position. This can’t happen, however, because the mass would have
to have infinite velocity in order to make such an instantaneous leap.
Infinite velocity would require infinite kinetic energy, but the only
kind of energy that is available for conversion to kinetic is the energy
stored in the spring, and that is finite, not infinite. At each step on
its way back to equilibrium, the mass’s velocity is controlled exactly
by the amount of the spring’s energy that has so far been converted
into kinetic energy. After the mass reaches equilibrium, it overshoots
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due to its own momentum. It performs identical oscillations on both
sides of equilibrium, and it never loses amplitude because friction is
not available to convert mechanical energy into heat.

Now with the electrical oscillator, the analog of position is charge.
Pulling the mass away from equilibrium is like depositing charges
+q and −q on the plates of the capacitor. Since resistance tends
to resist the flow of charge, we might imagine that with no fric-
tion present, the charge would instantly flow through the inductor
(which is, after all, just a piece of wire), and the capacitor would
discharge instantly. However, such an instant discharge is impossi-
ble, because it would require infinite current for one instant. Infinite
current would create infinite magnetic fields surrounding the induc-
tor, and these fields would have infinite energy. Instead, the rate
of flow of current is controlled at each instant by the relationship
between the amount of energy stored in the magnetic field and the
amount of current that must exist in order to have that strong a
field. After the capacitor reaches q = 0, it overshoots. The circuit
has its own kind of electrical “inertia,” because if charge was to stop
flowing, there would have to be zero current through the inductor.
But the current in the inductor must be related to the amount of
energy stored in its magnetic fields. When the capacitor is at q = 0,
all the circuit’s energy is in the inductor, so it must therefore have
strong magnetic fields surrounding it and quite a bit of current going
through it.

The only thing that might seem spooky here is that we used to
speak as if the current in the inductor caused the magnetic field,
but now it sounds as if the field causes the current. Actually this is
symptomatic of the elusive nature of cause and effect in physics. It’s
equally valid to think of the cause and effect relationship in either
way. This may seem unsatisfying, however, and for example does not
really get at the question of what brings about a voltage difference
across the resistor (in the case where the resistance is finite); there
must be such a voltage difference, because without one, Ohm’s law
would predict zero current through the resistor.

Voltage, then, is what is really missing from our story so far.

Let’s start by studying the voltage across a capacitor. Voltage is
electrical potential energy per unit charge, so the voltage difference
between the two plates of the capacitor is related to the amount by
which its energy would increase if we increased the absolute values
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l / The inductor releases en-
ergy and gives it to the black box.

of the charges on the plates from q to q + dq:

VC = (Uq+dq − Uq)/ dq

=
dUC
dq

=
d

dq

(
1

2C
q2

)
=

q

C

Many books use this as the definition of capacitance. This equation,
by the way, probably explains the historical reason why C was de-
fined so that the energy was inversely proportional to C for a given
value of q: the people who invented the definition were thinking of a
capacitor as a device for storing charge rather than energy, and the
amount of charge stored for a fixed voltage (the charge “capacity”)
is proportional to C.

In the case of an inductor, we know that if there is a steady, con-
stant current flowing through it, then the magnetic field is constant,
and so is the amount of energy stored; no energy is being exchanged
between the inductor and any other circuit element. But what if
the current is changing? The magnetic field is proportional to the
current, so a change in one implies a change in the other. For con-
creteness, let’s imagine that the magnetic field and the current are
both decreasing. The energy stored in the magnetic field is there-
fore decreasing, and by conservation of energy, this energy can’t just
go away — some other circuit element must be taking energy from
the inductor. The simplest example, shown in figure l, is a series
circuit consisting of the inductor plus one other circuit element. It
doesn’t matter what this other circuit element is, so we just call it a
black box, but if you like, we can think of it as a resistor, in which
case the energy lost by the inductor is being turned into heat by
the resistor. The junction rule tells us that both circuit elements
have the same current through them, so I could refer to either one,
and likewise the loop rule tells us Vinductor + Vblack box = 0, so the
two voltage drops have the same absolute value, which we can refer
to as V . Whatever the black box is, the rate at which it is taking
energy from the inductor is given by |P | = |IV |, so

|IV | =
∣∣∣∣dULdt

∣∣∣∣
=

∣∣∣∣ d

dt

(
1

2
LI2

)∣∣∣∣
=

∣∣∣∣LI dI

dt

∣∣∣∣ ,
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or

|V | =
∣∣∣∣LdI

dt

∣∣∣∣ ,
which in many books is taken to be the definition of inductance.
The direction of the voltage drop (plus or minus sign) is such that
the inductor resists the change in current.

There’s one very intriguing thing about this result. Suppose,
for concreteness, that the black box in figure l is a resistor, and
that the inductor’s energy is decreasing, and being converted into
heat in the resistor. The voltage drop across the resistor indicates
that it has an electric field across it, which is driving the current.
But where is this electric field coming from? There are no charges
anywhere that could be creating it! What we’ve discovered is one
special case of a more general principle, the principle of induction: a
changing magnetic field creates an electric field, which is in addition
to any electric field created by charges. (The reverse is also true:
any electric field that changes over time creates a magnetic field.)
Induction forms the basis for such technologies as the generator and
the transformer, and ultimately it leads to the existence of light,
which is a wave pattern in the electric and magnetic fields. These
are all topics for chapter 11, but it’s truly remarkable that we could
come to this conclusion without yet having learned any details about
magnetism.

m / Electric fields made by charges, 1, and by changing magnetic fields, 2 and 3.

The cartoons in figure m compares electric fields made by charges,
1, to electric fields made by changing magnetic fields, 2-3. In m/1,
two physicists are in a room whose ceiling is positively charged and
whose floor is negatively charged. The physicist on the bottom
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n / Ballasts for fluorescent lights.
Top: a big, heavy inductor used
as a ballast in an old-fashioned
fluorescent bulb. Bottom: a
small solid-state ballast, built into
the base of a modern compact
fluorescent bulb.

throws a positively charged bowling ball into the curved pipe. The
physicist at the top uses a radar gun to measure the speed of the
ball as it comes out of the pipe. They find that the ball has slowed
down by the time it gets to the top. By measuring the change in the
ball’s kinetic energy, the two physicists are acting just like a volt-
meter. They conclude that the top of the tube is at a higher voltage
than the bottom of the pipe. A difference in voltage indicates an
electric field, and this field is clearly being caused by the charges in
the floor and ceiling.

In m/2, there are no charges anywhere in the room except for
the charged bowling ball. Moving charges make magnetic fields, so
there is a magnetic field surrounding the helical pipe while the ball
is moving through it. A magnetic field has been created where there
was none before, and that field has energy. Where could the energy
have come from? It can only have come from the ball itself, so
the ball must be losing kinetic energy. The two physicists working
together are again acting as a voltmeter, and again they conclude
that there is a voltage difference between the top and bottom of
the pipe. This indicates an electric field, but this electric field can’t
have been created by any charges, because there aren’t any in the
room. This electric field was created by the change in the magnetic
field.

The bottom physicist keeps on throwing balls into the pipe, until
the pipe is full of balls, m/3, and finally a steady current is estab-
lished. While the pipe was filling up with balls, the energy in the
magnetic field was steadily increasing, and that energy was being
stolen from the balls’ kinetic energy. But once a steady current is
established, the energy in the magnetic field is no longer changing.
The balls no longer have to give up energy in order to build up the
field, and the physicist at the top finds that the balls are exiting the
pipe at full speed again. There is no voltage difference any more.
Although there is a current, dI/ dt is zero.

Ballasts example 27
In a gas discharge tube, such as a neon sign, enough voltage

is applied to a tube full of gas to ionize some of the atoms in the
gas. Once ions have been created, the voltage accelerates them,
and they strike other atoms, ionizing them as well and resulting
in a chain reaction. This is a spark, like a bolt of lightning. But
once the spark starts up, the device begins to act as though it has
no resistance: more and more current flows, without the need to
apply any more voltage. The power, P = IV , would grow without
limit, and the tube would burn itself out.

The simplest solution is to connect an inductor, known as the
“ballast,” in series with the tube, and run the whole thing on an
AC voltage. During each cycle, as the voltage reaches the point
where the chain reaction begins, there is a surge of current, but
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the inductor resists such a sudden change of current, and the
energy that would otherwise have burned out the bulb is instead
channeled into building a magnetic field.

A common household fluorescent lightbulb consists of a gas dis-
charge tube in which the glass is coated with a fluorescent mate-
rial. The gas in the tube emits ultraviolet light, which is absorbed
by the coating, and the coating then glows in the visible spectrum.

Until recently, it was common for a fluroescent light’s ballast to
be a simple inductor, and for the whole device to be operated at
the 60 Hz frequency of the electrical power lines. This caused
the lights to flicker annoyingly at 120 Hz, and could also cause an
audible hum, since the magnetic field surrounding the inductor
could exert mechanical forces on things. These days, the trend
is toward using a solid-state circuit that mimics the behavior of
an inductor, but at a frequency in the kilohertz range, eliminating
the flicker and hum. Modern compact fluorescent bulbs electronic
have ballasts built into their bases, so they can be used as plug-in
replacements for incandescent bulbs. A compact fluorescent bulb
uses about 1/4 the electricity of an incandescent bulb, lasts ten
times longer, and saves $30 worth of electricity over its lifetime.

Discussion Question

A What happens when the physicist at the bottom in figure m/3 starts
getting tired, and decreases the current?

10.5.4 Decay

Up until now I’ve soft-pedaled the fact that by changing the char-
acteristics of an oscillator, it is possible to produce non-oscillatory
behavior. For example, imagine taking the mass-on-a-spring system
and making the spring weaker and weaker. In the limit of small
k, it’s as though there was no spring whatsoever, and the behavior
of the system is that if you kick the mass, it simply starts slowing
down. For friction proportional to v, as we’ve been assuming, the re-
sult is that the velocity approaches zero, but never actually reaches
zero. This is unrealistic for the mechanical oscillator, which will not
have vanishing friction at low velocities, but it is quite realistic in
the case of an electrical circuit, for which the voltage drop across the
resistor really does approach zero as the current approaches zero.

We do not even have to reduce k to exactly zero in order to get
non-oscillatory behavior. There is actually a finite, critical value be-
low which the behavior changes, so that the mass never even makes
it through one cycle. This is the case of overdamping, discussed on
page 189.

Electrical circuits can exhibit all the same behavior. For sim-
plicity we will analyze only the cases of LRC circuits with L = 0 or
C = 0.
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o / An RC circuit.

p / Over a time interval RC,
the charge on the capacitor is
reduced by a factor of e.

q / An RL circuit.

The RC circuit

We first analyze the RC circuit, o. In reality one would have
to “kick” the circuit, for example by briefly inserting a battery, in
order to get any interesting behavior. We start with Ohm’s law and
the equation for the voltage across a capacitor:

VR = IR

VC = q/C

The loop rule tells us

VR + VC = 0,

and combining the three equations results in a relationship between
q and I:

I = − 1

RC
q

The negative sign tells us that the current tends to reduce the charge
on the capacitor, i.e., to discharge it. It makes sense that the current
is proportional to q: if q is large, then the attractive forces between
the +q and −q charges on the plates of the capacitor are large,
and charges will flow more quickly through the resistor in order to
reunite. If there was zero charge on the capacitor plates, there would
be no reason for current to flow. Since amperes, the unit of current,
are the same as coulombs per second, it appears that the quantity
RC must have units of seconds, and you can check for yourself that
this is correct. RC is therefore referred to as the time constant of
the circuit.

How exactly do I and q vary with time? Rewriting I as dq/dt,
we have

dq

dt
= − 1

RC
q.

We need a function q(t) whose derivative equals itself, but multiplied
by a negative constant. A function of the form aet, where e =
2.718... is the base of natural logarithms, is the only one that has its
derivative equal to itself, and aebt has its derivative equal to itself
multiplied by b. Thus our solution is

q = qo exp

(
− t

RC

)
.

The RL circuit

The RL circuit, q, can be attacked by similar methods, and it
can easily be shown that it gives

I = Io exp

(
−R
L
t

)
.

The RL time constant equals L/R.
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r / Example 29.

Death by solenoid; spark plugs example 28
When we suddenly break an RL circuit, what will happen? It might
seem that we’re faced with a paradox, since we only have two
forms of energy, magnetic energy and heat, and if the current
stops suddenly, the magnetic field must collapse suddenly. But
where does the lost magnetic energy go? It can’t go into resistive
heating of the resistor, because the circuit has now been broken,
and current can’t flow!

The way out of this conundrum is to recognize that the open gap
in the circuit has a resistance which is large, but not infinite. This
large resistance causes the RL time constant L/R to be very
small. The current thus continues to flow for a very brief time,
and flows straight across the air gap where the circuit has been
opened. In other words, there is a spark!

We can determine based on several different lines of reasoning
that the voltage drop from one end of the spark to the other must
be very large. First, the air’s resistance is large, so V = IR re-
quires a large voltage. We can also reason that all the energy
in the magnetic field is being dissipated in a short time, so the
power dissipated in the spark, P = IV , is large, and this requires
a large value of V . (I isn’t large — it is decreasing from its initial
value.) Yet a third way to reach the same result is to consider the
equation VL = dI/dt : since the time constant is short, the time
derivative dI/dt is large.

This is exactly how a car’s spark plugs work. Another application
is to electrical safety: it can be dangerous to break an inductive
circuit suddenly, because so much energy is released in a short
time. There is also no guarantee that the spark will discharge
across the air gap; it might go through your body instead, since
your body might have a lower resistance.

A spark-gap radio transmitter example 29
Figure r shows a primitive type of radio transmitter, called a spark
gap transmitter, used to send Morse code around the turn of the
twentieth century. The high voltage source, V, is typically about
10,000 volts. When the telegraph switch, S, is closed, the RC
circuit on the left starts charging up. An increasing voltage differ-
ence develops between the electrodes of the spark gap, G. When
this voltage difference gets large enough, the electric field in the
air between the electrodes causes a spark, partially discharging
the RC circuit, but charging the LC circuit on the right. The LC
circuit then oscillates at its resonant frequency (typically about 1
MHz), but the energy of these oscillations is rapidly radiated away
by the antenna, A, which sends out radio waves (chapter 11).
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s / Visualizing complex num-
bers as points in a plane.

t / Addition of complex num-
bers is just like addition of
vectors, although the real and
imaginary axes don’t actually
represent directions in space.

u / A complex number and
its conjugate.

Discussion Questions

A A gopher gnaws through one of the wires in the DC lighting system
in your front yard, and the lights turn off. At the instant when the circuit
becomes open, we can consider the bare ends of the wire to be like the
plates of a capacitor, with an air gap (or gopher gap) between them. What
kind of capacitance value are we talking about here? What would this tell
you about the RC time constant?

10.5.5 Review of complex numbers

For a more detailed treatment of complex numbers, see ch. 3 of
James Nearing’s free book at
http://www.physics.miami.edu/nearing/mathmethods/.

We assume there is a number, i, such that i2 = −1. The square
roots of −1 are then i and −i. (In electrical engineering work, where
i stands for current, j is sometimes used instead.) This gives rise to
a number system, called the complex numbers, containing the real
numbers as a subset. Any complex number z can be written in the
form z = a+bi, where a and b are real, and a and b are then referred
to as the real and imaginary parts of z. A number with a zero real
part is called an imaginary number. The complex numbers can be
visualized as a plane, with the real number line placed horizontally
like the x axis of the familiar x−y plane, and the imaginary numbers
running along the y axis. The complex numbers are complete in a
way that the real numbers aren’t: every nonzero complex number
has two square roots. For example, 1 is a real number, so it is also
a member of the complex numbers, and its square roots are −1 and
1. Likewise, −1 has square roots i and −i, and the number i has
square roots 1/

√
2 + i/

√
2 and −1/

√
2− i/

√
2.

Complex numbers can be added and subtracted by adding or
subtracting their real and imaginary parts. Geometrically, this is
the same as vector addition.

The complex numbers a+ bi and a− bi, lying at equal distances
above and below the real axis, are called complex conjugates. The
results of the quadratic formula are either both real, or complex
conjugates of each other. The complex conjugate of a number z is
notated as z̄ or z∗.

The complex numbers obey all the same rules of arithmetic as
the reals, except that they can’t be ordered along a single line. That
is, it’s not possible to say whether one complex number is greater
than another. We can compare them in terms of their magnitudes
(their distances from the origin), but two distinct complex numbers
may have the same magnitude, so, for example, we can’t say whether
1 is greater than i or i is greater than 1.

A square root of i example 30
. Prove that 1/

√
2 + i/

√
2 is a square root of i .
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v / A complex number can
be described in terms of its
magnitude and argument.

w / The argument of uv is
the sum of the arguments of u
and v .

. Our proof can use any ordinary rules of arithmetic, except for
ordering.

(
1√
2

+
i√
2

)2 =
1√
2
· 1√

2
+

1√
2
· i√

2
+

i√
2
· 1√

2
+

i√
2
· i√

2

=
1
2

(1 + i + i − 1)

= i

Example 30 showed one method of multiplying complex num-
bers. However, there is another nice interpretation of complex mul-
tiplication. We define the argument of a complex number as its angle
in the complex plane, measured counterclockwise from the positive
real axis. Multiplying two complex numbers then corresponds to
multiplying their magnitudes, and adding their arguments.

self-check H
Using this interpretation of multiplication, how could you find the square
roots of a complex number? . Answer, p. 1050

An identity example 31
The magnitude |z| of a complex number z obeys the identity |z|2 =
zz̄. To prove this, we first note that z̄ has the same magnitude
as z, since flipping it to the other side of the real axis doesn’t
change its distance from the origin. Multiplying z by z̄ gives a
result whose magnitude is found by multiplying their magnitudes,
so the magnitude of zz̄ must therefore equal |z|2. Now we just
have to prove that zz̄ is a positive real number. But if, for example,
z lies counterclockwise from the real axis, then z̄ lies clockwise
from it. If z has a positive argument, then z̄ has a negative one, or
vice-versa. The sum of their arguments is therefore zero, so the
result has an argument of zero, and is on the positive real axis.
4

This whole system was built up in order to make every number
have square roots. What about cube roots, fourth roots, and so on?
Does it get even more weird when you want to do those as well? No.
The complex number system we’ve already discussed is sufficient to
handle all of them. The nicest way of thinking about it is in terms
of roots of polynomials. In the real number system, the polynomial
x2−1 has two roots, i.e., two values of x (plus and minus one) that we
can plug in to the polynomial and get zero. Because it has these two
real roots, we can rewrite the polynomial as (x−1)(x+1). However,
the polynomial x2 + 1 has no real roots. It’s ugly that in the real
number system, some second-order polynomials have two roots, and
can be factored, while others can’t. In the complex number system,

4I cheated a little. If z’s argument is 30 degrees, then we could say z̄’s was
-30, but we could also call it 330. That’s OK, because 330+30 gives 360, and an
argument of 360 is the same as an argument of zero.
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they all can. For instance, x2 + 1 has roots i and −i, and can be
factored as (x − i)(x + i). In general, the fundamental theorem of
algebra states that in the complex number system, any nth-order
polynomial can be factored completely into n linear factors, and we
can also say that it has n complex roots, with the understanding that
some of the roots may be the same. For instance, the fourth-order
polynomial x4 +x2 can be factored as (x−i)(x+i)(x−0)(x−0), and
we say that it has four roots, i, −i, 0, and 0, two of which happen
to be the same. This is a sensible way to think about it, because
in real life, numbers are always approximations anyway, and if we
make tiny, random changes to the coefficients of this polynomial, it
will have four distinct roots, of which two just happen to be very
close to zero.

Discussion Questions

A Find arg i , arg(−i), and arg 37, where arg z denotes the argument of
the complex number z.

B Visualize the following multiplications in the complex plane using
the interpretation of multiplication in terms of multiplying magnitudes and
adding arguments: (i)(i) = −1, (i)(−i) = 1, (−i)(−i) = −1.

C If we visualize z as a point in the complex plane, how should we
visualize −z? What does this mean in terms of arguments? Give similar
interpretations for z2 and

√
z.

D Find four different complex numbers z such that z4 = 1.

E Compute the following. For the final two, use the magnitude and
argument, not the real and imaginary parts.

|1 + i | , arg(1 + i) ,
∣∣∣∣ 1
1 + i

∣∣∣∣ , arg
(

1
1 + i

)
,

From these, find the real and imaginary parts of 1/(1 + i).

10.5.6 Euler’s formula

Having expanded our horizons to include the complex numbers,
it’s natural to want to extend functions we knew and loved from
the world of real numbers so that they can also operate on complex
numbers. The only really natural way to do this in general is to
use Taylor series. A particularly beautiful thing happens with the
functions ex, sinx, and cosx:

ex = 1 +
1

2!
x2 +

1

3!
x3 + . . .

cosx = 1− 1

2!
x2 +

1

4!
x4 − . . .

sinx = x− 1

3!
x3 +

1

5!
x5 − . . .

If x = iφ is an imaginary number, we have

ei� = cosφ+ i sinφ,
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x / The complex number ei�

lies on the unit circle.

y / Leonhard Euler (1707-1783)

a result known as Euler’s formula. The geometrical interpretation
in the complex plane is shown in figure x.

Although the result may seem like something out of a freak show
at first, applying the definition of the exponential function makes it
clear how natural it is:

ex = lim
n→∞

(
1 +

x

n

)n
.

When x = iφ is imaginary, the quantity (1 + iφ/n) represents a
number lying just above 1 in the complex plane. For large n, (1 +
iφ/n) becomes very close to the unit circle, and its argument is the
small angle φ/n. Raising this number to the nth power multiplies
its argument by n, giving a number with an argument of φ.

Euler’s formula is used frequently in physics and engineering.

Trig functions in terms of complex exponentials example 32
. Write the sine and cosine functions in terms of exponentials.

. Euler’s formula for x = −iφ gives cosφ−i sinφ, since cos(−θ) =
cos θ, and sin(−θ) = − sin θ.

cos x =
eix + e−ix

2

sin x =
eix − e−ix

2i

A hard integral made easy example 33
. Evaluate ∫

ex cos x dx

. This seemingly impossible integral becomes easy if we rewrite
the cosine in terms of exponentials:∫

ex cos x dx

=
∫

ex
(

eix + e−ix

2

)
dx

=
1
2

∫
(e(1+i)x + e(1−i)x ) dx

=
1
2

(
e(1+i)x

1 + i
+

e(1−i)x

1− i

)
+ c

Since this result is the integral of a real-valued function, we’d like
it to be real, and in fact it is, since the first and second terms are
complex conjugates of one another. If we wanted to, we could
use Euler’s theorem to convert it back to a manifestly real result.5

5In general, the use of complex number techniques to do an integral could
result in a complex number, but that complex number would be a constant,
which could be subsumed within the usual constant of integration.
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10.5.7 Impedance

So far we have been thinking in terms of the free oscillations of a
circuit. This is like a mechanical oscillator that has been kicked but
then left to oscillate on its own without any external force to keep
the vibrations from dying out. Suppose an LRC circuit is driven
with a sinusoidally varying voltage, such as will occur when a radio
tuner is hooked up to a receiving antenna. We know that a current
will flow in the circuit, and we know that there will be resonant
behavior, but it is not necessarily simple to relate current to voltage
in the most general case. Let’s start instead with the special cases
of LRC circuits consisting of only a resistance, only a capacitance,
or only an inductance. We are interested only in the steady-state
response.

The purely resistive case is easy. Ohm’s law gives

I =
V

R
.

In the purely capacitive case, the relation V = q/C lets us cal-
culate

I =
dq

dt

= C
dV

dt
.

This is partly analogous to Ohm’s law. For example, if we double
the amplitude of a sinusoidally varying AC voltage, the derivative
dV/ dt will also double, and the amplitude of the sinusoidally varying
current will also double. However, it is not true that I = V/R, be-
cause taking the derivative of a sinusoidal function shifts its phase by
90 degrees. If the voltage varies as, for example, V (t) = Vo sin(ωt),
then the current will be I(t) = ωCVo cos(ωt). The amplitude of the
current is ωCVo, which is proportional to Vo, but it’s not true that
I(t) = V (t)/R for some constant R.

A second problem that crops up is that our entire analysis of
DC resistive circuits was built on the foundation of the loop rule
and the junction rule, both of which are statements about sums. To
apply the junction rule to an AC circuit, for exampe, we would say
that the sum of the sine waves describing the currents coming into
the junction is equal (at every moment in time) to the sum of the
sine waves going out. Now sinusoidal functions have a remarkable
property, which is that if you add two different sinusoidal functions
having the same frequency, the result is also a sinusoid with that
frequency. For example, cosωt + sinωt =

√
2 sin(ωt + π/4), which

can be proved using trig identities. The trig identities can get very
cumbersome, however, and there is a much easier technique involv-
ing complex numbers.
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z / In a capacitor, the current
is 90� ahead of the voltage in
phase.

aa / Representing functions
with points in polar coordinates.

ab / Adding two sinusoidal
functions.

Figure aa shows a useful way to visualize what’s going on. When
a circuit is oscillating at a frequency ω, we use points in the plane to
represent sinusoidal functions with various phases and amplitudes.

self-check I
Which of the following functions can be represented in this way? cos(6t−
4), cos2 t , tan t . Answer, p. 1050

The simplest examples of how to visualize this in polar coordi-
nates are ones like cosωt + cosωt = 2 cosωt, where everything has
the same phase, so all the points lie along a single line in the polar
plot, and addition is just like adding numbers on the number line.
The less trivial example cosωt + sinωt =

√
2 sin(ωt + π/4), can be

visualized as in figure ab.

Figure ab suggests that all of this can be tied together nicely
if we identify our plane with the plane of complex numbers. For
example, the complex numbers 1 and i represent the functions sinωt
and cosωt. In figure z, for example, the voltage across the capacitor
is a sine wave multiplied by a number that gives its amplitude, so
we associate that function with a number Ṽ lying on the real axis.
Its magnitude, |Ṽ |, gives the amplitude in units of volts, while its
argument arg Ṽ , gives its phase angle, which is zero. The current
is a multiple of a sine wave, so we identify it with a number Ĩ
lying on the imaginary axis. We have arg Ĩ = 90◦, and |Ĩ| is the
amplitude of the current, in units of amperes. But comparing with
our result above, we have |Ĩ| = ωC|Ṽ |. Bringing together the phase
and magnitude information, we have Ĩ = iωCṼ . This looks very
much like Ohm’s law, so we write

Ĩ =
Ṽ

ZC
,

where the quantity

ZC = − i

ωC
, [impedance of a capacitor]

having units of ohms, is called the impedance of the capacitor at
this frequency.

It makes sense that the impedance becomes infinite at zero fre-
quency. Zero frequency means that it would take an infinite time
before the voltage would change by any amount. In other words,
this is like a situation where the capacitor has been connected across
the terminals of a battery and been allowed to settle down to a state
where there is constant charge on both terminals. Since the elec-
tric fields between the plates are constant, there is no energy being
added to or taken out of the field. A capacitor that can’t exchange
energy with any other circuit component is nothing more than a
broken (open) circuit.

Note that we have two types of complex numbers: those that
represent sinusoidal functions of time, and those that represent
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ac / The current through an
inductor lags behind the voltage
by a phase angle of 90�.

impedances. The ones that represent sinusoidal functions have tildes
on top, which look like little sine waves.

self-check J
Why can’t a capacitor have its impedance printed on it along with its
capacitance? . Answer, p. 1050

Similar math (but this time with an integral instead of a deriva-
tive) gives

ZL = iωL [impedance of an inductor]

for an inductor. It makes sense that the inductor has lower impedance
at lower frequencies, since at zero frequency there is no change in
the magnetic field over time. No energy is added to or released
from the magnetic field, so there are no induction effects, and the
inductor acts just like a piece of wire with negligible resistance. The
term “choke” for an inductor refers to its ability to “choke out” high
frequencies.

The phase relationships shown in figures z and ac can be re-
membered using my own mnemonic, “eVIL,” which shows that the
voltage (V) leads the current (I) in an inductive circuit, while the
opposite is true in a capacitive one. A more traditional mnemonic
is “ELI the ICE man,” which uses the notation E for emf, a concept
closely related to voltage (see p. 707).

Summarizing, the impedances of resistors, capacitors, and in-
ductors are

ZR = R

ZC = − i

ωC
ZL = iωL.

Low-pass and high-pass filters example 34
An LRC circuit only responds to a certain range (band) of fre-
quencies centered around its resonant frequency. As a filter, this
is known as a bandpass filter. If you turn down both the bass and
the treble on your stereo, you have created a bandpass filter.

To create a high-pass or low-pass filter, we only need to insert
a capacitor or inductor, respectively, in series. For instance, a
very basic surge protector for a computer could be constructed
by inserting an inductor in series with the computer. The desired
60 Hz power from the wall is relatively low in frequency, while the
surges that can damage your computer show much more rapid
time variation. Even if the surges are not sinusoidal signals, we
can think of a rapid “spike” qualitatively as if it was very high in
frequency — like a high-frequency sine wave, it changes very
rapidly.
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Inductors tend to be big, heavy, expensive circuit elements, so a
simple surge protector would be more likely to consist of a capac-
itor in parallel with the computer. (In fact one would normally just
connect one side of the power circuit to ground via a capacitor.)
The capacitor has a very high impedance at the low frequency of
the desired 60 Hz signal, so it siphons off very little of the current.
But for a high-frequency signal, the capacitor’s impedance is very
small, and it acts like a zero-impedance, easy path into which the
current is diverted.

The main things to be careful about with impedance are that
(1) the concept only applies to a circuit that is being driven sinu-
soidally, (2) the impedance of an inductor or capacitor is frequency-
dependent.

Discussion Question

A Figure z on page 624 shows the voltage and current for a capacitor.
Sketch the q-t graph, and use it to give a physical explanation of the
phase relationship between the voltage and current. For example, why is
the current zero when the voltage is at a maximum or minimum?

B Figure ac on page 625 shows the voltage and current for an inductor.
The power is considered to be positive when energy is being put into the
inductor’s magnetic field. Sketch the graph of the power, and then the
graph of U, the energy stored in the magnetic field, and use it to give
a physical explanation of the P-t graph. In particular, discuss why the
frequency is doubled on the P-t graph.

C Relate the features of the graph in figure ac on page 625 to the story
told in cartoons in figure m/2-3 on page 614.

10.5.8 Power

How much power is delivered when an oscillating voltage is ap-
plied to an impedance? The equation P = IV is generally true,
since voltage is defined as energy per unit charge, and current is
defined as charge per unit time: multiplying them gives energy per
unit time. In a DC circuit, all three quantities were constant, but
in an oscillating (AC) circuit, all three display time variation.

A resistor

First let’s examine the case of a resistor. For instance, you’re
probably reading this book from a piece of paper illuminated by
a glowing lightbulb, which is driven by an oscillating voltage with
amplitude Vo. In the special case of a resistor, we know that I and
V are in phase. For example, if V varies as Vo cosωt, then I will be
a cosine as well, Io cosωt. The power is then IoVo cos2 ωt, which is
always positive,6 and varies between 0 and IoVo. Even if the time
variation was cosωt or sin(ωt+π/4), we would still have a maximum
power of IoVo, because both the voltage and the current would reach

6A resistor always turns electrical energy into heat. It never turns heat into
electrical energy!
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ad / Power in a resistor: the
rate at which electrical energy is
being converted into heat.

their maxima at the same time. In a lightbulb, the moment of
maximum power is when the circuit is most rapidly heating the
filament. At the instant when P = 0, a quarter of a cycle later, no
current is flowing, and no electrical energy is being turned into heat.
Throughout the whole cycle, the filament is getting rid of energy by
radiating light.7 Since the circuit oscillates at a frequency8 of 60 Hz,
the temperature doesn’t really have time to cycle up or down very
much over the 1/60 s period of the oscillation, and we don’t notice
any significant variation in the brightness of the light, even with a
short-exposure photograph.

Thus, what we really want to know is the average power, “aver-
age” meaning the average over one full cycle. Since we’re covering
a whole cycle with our average, it doesn’t matter what phase we
assume. Let’s use a cosine. The total amount of energy transferred
over one cycle is

E =

∫
dE

=

∫ T

0

dE

dt
dt,

where T = 2π/ω is the period.

E =

∫ T

0
P dt

=

∫ T

0
P dt

=

∫ T

0
IoVo cos2 ωtdt

= IoVo

∫ T

0
cos2 ωtdt

= IoVo

∫ T

0

1

2
(1 + cos 2ωt) dt

7To many people, the word \radiation" implies nuclear contamination. Ac-
tually, the word simply means something that \radiates" outward. Natural
sunlight is \radiation." So is the light from a lightbulb, or the infrared light
being emitted by your skin right now.

8Note that this time \frequency" means f , not !! Physicists and engineers
generally use ! because it simpli�es the equations, but electricians and techni-
cians always use f . The 60 Hz frequency is for the U.S.
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The reason for using the trig identity cos2 x = (1 + cos 2x)/2 in
the last step is that it lets us get the answer without doing a hard
integral. Over the course of one full cycle, the quantity cos 2ωt goes
positive, negative, positive, and negative again, so the integral of it
is zero. We then have

E = IoVo

∫ T

0

1

2
dt

=
IoVoT

2

The average power is

Pav =
energy transferred in one full cycle

time for one full cycle

=
IoVoT/2

T

=
IoVo

2
,

i.e., the average is half the maximum. The power varies from 0
to IoVo, and it spends equal amounts of time above and below the
maximum, so it isn’t surprising that the average power is half-way
in between zero and the maximum. Summarizing, we have

Pav =
IoVo

2
[average power in a resistor]

for a resistor.

Rms quantities

Suppose one day the electric company decided to start supplying
your electricity as DC rather than AC. How would the DC voltage
have to be related to the amplitude Vo of the AC voltage previously
used if they wanted your lightbulbs to have the same brightness as
before? The resistance of the bulb, R, is a fixed value, so we need
to relate the power to the voltage and the resistance, eliminating
the current. In the DC case, this gives P = IV = (V/R)V = V 2/R.
(For DC, P and Pav are the same.) In the AC case, Pav = IoVo/2 =
V 2

o /2R. Since there is no factor of 1/2 in the DC case, the same
power could be provided with a DC voltage that was smaller by a
factor of 1/

√
2. Although you will hear people say that household

voltage in the U.S. is 110 V, its amplitude is actually (110 V) ×√
2 ≈ 160 V. The reason for referring to Vo/

√
2 as “the” voltage is

that people who are naive about AC circuits can plug Vo/
√

2 into
a familiar DC equation like P = V 2/R and get the right average
answer. The quantity Vo/

√
2 is called the “RMS” voltage, which

stands for “root mean square.” The idea is that if you square the
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ae / Power in a capacitor:
the rate at which energy is being
stored in (+) or removed from (-)
the electric field.

af / We wish to maximize the
power delivered to the load, Zo,
by adjusting its impedance.

function V (t), take its average (mean) over one cycle, and then take
the square root of that average, you get Vo/

√
2. Many digital meters

provide RMS readouts for measuring AC voltages and currents.

A capacitor

For a capacitor, the calculation starts out the same, but ends up
with a twist. If the voltage varies as a cosine, Vo cosωt, then the
relation I = C dV/ dt tells us that the current will be some constant
multiplied by minus the sine, −Vo sinωt. The integral we did in the
case of a resistor now becomes

E =

∫ T

0
−IoVo sinωt cosωtdt,

and based on figure ae, you can easily convince yourself that over
the course of one full cycle, the power spends two quarter-cycles
being negative and two being positive. In other words, the average
power is zero!

Why is this? It makes sense if you think in terms of energy.
A resistor converts electrical energy to heat, never the other way
around. A capacitor, however, merely stores electrical energy in an
electric field and then gives it back. For a capacitor,

Pav = 0 [average power in a capacitor]

Notice that although the average power is zero, the power at any
given instant is not typically zero, as shown in figure ae. The capac-
itor does transfer energy: it’s just that after borrowing some energy,
it always pays it back in the next quarter-cycle.

An inductor

The analysis for an inductor is similar to that for a capacitor: the
power averaged over one cycle is zero. Again, we’re merely storing
energy temporarily in a field (this time a magnetic field) and getting
it back later.

10.5.9 Impedance matching

Figure af shows a commonly encountered situation: we wish to
maximize the average power, Pav, delivered to the load for a fixed
value of Vo, the amplitude of the oscillating driving voltage. We
assume that the impedance of the transmission line, ZT is a fixed
value, over which we have no control, but we are able to design the
load, Zo, with any impedance we like. For now, we’ll also assume
that both impedances are resistive. For example, ZT could be the
resistance of a long extension cord, and Zo could be a lamp at the
end of it. The result generalizes immediately, however, to any kind
of impedance. For example, the load could be a stereo speaker’s
magnet coil, which is displays both inductance and resistance. (For
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a purely inductive or capacitive load, Pav equals zero, so the problem
isn’t very interesting!)

Since we’re assuming both the load and the transmission line are
resistive, their impedances add in series, and the amplitude of the
current is given by

Io =
Vo

Zo + ZT
,

so

Pav = IoVo/2

= I2
oZo/2

=
V 2

o Zo

(Zo + ZT )2 /2.

The maximum of this expression occurs where the derivative is zero,

0 =
1

2

d

dZo

[
V 2

o Zo

(Zo + ZT )2

]
0 =

1

2

d

dZo

[
Zo

(Zo + ZT )2

]
0 = (Zo + ZT )−2 − 2Zo (Zo + ZT )−3

0 = (Zo + ZT )− 2Zo

Zo = ZT

In other words, to maximize the power delivered to the load, we
should make the load’s impedance the same as the transmission
line’s. This result may seem surprising at first, but it makes sense
if you think about it. If the load’s impedance is too high, it’s like
opening a switch and breaking the circuit; no power is delivered.
On the other hand, it doesn’t pay to make the load’s impedance too
small. Making it smaller does give more current, but no matter how
small we make it, the current will still be limited by the transmission
line’s impedance. As the load’s impedance approaches zero, the
current approaches this fixed value, and the the power delivered,
I2

oZo, decreases in proportion to Zo.

Maximizing the power transmission by matching ZT to Zo is
called impedance matching. For example, an 8-ohm home stereo
speaker will be correctly matched to a home stereo amplifier with
an internal impedance of 8 ohms, and 4-ohm car speakers will be
correctly matched to a car stereo with a 4-ohm internal impedance.
You might think impedance matching would be unimportant be-
cause even if, for example, we used a car stereo to drive 8-ohm
speakers, we could compensate for the mismatch simply by turn-
ing the volume knob higher. This is indeed one way to compensate
for any impedance mismatch, but there is always a price to pay.
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When the impedances are matched, half the power is dissipated in
the transmission line and half in the load. By connecting a 4-ohm
amplifier to an 8-ohm speaker, however, you would be setting up a
situation in two watts were being dissipated as heat inside the amp
for every amp being delivered to the speaker. In other words, you
would be wasting energy, and perhaps burning out your amp when
you turned up the volume to compensate for the mismatch.

10.5.10 Impedances in series and parallel

How do impedances combine in series and parallel? The beauty
of treating them as complex numbers is that they simply combine
according to the same rules you’ve already learned as resistances.

Series impedance example 35
. A capacitor and an inductor in series with each other are driven
by a sinusoidally oscillating voltage. At what frequency is the cur-
rent maximized?

. Impedances in series, like resistances in series, add. The ca-
pacitor and inductor act as if they were a single circuit element
with an impedance

Z = ZL + ZC

= iωL− i
ωC

.

The current is then

Ĩ =
Ṽ

iωL− i/ωC
.

We don’t care about the phase of the current, only its amplitude,
which is represented by the absolute value of the complex num-
ber Ĩ, and this can be maximized by making |iωL−i/ωC| as small
as possible. But there is some frequency at which this quantity is
zero —

0 = iωL− i
ωC

1
ωC

= ωL

ω =
1√
LC

At this frequency, the current is infinite! What is going on phys-
ically? This is an LRC circuit with R = 0. It has a resonance at
this frequency, and because there is no damping, the response
at resonance is infinite. Of course, any real LRC circuit will have
some damping, however small (cf. figure j on page 184).
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ag / Example 37.

Resonance with damping example 36
. What is the amplitude of the current in a series LRC circuit?

. Generalizing from example 35, we add a third, real impedance:

|̃I| = |Ṽ |
|Z |

=
|Ṽ |

|R + iωL− i/ωC|

=
|Ṽ |√

R2 + (ωL− 1/ωC)2

This result would have taken pages of algebra without the com-
plex number technique!

A second-order stereo crossover filter example 37
A stereo crossover filter ensures that the high frequencies go to
the tweeter and the lows to the woofer. This can be accomplished
simply by putting a single capacitor in series with the tweeter and
a single inductor in series with the woofer. However, such a filter
does not cut off very sharply. Suppose we model the speakers
as resistors. (They really have inductance as well, since they
have coils in them that serve as electromagnets to move the di-
aphragm that makes the sound.) Then the power they draw is
I2R. Putting an inductor in series with the woofer, ag/1, gives
a total impedance that at high frequencies is dominated by the
inductor’s, so the current is proportional to ω−1, and the power
drawn by the woofer is proportional to ω−2.

A second-order filter, like ag/2, is one that cuts off more sharply:
at high frequencies, the power goes like ω−4. To analyze this
circuit, we first calculate the total impedance:

Z = ZL + (Z−1
C + Z−1

R )−1

All the current passes through the inductor, so if the driving volt-
age being supplied on the left is Ṽd , we have

Ṽd = ĨLZ ,

and we also have
ṼL = ĨLZL.

The loop rule, applied to the outer perimeter of the circuit, gives

Ṽd = ṼL + ṼR.

Straightforward algebra now results in

ṼR =
Ṽd

1 + ZL/ZC + ZL/ZR
.

At high frequencies, the ZL/ZC term, which varies as ω2, dom-
inates, so ṼR and ĨR are proportional to ω−2, and the power is
proportional to ω−4.
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10.6 Fields by Gauss’ law
10.6.1 Gauss’ law

The flea of subsection 10.3.2 had a long and illustrious scientific
career, and we’re now going to pick up her story where we left off.
This flea, whose name is Gauss9, has derived the equation E⊥ =
2πkσ for the electric field very close to a charged surface with charge
density σ. Next we will describe two improvements she is going to
make to that equation.

First, she realizes that the equation is not as useful as it could be,
because it only gives the part of the field due to the surface. If other
charges are nearby, then their fields will add to this field as vectors,
and the equation will not be true unless we carefully subtract out
the field from the other charges. This is especially problematic for
her because the planet on which she lives, known for obscure reasons
as planet Flatcat, is itself electrically charged, and so are all the fleas
— the only thing that keeps them from floating off into outer space
is that they are negatively charged, while Flatcat carries a positive
charge, so they are electrically attracted to it. When Gauss found
the original version of her equation, she wanted to demonstrate it to
her skeptical colleagues in the laboratory, using electric field meters
and charged pieces of metal foil. Even if she set up the measurements
by remote control, so that her the charge on her own body would
be too far away to have any effect, they would be disrupted by the
ambient field of planet Flatcat. Finally, however, she realized that
she could improve her equation by rewriting it as follows:

Eoutward, on side 1 + Eoutward, on side 2 = 4πkσ.

The tricky thing here is that “outward” means a different thing,
depending on which side of the foil we’re on. On the left side,
“outward” means to the left, while on the right side, “outward” is
right. A positively charged piece of metal foil has a field that points
leftward on the left side, and rightward on its right side, so the two
contributions of 2πkσ are both positive, and we get 4πkσ. On the
other hand, suppose there is a field created by other charges, not
by the charged foil, that happens to point to the right. On the
right side, this externally created field is in the same direction as
the foil’s field, but on the left side, the it reduces the strength of the
leftward field created by the foil. The increase in one term of the
equation balances the decrease in the other term. This new version
of the equation is thus exactly correct regardless of what externally
generated fields are present!

Her next innovation starts by multiplying the equation on both
sides by the area, A, of one side of the foil:

(Eoutward, on side 1 + Eoutward, on side 2)A = 4πkσA

9no relation to the human mathematician of the same name
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a / The area vector is de-
fined to be perpendicular to the
surface, in the outward direction.
Its magnitude tells how much the
area is.

b / Gauss contemplates a
map of the known world.

or

Eoutward, on side 1A+ Eoutward, on side 2A = 4πkq,

where q is the charge of the foil. The reason for this modification is
that she can now make the whole thing more attractive by defining
a new vector, the area vector A. As shown in figure a, she defines
an area vector for side 1 which has magnitude A and points outward
from side 1, and an area vector for side 2 which has the same mag-
nitude and points outward from that side, which is in the opposite
direction. The dot product of two vectors, u · v, can be interpreted
as uparallel to v|v|, and she can therefore rewrite her equation as

E1 ·A1 + E2 ·A2 = 4πkq.

The quantity on the left side of this equation is called the flux
through the surface, written Φ.

Gauss now writes a grant proposal to her favorite funding agency,
the BSGS (Blood-Suckers’ Geological Survey), and it is quickly ap-
proved. Her audacious plan is to send out exploring teams to chart
the electric fields of the whole planet of Flatcat, and thereby de-
termine the total electric charge of the planet. The fleas’ world
is commonly assumed to be a flat disk, and its size is known to
be finite, since the sun passes behind it at sunset and comes back
around on the other side at dawn. The most daring part of the plan
is that it requires surveying not just the known side of the planet
but the uncharted Far Side as well. No flea has ever actually gone
around the edge and returned to tell the tale, but Gauss assures
them that they won’t fall off — their negatively charged bodies will
be attracted to the disk no matter which side they are on.

Of course it is possible that the electric charge of planet Flatcat
is not perfectly uniform, but that isn’t a problem. As discussed in
subsection 10.3.2, as long as one is very close to the surface, the field
only depends on the local charge density. In fact, a side-benefit of
Gauss’s program of exploration is that any such local irregularities
will be mapped out. But what the newspapers find exciting is the
idea that once all the teams get back from their voyages and tabulate
their data, the total charge of the planet will have been determined
for the first time. Each surveying team is assigned to visit a certain
list of republics, duchies, city-states, and so on. They are to record
each territory’s electric field vector, as well as its area. Because the
electric field may be nonuniform, the final equation for determining
the planet’s electric charge will have many terms, not just one for
each side of the planet:

Φ =
∑

Ej ·Aj = 4πkqtotal
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c / Each part of the surface
has its own area vector. Note
the differences in lengths of the
vectors, corresponding to the
unequal areas.

d / An area vector can be
defined for a sufficiently small
part of a curved surface.

Gauss herself leads one of the expeditions, which heads due east,
toward the distant Tail Kingdom, known only from fables and the
occasional account from a caravan of traders. A strange thing hap-
pens, however. Gauss embarks from her college town in the wetlands
of the Tongue Republic, travels straight east, passes right through
the Tail Kingdom, and one day finds herself right back at home, all
without ever seeing the edge of the world! What can have happened?
All at once she realizes that the world isn’t flat.

Now what? The surveying teams all return, the data are tabu-
lated, and the result for the total charge of Flatcat is (1/4πk)

∑
Ej ·

Aj = 37 nC (units of nanocoulombs). But the equation was derived
under the assumption that Flatcat was a disk. If Flatcat is really
round, then the result may be completely wrong. Gauss and two
of her grad students go to their favorite bar, and decide to keep
on ordering Bloody Marys until they either solve their problems or
forget them. One student suggests that perhaps Flatcat really is a
disk, but the edges are rounded. Maybe the surveying teams really
did flip over the edge at some point, but just didn’t realize it. Under
this assumption, the original equation will be approximately valid,
and 37 nC really is the total charge of Flatcat.

A second student, named Newton, suggests that they take seri-
ously the possibility that Flatcat is a sphere. In this scenario, their
planet’s surface is really curved, but the surveying teams just didn’t
notice the curvature, since they were close to the surface, and the
surface was so big compared to them. They divided up the surface
into a patchwork, and each patch was fairly small compared to the
whole planet, so each patch was nearly flat. Since the patch is nearly
flat, it makes sense to define an area vector that is perpendicular to
it. In general, this is how we define the direction of an area vector,
as shown in figure d. This only works if the areas are small. For in-
stance, there would be no way to define an area vector for an entire
sphere, since “outward” is in more than one direction.

If Flatcat is a sphere, then the inside of the sphere must be
vast, and there is no way of knowing exactly how the charge is
arranged below the surface. However, the survey teams all found
that the electric field was approximately perpendicular to the surface
everywhere, and that its strength didn’t change very much from one
location to another. The simplest explanation is that the charge
is all concentrated in one small lump at the center of the sphere.
They have no way of knowing if this is really the case, but it’s a
hypothesis that allows them to see how much their 37 nC result
would change if they assumed a different geometry. Making this
assumption, Newton performs the following simple computation on
a napkin. The field at the surface is related to the charge at the
center by
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|E| = kqtotal
r2

,

where r is the radius of Flatcat. The flux is then

Φ =
∑

Ej ·Aj ,

and since the Ej and Aj vectors are parallel, the dot product equals
|Ej ||Aj |, so

Φ =
∑ kqtotal

r2
|Aj |.

But the field strength is always the same, so we can take it outside
the sum, giving

Φ =
kqtotal
r2

∑
|Aj |

=
kqtotal
r2

Atotal

=
kqtotal
r2

4πr2

= 4πkqtotal.

Not only have all the factors of r canceled out, but the result is
the same as for a disk!

Everyone is pleasantly surprised by this apparent mathematical
coincidence, but is it anything more than that? For instance, what
if the charge wasn’t concentrated at the center, but instead was
evenly distributed throughout Flatcat’s interior volume? Newton,
however, is familiar with a result called the shell theorem (page 102),
which states that the field of a uniformly charged sphere is the same
as if all the charge had been concentrated at its center.10 We now
have three different assumptions about the shape of Flatcat and the
arrangement of the charges inside it, and all three lead to exactly the
same mathematical result, Φ = 4πkqtotal. This is starting to look
like more than a coincidence. In fact, there is a general mathematical
theorem, called Gauss’ theorem, which states the following:

For any region of space, the flux through the surface equals
4πkqin, where qin is the total charge in that region.

Don’t memorize the factor of 4π in front — you can rederive it
any time you need to, by considering a spherical surface centered on
a point charge.

10Newton’s human namesake actually proved this for gravity, not electricity,
but they’re both 1=r2 forces, so the proof works equally well in both cases.
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e / 1. The flux due to two
charges equals the sum of the
fluxes from each one. 2. When
two regions are joined together,
the flux through the new region
equals the sum of the fluxes
through the two parts.

Note that although region and its surface had a definite physical
existence in our story — they are the planet Flatcat and the surface
of planet Flatcat — Gauss’ law is true for any region and surface we
choose, and in general, the Gaussian surface has no direct physical
significance. It’s simply a computational tool.

Rather than proving Gauss’ theorem and then presenting some
examples and applications, it turns out to be easier to show some ex-
amples that demonstrate its salient properties. Having understood
these properties, the proof becomes quite simple.

self-check K
Suppose we have a negative point charge, whose field points inward,
and we pick a Gaussian surface which is a sphere centered on that
charge. How does Gauss’ theorem apply here? . Answer, p. 1050

10.6.2 Additivity of flux

Figure e shows two two different ways in which flux is additive.
Figure e/1, additivity by charge, shows that we can break down a
charge distribution into two or more parts, and the flux equals the
sum of the fluxes due to the individual charges. This follows directly
from the fact that the flux is defined in terms of a dot product, E·A,
and the dot product has the additive property (a+b)·c = a·c+b·c.

To understand additivity of flux by region, e/2, we have to con-
sider the parts of the two surfaces that were eliminated when they
were joined together, like knocking out a wall to make two small
apartments into one big one. Although the two regions shared this
wall before it was removed, the area vectors were opposite: the di-
rection that is outward from one region is inward with respect to
the other. Thus if the field on the wall contributes positive flux to
one region, it contributes an equal amount of negative flux to the
other region, and we can therefore eliminate the wall to join the two
regions, without changing the total flux.

10.6.3 Zero flux from outside charges

A third important property of Gauss’ theorem is that it only
refers to the charge inside the region we choose to discuss. In other
words, it asserts that any charge outside the region contributes zero
to the flux. This makes at least some sense, because a charge outside
the region will have field vectors pointing into the surface on one
side, and out of the surface on the other. Certainly there should
be at least partial cancellation between the negative (inward) flux
on one side and the positive (outward) flux on the other. But why
should this cancellation be exact?

To see the reason for this perfect cancellation, we can imagine
space as being built out of tiny cubes, and we can think of any charge
distribution as being composed of point charges. The additivity-by-
charge property tells us that any charge distribution can be handled
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f / The flux through a tiny cube
due to a point charge.

by considering its point charges individually, and the additivity-by-
region property tells us that if we have a single point charge outside
a big region, we can break the region down into tiny cubes. If we
can prove that the flux through such a tiny cube really does cancel
exactly, then the same must be true for any region, which we could
build out of such cubes, and any charge distribution, which we can
build out of point charges.

For simplicity, we will carry out this calculation only in the spe-
cial case shown in figure f, where the charge lies along one axis of
the cube. Let the sides of the cube have length 2b, so that the area
of each side is (2b)2 = 4b2. The cube extends a distance b above,
below, in front of, and behind the horizontal x axis. There is a dis-
tance d − b from the charge to the left side, and d + b to the right
side.

There will be one negative flux, through the left side, and five
positive ones. Of these positive ones, the one through the right side
is very nearly the same in magnitude as the negative flux through
the left side, but just a little less because the field is weaker on
the right, due to the greater distance from the charge. The fluxes
through the other four sides are very small, since the field is nearly
perpendicular to their area vectors, and the dot product Ej ·Aj is
zero if the two vectors are perpendicular. In the limit where b is
very small, we can approximate the flux by evaluating the field at
the center of each of the cube’s six sides, giving

Φ = Φleft + 4Φside + Φright

= |Eleft||Aleft| cos 180◦ + 4|Eside||Aside| cos θside

+ |Eright||Aright| cos 0◦,

and a little trig gives cos θside ≈ b/d, so

Φ = −|Eleft||Aleft|+ 4|Eside||Aside|
b

d
+ |Eright||Aright|

=
(
4b2
)(
−|Eleft|+ 4|Eside|

b

d
+ |Eright|

)
=
(
4b2
)(
− kq

(d− b)2
+ 4

kq

d2

b

d
+

kq

(d+ b)2

)
=

(
4kqb2

d2

)(
− 1

(1− b/d)2
+

4b

d
+

1

(1 + b/d)2

)
.

Using the approximation (1+ε)−2 ≈ 1−2ε for small ε, this becomes

Φ =

(
4kqb2

d2

)(
−1− 2b

d
+

4b

d
+ 1− 2b

d

)
= 0.

Thus in the limit of a very small cube, b � d, we have proved
that the flux due to this exterior charge is zero. The proof can be

638 Chapter 10 Fields



extended to the case where the charge is not along any axis of the
cube,11 and based on additivity we then have a proof that the flux
due to an outside charge is always zero.

No charge on the interior of a conductor example 38
I asserted on p. 537 that for a perfect conductor in equilibrium, ex-
cess charge is found only at the surface, never in the interior. This
can be proved using Gauss’s theorem. Suppose that a charge q
existed at some point in the interior, and it was in stable equilib-
rium. For concreteness, let’s say q is positive. If its equilibrium
is to be stable, then we need an electric field everywhere around
it that points inward like a pincushion, so that if the charge were
to be perturbed slightly, the field would bring it back to its equi-
librium position. Since Newton’s third law forbids objects from
making forces on themselves, this field would have to be the field
contributed by all the other charges, not by q itself. But this is im-
possible, because this kind of inward-pointing pincushion pattern
would have a nonzero (negative) flux through the pincushion, but
Gauss’s theorem says we can’t have flux from outside charges.

11The math gets messy for the o�-axis case. This part of the proof can be
completed more easily and transparently using the techniques of section 10.7,
and that is exactly we’ll do in example 40 on page 647.

Section 10.6 Fields by Gauss’ law 639



Discussion Questions

g / Discussion question A-D.

A One question that might naturally occur to you about Gauss’s law
is what happens for charge that is exactly on the surface — should it be
counted toward the enclosed charge, or not? If charges can be perfect,
infinitesimal points, then this could be a physically meaningful question.
Suppose we approach this question by way of a limit: start with charge q
spread out over a sphere of finite size, and then make the size of the
sphere approach zero. The figure shows a uniformly charged sphere
that’s exactly half-way in and half-way out of the cubical Gaussian sur-
face. What is the flux through the cube, compared to what it would be if
the charge was entirely enclosed? (There are at least three ways to find
this flux: by direct integration, by Gauss’s law, or by the additivity of flux
by region.)

B The dipole is completely enclosed in the cube. What does Gauss’s
law say about the flux through the cube? If you imagine the dipole’s field
pattern, can you verify that this makes sense?

C The wire passes in through one side of the cube and out through
the other. If the current through the wire is increasing, then the wire will
act like an inductor, and there will be a voltage difference between its
ends. (The inductance will be relatively small, since the wire isn’t coiled
up, and the ∆V will therefore also be fairly small, but still not zero.) The
∆V implies the existence of electric fields, and yet Gauss’s law says the
flux must be zero, since there is no charge inside the cube. Why isn’t
Gauss’s law violated?

D The charge has been loitering near the edge of the cube, but is
then suddenly hit with a mallet, causing it to fly off toward the left side
of the cube. We haven’t yet discussed in detail how disturbances in the
electric and magnetic fields ripple outward through space, but it turns out
that they do so at the speed of light. (In fact, that’s what light is: ripples
in the electric and magnetic fields.) Because the charge is closer to the
left side of the cube, the change in the electric field occurs there before
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h / Completing the proof of
Gauss’ theorem.

the information reaches the right side. This would seem certain to lead
to a violation of Gauss’s law. How can the ideas explored in discussion
question C show the resolution to this paradox?

10.6.4 Proof of Gauss’ theorem

With the computational machinery we’ve developed, it is now
simple to prove Gauss’ theorem. Based on additivity by charge, it
suffices to prove the law for a point charge. We have already proved
Gauss’ law for a point charge in the case where the point charge is
outside the region. If we can prove it for the inside case, then we’re
all done.

If the charge is inside, we reason as follows. First, we forget
about the actual Gaussian surface of interest, and instead construct
a spherical one, centered on the charge. For the case of a sphere,
we’ve already seen the proof written on a napkin by the flea named
Newton (page 635). Now wherever the actual surface sticks out
beyond the sphere, we glue appropriately shaped pieces onto the
sphere. In the example shown in figure h, we have to add two
Mickey Mouse ears. Since these added pieces do not contain the
point charge, the flux through them is zero, and additivity of flux
by region therefore tells us that the total flux is not changed when
we make this alteration. Likewise, we need to chisel out any regions
where the sphere sticks out beyond the actual surface. Again, there
is no change in flux, since the region being altered doesn’t contain
the point charge. This proves that the flux through the Gaussian
surface of interest is the same as the flux through the sphere, and
since we’ve already proved that that flux equals 4πkqin, our proof
of Gauss’ theorem is complete.

Discussion Questions

A A critical part of the proof of Gauss’ theorem was the proof that
a tiny cube has zero flux through it due to an external charge. Discuss
qualitatively why this proof would fail if Coulomb’s law was a 1/r or 1/r3

law.

10.6.5 Gauss’ law as a fundamental law of physics

Note that the proof of Gauss’ theorem depended on the compu-
tation on the napkin discussed on page 10.6.1. The crucial point in
this computation was that the electric field of a point charge falls
off like 1/r2, and since the area of a sphere is proportional to r2,
the result is independent of r. The 1/r2 variation of the field also
came into play on page 638 in the proof that the flux due to an out-
side charge is zero. In other words, if we discover some other force
of nature which is proportional to 1/r3 or r, then Gauss’ theorem
will not apply to that force. Gauss’ theorem is not true for nuclear
forces, which fall off exponentially with distance. However, this is
the only assumption we had to make about the nature of the field.
Since gravity, for instance, also has fields that fall off as 1/r2, Gauss’
theorem is equally valid for gravity — we just have to replace mass
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i / Applying Gauss’ law to an
infinite line of charge.

with charge, change the Coulomb constant k to the gravitational
constant G, and insert a minus sign because the gravitational fields
around a (positive) mass point inward.

Gauss’ theorem can only be proved if we assume a 1/r2 field,
and the converse is also true: any field that satisfies Gauss’ theo-
rem must be a 1/r2 field. Thus although we previously thought of
Coulomb’s law as the fundamental law of nature describing electric
forces, it is equally valid to think of Gauss’ theorem as the basic law
of nature for electricity. From this point of view, Gauss’ theorem is
not a mathematical fact but an experimentally testable statement
about nature, so we’ll refer to it as Gauss’ law, just as we speak of
Coulomb’s law or Newton’s law of gravity.

If Gauss’ law is equivalent to Coulomb’s law, why not just use
Coulomb’s law? First, there are some cases where calculating a
field is easy with Gauss’ law, and hard with Coulomb’s law. More
importantly, Gauss’ law and Coulomb’s law are only mathematically
equivalent under the assumption that all our charges are standing
still, and all our fields are constant over time, i.e., in the study
of electrostatics, as opposed to electrodynamics. As we broaden
our scope to study generators, inductors, transformers, and radio
antennas, we will encounter cases where Gauss’ law is valid, but
Coulomb’s law is not.

10.6.6 Applications

Often we encounter situations where we have a static charge
distribution, and we wish to determine the field. Although super-
position is a generic strategy for solving this type of problem, if the
charge distribution is symmetric in some way, then Gauss’ law is
often a far easier way to carry out the computation.

Field of a long line of charge

Consider the field of an infinitely long line of charge, holding a
uniform charge per unit length λ. Computing this field by brute-
force superposition was fairly laborious (examples 13 on page 590
and 16 on page 597). With Gauss’ law it becomes a very simple
calculation.

The problem has two types of symmetry. The line of charge,
and therefore the resulting field pattern, look the same if we rotate
them about the line. The second symmetry occurs because the line
is infinite: if we slide the line along its own length, nothing changes.
This sliding symmetry, known as a translation symmetry, tells us
that the field must point directly away from the line at any given
point.

Based on these symmetries, we choose the Gaussian surface
shown in figure i. If we want to know the field at a distance R
from the line, then we choose this surface to have a radius R, as
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j / Applying Gauss’ law to an
infinite charged surface.

shown in the figure. The length, L, of the surface is irrelevant.

The field is parallel to the surface on the end caps, and therefore
perpendicular to the end caps’ area vectors, so there is no contribu-
tion to the flux. On the long, thin strips that make up the rest of the
surface, the field is perpendicular to the surface, and therefore paral-
lel to the area vector of each strip, so that the dot product occurring
in the definition of the flux is Ej ·Aj = |Ej ||Aj || cos 0◦ = |Ej ||Aj |.
Gauss’ law gives

4πkqin =
∑

Ej ·Aj

4πkλL =
∑
|Ej ||Aj |.

The magnitude of the field is the same on every strip, so we can
take it outside the sum.

4πkλL = |E|
∑
|Aj |

In the limit where the strips are infinitely narrow, the surface be-
comes a cylinder, with (area)=(circumference)(length)=2πRL.

4πkλL = |E| × 2πRL

|E| = 2kλ

R

Field near a surface charge

As claimed earlier, the result E = 2πkσ for the field near a
charged surface is a special case of Gauss’ law. We choose a Gaussian
surface of the shape shown in figure j, known as a Gaussian pillbox.
The exact shape of the flat end caps is unimportant.

The symmetry of the charge distribution tells us that the field
points directly away from the surface, and is equally strong on both
sides of the surface. This means that the end caps contribute equally
to the flux, and the curved sides have zero flux through them. If the
area of each end cap is A, then

4πkqin = E1 ·A1 + E2 ·A2,

where the subscripts 1 and 2 refer to the two end caps. We have
A2 = −A1, so

4πkqin = E1 ·A1 −E2 ·A1

4πkqin = (E1 −E2) ·A1,

and by symmetry the magnitudes of the two fields are equal, so

2|E|A = 4πkσA

|E| = 2πkσ
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The symmetry between the two sides could be broken by the
existence of other charges nearby, whose fields would add onto the
field of the surface itself. Even then, Gauss’s law still guarantees

4πkqin = (E1 −E2) ·A1,

or

|E⊥,1 −E⊥,2| = 4πkσ,

where the subscript ⊥ indicates the component of the field parallel
to the surface (i.e., parallel to the area vectors). In other words,
the electric field changes discontinuously when we pass through a
charged surface; the discontinuity occurs in the component of the
field perpendicular to the surface, and the amount of discontinuous
change is 4πkσ. This is a completely general statement that is true
near any charged surface, regardless of the existence of other charges
nearby.
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a / A tiny cubical Gaussian
surface.

10.7 Gauss’ law in differential form
10.7.1 Gauss’s law as a local law

Gauss’ law is a bit spooky. It relates the field on the Gaussian
surface to the charges inside the surface. What if the charges have
been moving around, and the field at the surface right now is the one
that was created by the charges in their previous locations? Gauss’
law — unlike Coulomb’s law — still works in cases like these, but
it’s far from obvious how the flux and the charges can still stay in
agreement if the charges have been moving around.

For this reason, it would be more physically attractive to restate
Gauss’ law in a different form, so that it related the behavior of
the field at one point to the charges that were actually present at
that point. This is essentially what we were doing in the fable of
the flea named Gauss: the fleas’ plan for surveying their planet was
essentially one of dividing up the surface of their planet (which they
believed was flat) into a patchwork, and then constructing small
a Gaussian pillbox around each small patch. The equation E⊥ =
2πkσ then related a particular property of the local electric field to
the local charge density.

In general, charge distributions need not be confined to a flat
surface — life is three-dimensional — but the general approach of
defining very small Gaussian surfaces is still a good one. Our strat-
egy is to divide up space into tiny cubes, like the one on page 637.
Each such cube constitutes a Gaussian surface, which may contain
some charge. Again we approximate the field using its six values at
the center of each of the six sides. Let the cube extend from x to
x+ dx, from y to y + dy, and from y to y + dy.

The sides at x and x+dx have area vectors −dy dzx̂ and dy dzx̂,
respectively. The flux through the side at x is −Ex(x) dy dz, and
the flux through the opposite side, at x + dx is Ex(x + dx) dy dz.
The sum of these is (Ex(x + dx) − Ex(x)) dy dz, and if the field
was uniform, the flux through these two opposite sides would be
zero. It will only be zero if the field’s x component changes as a
function of x. The difference Ex(x + dx) − Ex(x) can be rewritten
as dEx = (dEx)/(dx) dx, so the contribution to the flux from these
two sides of the cube ends up being

dEx
dx

dx dy dz.

Doing the same for the other sides, we end up with a total flux

dΦ =

(
dEx
dx

+
dEy
dy

+
dEz
dz

)
dx dy dz

=

(
dEx
dx

+
dEy
dy

+
dEz
dz

)
dv,
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b / A meter for measuring
div E.

c / Example 39.

where dv is the volume of the cube. In evaluating each of these
three derivatives, we are going to treat the other two variables as
constants, to emphasize this we use the partial derivative notation
∂ introduced in chapter 3,

dΦ =

(
∂Ex
∂x

+
∂Ey
∂y

+
∂Ez
∂z

)
dv.

Using Gauss’ law,

4πkqin =

(
∂Ex
∂x

+
∂Ey
∂y

+
∂Ez
∂z

)
dv,

and we introduce the notation ρ (Greek letter rho) for the charge
per unit volume, giving

4πkρ =
∂Ex
∂x

+
∂Ey
∂y

+
∂Ez
∂z

.

The quantity on the right is called the divergence of the electric
field, written div E. Using this notation, we have

div E = 4πkρ.

This equation has all the same physical implications as Gauss’ law.
After all, we proved Gauss’ law by breaking down space into little
cubes like this. We therefore refer to it as the differential form of
Gauss’ law, as opposed to Φ = 4πkqin, which is called the integral
form.

Figure b shows an intuitive way of visualizing the meaning of
the divergence. The meter consists of some electrically charged balls
connected by springs. If the divergence is positive, then the whole
cluster will expand, and it will contract its volume if it is placed at
a point where the field has div E < 0. What if the field is constant?
We know based on the definition of the divergence that we should
have divE = 0 in this case, and the meter does give the right result:
all the balls will feel a force in the same direction, but they will
neither expand nor contract.

Divergence of a sine wave example 39
. Figure c shows an electric field that varies as a sine wave. This
is in fact what you’d see in a light wave: light is a wave pattern
made of electric and magnetic fields. (The magnetic field would
look similar, but would be in a plane perpendicular to the page.)
What is the divergence of such a field, and what is the physical
significance of the result?

. Intuitively, we can see that no matter where we put the div-meter
in this field, it will neither expand nor contract. For instance, if we
put it at the center of the figure, it will start spinning, but that’s it.
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Mathematically, let the x axis be to the right and let y be up. The
field is of the form

E = (sinK x) ŷ,
where the constant K is not to be confused with Coulomb’s con-
stant. Since the field has only a y component, the only term in
the divergence we need to evaluate is

E =
∂Ey

∂y
,

but this vanishes, because Ey depends only on x , not y : we treat
y as a constant when evaluating the partial derivative ∂Ey/∂y ,
and the derivative of an expression containing only constants
must be zero.

Physically this is a very important result: it tells us that a light
wave can exist without any charges along the way to “keep it go-
ing.” In other words, light can travel through a vacuum, a region
with no particles in it. If this wasn’t true, we’d be dead, because
the sun’s light wouldn’t be able to get to us through millions of
kilometers of empty space!

Electric field of a point charge example 40
The case of a point charge is tricky, because the field behaves
badly right on top of the charge, blowing up and becoming dis-
continuous. At this point, we cannot use the component form of
the divergence, since none of the derivatives are well defined.
However, a little visualization using the original definition of the
divergence will quickly convince us that div E is infinite here, and
that makes sense, because the density of charge has to be in-
finite at a point where there is a zero-size point of charge (finite
charge in zero volume).

At all other points, we have

E =
kq
r2 r̂,

where r̂ = r/r = (x x̂ + y ŷ + zẑ)/r is the unit vector pointing radially
away from the charge. The field can therefore be written as

E =
kq
r3 r̂

=
kq(x x̂ + y ŷ + zẑ)(
x2 + y2 + z2

)3/2 .

The three terms in the divergence are all similar, e.g.,

∂Ex

∂x
= kq

∂

∂x

[
x(

x2 + y2 + z2
)3/2

]

= kq

[
1(

x2 + y2 + z2
)3/2 −

3
2

2x2(
x2 + y2 + z2

)5/2

]
= kq

(
r−3 − 3x2r−5

)
.
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Straightforward algebra shows that adding in the other two terms
results in zero, which makes sense, because there is no charge
except at the origin.

Gauss’ law in differential form lends itself most easily to finding
the charge density when we are give the field. What if we want
to find the field given the charge density? As demonstrated in the
following example, one technique that often works is to guess the
general form of the field based on experience or physical intuition,
and then try to use Gauss’ law to find what specific version of that
general form will be a solution.

The field inside a uniform sphere of charge example 41
. Find the field inside a uniform sphere of charge whose charge
density is ρ. (This is very much like finding the gravitational field
at some depth below the surface of the earth.)

. By symmetry we know that the field must be purely radial (in
and out). We guess that the solution might be of the form

E = brp r̂,

where r is the distance from the center, and b and p are con-
stants. A negative value of p would indicate a field that was
strongest at the center, while a positive p would give zero field
at the center and stronger fields farther out. Physically, we know
by symmetry that the field is zero at the center, so we expect p to
be positive.

As in the example 40, we rewrite r̂ as r/r , and to simplify the
writing we define n = p − 1, so

E = brnr.

Gauss’ law in differential form is

div E = 4πkρ,

so we want a field whose divergence is constant. For a field of
the form we guessed, the divergence has terms in it like

∂Ex

∂x
=
∂

∂x
(
brnx

)
= b

(
nrn−1 ∂r

∂x
x + rn

)

The partial derivative ∂r/∂x is easily calculated to be x/r , so

∂Ex

∂x
= b

(
nrn−2x2 + rn

)
Adding in similar expressions for the other two terms in the diver-
gence, and making use of x2 + y2 + z2 = r2, we have

div E = b(n + 3)rn.
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d / Discussion question A.

This can indeed be constant, but only if n is 0 or −3, i.e., p is 1
or −2. The second solution gives a divergence which is constant
and zero: this is the solution for the outside of the sphere! The
first solution, which has the field directly proportional to r , must
be the one that applies to the inside of the sphere, which is what
we care about right now. Equating the coefficient in front to the
one in Gauss’ law, the field is

E =
4πkρ

3
r r̂.

The field is zero at the center, and gets stronger and stronger as
we approach the surface.

Discussion Questions

A As suggested by the figure, discuss the results you would get by
inserting the div-meter at various locations in the sine-wave field.

10.7.2 Poisson’s equation and Laplace’s equation

Gauss’s law, div E = 4πkρ, can also be stated in terms of the
potential. Since E = ∇V , we have div∇V = 4πkρ. If we work out
the combination of operators div∇ in a Cartesian coordinate system,
we get ∂2/∂x2 +∂2/∂y2 +∂2/∂z2, which is called the Laplacian and
notated ∇2. The Laplacian is discussed in more detail on p. 901.
The version of Gauss’s law written in terms of the potential,

∇2V = 4πkρ,

is called Poisson’s equation, while in the special case of a vacuum,
with ρ = 0, we have

∇2V = 0,

known as Laplace’s equation. Many problems in electrostatics can
be stated in terms of finding potential that satisfies Laplace’s equa-
tion, usually with some set of boundary conditions. For example,
if an infinite parallel-plate capacitor has plates parallel to the x-y
plane at certain given potentials, then these plates form a boundary
for the region between the plates, and Laplace’s equation has a so-
lution in this region of the form V = az + b. It’s easy to verify that
this is a solution of Laplace’s equation, since all three of the partial
derivatives vanish.

10.7.3 The method of images

A car’s radio antenna is usually in the form of a whip sticking
up above its metal roof. This is an example involving radio waves,
which are time-varying electric and magnetic fields, but a similar,
simpler electrostatic example is the following. Suppose that we po-
sition a charge q > 0 at a distance ` from a conducting plane. What
is the resulting electric field? The conductor has charges that are
free to move, and due to the field of the charge q, we will end up with
a net concentration of negative charge in the part of the plane near
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e / The method of images.

q. The field in the vacuum surrounding q will be a sum of fields
due to q and fields due to these charges in the conducting plane.
The problem can be stated as that of finding a solution to Poisson’s
equation with the boundary condition that V = 0 at the conducting
plane. Figure e/1 shows the kind of field lines we expect.

This looks like a very complicated problem, but there is trick
that allows us to find a simple solution. We can convert the problem
into an equivalent one in which the conductor isn’t present, but a
fictitious image charge −q is placed at an equal distance behind the
plane, like a reflection in a mirror, as in figure e/2. The field is
then simply the sum of the fields of the charges q and −q, so we can
either add the field vectors or add the potentials. By symmetry, the
field lines are perpendicular to the plane, so the plane is an surface
of constant potential, as required.

This chapter is summarized on page 1073. Notation and terminology
are tabulated on pages 1057-1058.
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