
d / Discussion question A.

This can indeed be constant, but only if n is 0 or �3, i.e., p is 1
or �2. The second solution gives a divergence which is constant
and zero: this is the solution for the outside of the sphere! The
first solution, which has the field directly proportional to r , must
be the one that applies to the inside of the sphere, which is what
we care about right now. Equating the coefficient in front to the
one in Gauss’ law, the field is

E =
4�k�

3
r r̂.

The field is zero at the center, and gets stronger and stronger as
we approach the surface.

Discussion Questions

A As suggested by the figure, discuss the results you would get by
inserting the div-meter at various locations in the sine-wave field.

10.7.2 Poisson’s equation and Laplace’s equation

Gauss’s law, div E = 4�k�, can also be stated in terms of the
potential. Since E = rV , we have divrV = 4�k�. If we work out
the combination of operators divr in a Cartesian coordinate system,
we get @2=@x2 +@2=@y2 +@2=@z2, which is called the Laplacian and
notated r2. The Laplacian is discussed in more detail on p. 903.
The version of Gauss’s law written in terms of the potential,

r2V = 4�k�,

is called Poisson’s equation, while in the special case of a vacuum,
with � = 0, we have

r2V = 0,

known as Laplace’s equation. Many problems in electrostatics can
be stated in terms of �nding potential that satis�es Laplace’s equa-
tion, usually with some set of boundary conditions. For example,
if an in�nite parallel-plate capacitor has plates parallel to the x-y
plane at certain given potentials, then these plates form a boundary
for the region between the plates, and Laplace’s equation has a so-
lution in this region of the form V = az + b. It’s easy to verify that
this is a solution of Laplace’s equation, since all three of the partial
derivatives vanish.

10.7.3 The method of images

A car’s radio antenna is usually in the form of a whip sticking
up above its metal roof. This is an example involving radio waves,
which are time-varying electric and magnetic �elds, but a similar,
simpler electrostatic example is the following. Suppose that we po-
sition a charge q > 0 at a distance ‘ from a conducting plane. What
is the resulting electric �eld? The conductor has charges that are
free to move, and due to the �eld of the charge q, we will end up with
a net concentration of negative charge in the part of the plane near
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e / The method of images.

q. The �eld in the vacuum surrounding q will be a sum of �elds
due to q and �elds due to these charges in the conducting plane.
The problem can be stated as that of �nding a solution to Poisson’s
equation with the boundary condition that V = 0 at the conducting
plane. Figure e/1 shows the kind of �eld lines we expect.

This looks like a very complicated problem, but there is trick
that allows us to �nd a simple solution. We can convert the problem
into an equivalent one in which the conductor isn’t present, but a
�ctitious image charge �q is placed at an equal distance behind the
plane, like a reection in a mirror, as in �gure e/2. The �eld is
then simply the sum of the �elds of the charges q and �q, so we can
either add the �eld vectors or add the potentials. By symmetry, the
�eld lines are perpendicular to the plane, so the plane is an surface
of constant potential, as required.

This chapter is summarized on page 1074. Notation and terminology
are tabulated on pages 1058-1059.
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Problems
The symbols

p
, , etc. are explained on page 664.

1 The gap between the electrodes in an automobile engine’s
spark plug is 0.060 cm. To produce an electric spark in a gasoline-
air mixture, an electric �eld of 3.0 � 106 V/m must be achieved.
On starting a car, what minimum voltage must be supplied by the
ignition circuit? Assume the �eld is uniform.

p

(b) The small size of the gap between the electrodes is inconvenient
because it can get blocked easily, and special tools are needed to
measure it. Why don’t they design spark plugs with a wider gap?

2 (a) As suggested in example 12 on page 591, use approxi-
mations to show that the expression given for the electric �eld ap-
proaches kQ=d2 for large d.
(b) Do the same for the result of example 15 on page 595.

3 Astronomers believe that the mass distribution (mass per
unit volume) of some galaxies may be approximated, in spherical
coordinates, by � = ae�br, for 0 � r � 1, where � is the density.
Find the total mass.

4 (a) At time t = 0, a positively charged particle is placed,
at rest, in a vacuum, in which there is a uniform electric �eld of
magnitude E. Write an equation giving the particle’s speed, v, in
terms of t, E, and its mass and charge m and q.

p

(b) If this is done with two di�erent objects and they are observed
to have the same motion, what can you conclude about their masses
and charges? (For instance, when radioactivity was discovered, it
was found that one form of it had the same motion as an electron
in this type of experiment.)

5 Show that the alternative de�nition of the magnitude of the
electric �eld, jEj = �=Dt sin �, has units that make sense.

6 Redo the calculation of example 5 on page 582 using a di�erent
origin for the coordinate system, and show that you get the same
result.

7 The de�nition of the dipole moment, D =
P
qiri, involves the

vector ri stretching from the origin of our coordinate system out to
the charge qi. There are clearly cases where this causes the dipole
moment to be dependent on the choice of coordinate system. For
instance, if there is only one charge, then we could make the dipole
moment equal zero if we chose the origin to be right on top of the
charge, or nonzero if we put the origin somewhere else.
(a) Make up a numerical example with two charges of equal mag-
nitude and opposite sign. Compute the dipole moment using two
di�erent coordinate systems that are oriented the same way, but
di�er in the choice of origin. Comment on the result.
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Problem 8.

Problem 11.

Problem 13.

(b) Generalize the result of part a to any pair of charges with equal
magnitude and opposite sign. This is supposed to be a proof for any
arrangement of the two charges, so don’t assume any numbers.
(c) Generalize further, to n charges.

8 Compare the two dipole moments.

9 Find an arrangement of charges that has zero total charge and
zero dipole moment, but that will make nonvanishing electric �elds.

10 As suggested in example 14 on page 594, show that you
can get the same result for the on-axis �eld by di�erentiating the
potential.

11 Three charges are arranged on a square as shown. All three
charges are positive. What value of q2=q1 will produce zero electric
�eld at the center of the square?

p

12 This is a one-dimensional problem, with everything con�ned
to the x axis. Dipole A consists of a �1.000 C charge at x = 0.000
m and a 1.000 C charge at x = 1.000 m. Dipole B has a �2.000 C
charge at x = 0.000 m and a 2.000 C charge at x = 0.500 m.
(a) Compare the two dipole moments.
(b) Calculate the �eld created by dipole A at x = 10.000 m, and
compare with the �eld dipole B would make. Comment on the
result.

p

13 In our by-now-familiar neuron, the voltage di�erence be-
tween the inner and outer surfaces of the cell membrane is about
Vout � Vin = �70 mV in the resting state, and the thickness of the
membrane is about 6.0 nm (i.e., only about a hundred atoms thick).
What is the electric �eld inside the membrane?

p

14 A proton is in a region in which the electric �eld is given by
E = a + bx3. If the proton starts at rest at x1 = 0, �nd its speed,
v, when it reaches position x2. Give your answer in terms of a, b,
x2, and e and m, the charge and mass of the proton.

p

15 (a) Given that the on-axis �eld of a dipole at large distances is
proportional toD=r3, show that its potential varies asD=r2. (Ignore
positive and negative signs and numerical constants of proportion-
ality.)
(b) Write down an exact expression for the potential of a two-charge
dipole at an on-axis point, without assuming that the distance is
large compared to the size of the dipole. Your expression will have
to contain the actual charges and size of the dipole, not just its dipole
moment. Now use approximations to show that, at large distances,
this is consistent with your answer to part a. . Hint, p. 1025

16 A hydrogen atom is electrically neutral, so at large distances,
we expect that it will create essentially zero electric �eld. This is
not true, however, near the atom or inside it. Very close to the
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Problem 19.

Problem 20.

proton, for example, the �eld is very strong. To see this, think of
the electron as a spherically symmetric cloud that surrounds the
proton, getting thinner and thinner as we get farther away from the
proton. (Quantum mechanics tells us that this is a more correct
picture than trying to imagine the electron orbiting the proton.)
Near the center of the atom, the electron cloud’s �eld cancels out
by symmetry, but the proton’s �eld is strong, so the total �eld is
very strong. The potential in and around the hydrogen atom can
be approximated using an expression of the form V = r�1e�r. (The
units come out wrong, because I’ve left out some constants.) Find
the electric �eld corresponding to this potential, and comment on its
behavior at very large and very small r. . Solution, p. 1037

17 A carbon dioxide molecule is structured like O-C-O, with all
three atoms along a line. The oxygen atoms grab a little bit of extra
negative charge, leaving the carbon positive. The molecule’s sym-
metry, however, means that it has no overall dipole moment, unlike
a V-shaped water molecule, for instance. Whereas the potential of a
dipole of magnitude D is proportional to D=r2, (see problem 15), it
turns out that the potential of a carbon dioxide molecule at a distant
point along the molecule’s axis equals b=r3, where r is the distance
from the molecule and b is a constant (cf. problem 9). What would
be the electric �eld of a carbon dioxide molecule at a point on the
molecule’s axis, at a distance r from the molecule?

p

18 A hydrogen atom in a particular state has the charge density
(charge per unit volume) of the electron cloud given by � = ae�brz2,
where r is the distance from the proton, and z is the coordinate mea-
sured along the z axis. Given that the total charge of the electron
cloud must be �e, �nd a in terms of the other variables.

19 A dipole has a midplane, i.e., the plane that cuts through the
dipole’s center, and is perpendicular to the dipole’s axis. Consider
a two-charge dipole made of point charges �q located at z = �‘=2.
Use approximations to �nd the �eld at a distant point in the mid-
plane, and show that its magnitude comes out to be kD=R3 (half
what it would be at a point on the axis lying an equal distance from
the dipole).

20 The �gure shows a vacuum chamber surrounded by four metal
electrodes shaped like hyperbolas. (Yes, physicists do sometimes ask
their university machine shops for things machined in mathematical
shapes like this. They have to be made on computer-controlled
mills.) We assume that the electrodes extend far into and out of
the page along the unseen z axis, so that by symmetry, the electric
�elds are the same for all z. The problem is therefore e�ectively two-
dimensional. Two of the electrodes are at voltage +Vo, and the other
two at �Vo, as shown. The equations of the hyperbolic surfaces are
jxyj = b2, where b is a constant. (We can interpret b as giving the
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Problem 23.

locations x = �b, y = �b of the four points on the surfaces that
are closest to the central axis.) There is no obvious, pedestrian way
to determine the �eld or potential in the central vacuum region,
but there’s a trick that works: with a little mathematical insight,
we see that the potential V = Vob

�2xy is consistent with all the
given information. (Mathematicians could prove that this solution
was unique, but a physicist knows it on physical grounds: if there
were two di�erent solutions, there would be no physical way for the
system to decide which one to do!)
(a) Use the techniques of subsection 10.2.2 to �nd the �eld in the
vacuum region.

(b) Sketch the �eld as a \sea of arrows."
p

21 (a) A certain region of three-dimensional space has a potential
that varies as V = br2, where r is the distance from the origin. Use
the techniques of subsection 10.2.2 to �nd the �eld.

p

(b) Write down another potential that gives exactly the same �eld.

22 (a) Example 13 on page 592 gives the �eld of a charged rod in
its midplane. Starting from this result, take the limit as the length
of the rod approaches in�nity. Note that � is not changing, so as L
gets bigger, the total charge Q increases. . Answer, p. 1057
(b) In the text, I have shown (by several di�erent methods) that the
�eld of an in�nite, uniformly charged plane is 2�k�. Now you’re
going to rederive the same result by a di�erent method. Suppose
that it is the x � y plane that is charged, and we want to �nd the
�eld at the point (0, 0, z). (Since the plane is in�nite, there is no
loss of generality in assuming x = 0 and y = 0.) Imagine that we
slice the plane into an in�nite number of straight strips parallel to
the y axis. Each strip has in�nitesimal width dx, and extends from
x to x + dx. The contribution any one of these strips to the �eld
at our point has a magnitude which can be found from part a. By
vector addition, prove the desired result for the �eld of the plane of
charge.

23 Consider the electric �eld created by a uniformly charged
cylindrical surface that extends to in�nity in one direction.
(a) Show that the �eld at the center of the cylinder’s mouth is 2�k�,
which happens to be the same as the �eld of an in�nite at sheet of
charge!
(b) This expression is independent of the radius of the cylinder.
Explain why this should be so. For example, what would happen if
you doubled the cylinder’s radius?

24 In an electrical storm, the cloud and the ground act like a
parallel-plate capacitor, which typically charges up due to frictional
electricity in collisions of ice particles in the cold upper atmosphere.
Lightning occurs when the magnitude of the electric �eld builds up
to a critical value, Ec, at which air is ionized.
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Problem 26.

Problem 27.

(a) Treat the cloud as a at square with sides of length L. If it is at
a height h above the ground, �nd the amount of energy released in
the lightning strike.

p

(b) Based on your answer from part a, which is more dangerous, a
lightning strike from a high-altitude cloud or a low-altitude one?
(c) Make an order-of-magnitude estimate of the energy released by
a typical lightning bolt, assuming reasonable values for its size and
altitude. Ec is about 106 N/C.

See problem 60 for a note on how recent research a�ects this
estimate.

25 (a) Show that the energy in the electric �eld of a point charge
is in�nite! Does the integral diverge at small distances, at large dis-
tances, or both? . Hint, p. 1025
(b) Now calculate the energy in the electric �eld of a uniformly
charged sphere with radius b. Based on the shell theorem, it can
be shown that the �eld for r > b is the same as for a point charge,
while the �eld for r < b is kqr=b3. (Example 41 shows this using a
di�erent technique.)

Remark: The calculation in part a seems to show that in�nite energy would
be required in order to create a charged, pointlike particle. However, there are
processes that, for example, create electron-positron pairs, and these processes
don’t require in�nite energy. According to Einstein’s famous equation E = mc2,
the energy required to create such a pair should only be 2mc2, which is �nite.
One way out of this di�culty is to assume that no particle is really pointlike, and
this is in fact the main motivation behind a speculative physical theory called
string theory, which posits that charged particles are actually tiny loops, not
points.

p

26 The neuron in the �gure has been drawn fairly short, but some
neurons in your spinal cord have tails (axons) up to a meter long.
The inner and outer surfaces of the membrane act as the \plates"
of a capacitor. (The fact that it has been rolled up into a cylinder
has very little e�ect.) In order to function, the neuron must create
a voltage di�erence V between the inner and outer surfaces of the
membrane. Let the membrane’s thickness, radius, and length be t,
r, and L. (a) Calculate the energy that must be stored in the electric
�eld for the neuron to do its job. (In real life, the membrane is made
out of a substance called a dielectric, whose electrical properties
increase the amount of energy that must be stored. For the sake of
this analysis, ignore this fact.) . Hint, p. 1025

p

(b) An organism’s evolutionary �tness should be better if it needs
less energy to operate its nervous system. Based on your answer to
part a, what would you expect evolution to do to the dimensions t
and r? What other constraints would keep these evolutionary trends
from going too far?

27 The �gure shows cross-sectional views of two cubical ca-
pacitors, and a cross-sectional view of the same two capacitors put
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Problem 29.

together so that their interiors coincide. A capacitor with the plates
close together has a nearly uniform electric �eld between the plates,
and almost zero �eld outside; these capacitors don’t have their plates
very close together compared to the dimensions of the plates, but
for the purposes of this problem, assume that they still have ap-
proximately the kind of idealized �eld pattern shown in the �gure.
Each capacitor has an interior volume of 1.00 m3, and is charged up
to the point where its internal �eld is 1.00 V/m.
(a) Calculate the energy stored in the electric �eld of each capacitor
when they are separate.

p

(b) Calculate the magnitude of the interior �eld when the two ca-
pacitors are put together in the manner shown. Ignore e�ects arising
from the redistribution of each capacitor’s charge under the inu-
ence of the other capacitor.

p

(c) Calculate the energy of the put-together con�guration. Does as-
sembling them like this release energy, consume energy, or neither?p

28 Find the capacitance of the surface of the earth, assuming
there is an outer spherical \plate" at in�nity. (In reality, this outer
plate would just represent some distant part of the universe to which
we carried away some of the earth’s charge in order to charge up the
earth.)

p

29 (a) Show that the �eld found in example 13 on page 592
reduces to E = 2k�=R in the limit of L!1.
(b) An in�nite strip of width b has a surface charge density �. Find
the �eld at a point at a distance z from the strip, lying in the plane
perpendicularly bisecting the strip.

p

(c) Show that this expression has the correct behavior in the limit
where z approaches zero, and also in the limit of z � b. For the
latter, you’ll need the result of problem 22a, which is given on page
1057.

30 A solid cylinder of radius b and length ‘ is uniformly charged
with a total charge Q. Find the electric �eld at a point at the center
of one of the at ends.

31 Find the potential at the edge of a uniformly charged disk.
(De�ne V = 0 to be in�nitely far from the disk.)p

. Hint, p. 1025

32 Find the energy stored in a capacitor in terms of its capaci-
tance and the voltage di�erence across it.

p

33 (a) Find the capacitance of two identical capacitors in series.
(b) Based on this, how would you expect the capacitance of a
parallel-plate capacitor to depend on the distance between the plates?

34 (a) Use complex number techniques to rewrite the function
f(t) = 4 sin!t+ 3 cos!t in the form A sin(!t+ �).

p

658 Chapter 10 Fields



(b) Verify the result using the trigonometric identity sin(� + �) =
sin� cos� + sin� cos�.

35 (a) Show that the equation VL = LdI= dt has the right
units.
(b) Verify that RC has units of time.
(c) Verify that L=R has units of time.

36 Find the inductance of two identical inductors in parallel.

37 Calculate the quantity ii (i.e., �nd its real and imaginary
parts). . Hint, p. 1026

p

38 The wires themselves in a circuit can have resistance, induc-
tance, and capacitance. Would \stray" inductance and capacitance
be most important for low-frequency or for high-frequency circuits?
For simplicity, assume that the wires act like they’re in series with
an inductor or capacitor.

39 Starting from the relation V = LdI= dt for the voltage dif-
ference across an inductor, show that an inductor has an impedance
equal to L!.

40 A rectangular box is uniformly charged with a charge density
�. The box is extremely long and skinny, and its cross-section is a
square with sides of length b. The length is so great in comparison
to b that we can consider it as being in�nite. Find the electric �eld
at a point lying on the box’s surface, at the midpoint between the
two edges. Your answer will involve an integral that is most easily
done using computer software.

41 A hollow cylindrical pipe has length ‘ and radius b. Its
ends are open, but on the curved surface it has a charge density
�. A charge q with mass m is released at the center of the pipe,
in unstable equilibrium. Because the equilibrium is unstable, the
particle acclerates o� in one direction or the other, along the axis
of the pipe, and comes shooting out like a bullet from the barrel of
a gun. Find the velocity of the particle when it’s in�nitely far from
the \gun." Your answer will involve an integral that is di�cult to
do by hand; you may want to look it up in a table of integrals, do
it online at integrals.com, or download and install the free Maxima
symbolic math software from maxima.sourceforge.net.

42 If an FM radio tuner consisting of an LRC circuit contains
a 1.0 �H inductor, what range of capacitances should the variable
capacitor be able to provide?

p

43 (a) Find the parallel impedance of a 37 k
 resistor and a 1.0
nF capacitor at f = 1.0� 104 Hz.

p

(b) A voltage with an amplitude of 1.0 mV drives this impedance
at this frequency. What is the amplitude of the current drawn from
the voltage source, what is the current’s phase angle with respect to

Problems 659



the voltage, and does it lead the voltage, or lag behind it?
p

44 A series LRC circuit consists of a 1.000 
 resistor, a 1.000 F
capacitor, and a 1.000 H inductor. (These are not particularly easy
values to �nd on the shelf at Radio Shack!)
(a) Plot its impedance as a point in the complex plane for each of
the following frequencies: !=0.250, 0.500, 1.000, 2.000, and 4.000
Hz.
(b) What is the resonant angular frequency, !res, and how does this
relate to your plot?

p

(c) What is the resonant frequency fres corresponding to your an-
swer in part b?

p

45 At a frequency !, a certain series LR circuit has an impedance
of 1 
 + (2 
)i. Suppose that instead we want to achieve the same
impedance using two circuit elements in parallel. What must the
elements be?

46 (a) Use Gauss’ law to �nd the �elds inside and outside an
in�nite cylindrical surface with radius b and uniform surface charge
density �.

p

(b) Show that there is a discontinuity in the electric �eld equal to
4�k� between one side of the surface and the other, as there should
be (see page 646).
(c) Reexpress your result in terms of the charge per unit length, and
compare with the �eld of a line of charge.
(d) A coaxial cable has two conductors: a central conductor of radius
a, and an outer conductor of radius b. These two conductors are
separated by an insulator. Although such a cable is normally used
for time-varying signals, assume throughout this problem that there
is simply a DC voltage between the two conductors. The outer
conductor is thin, as in part c. The inner conductor is solid, but,
as is always the case with a conductor in electrostatics, the charge
is concentrated on the surface. Thus, you can �nd all the �elds in
part b by superposing the �elds due to each conductor, as found in
part c. (Note that on a given length of the cable, the total charge of
the inner and outer conductors is zero, so �1 = ��2, but �1 6= �2,
since the areas are unequal.) Find the capacitance per unit length
of such a cable.

p

47 In a certain region of space, the electric �eld is constant
(i.e., the vector always has the same magnitude and direction). For
simplicity, assume that the �eld points in the positive x direction.
(a) Use Gauss’s law to prove that there is no charge in this region
of space. This is most easily done by considering a Gaussian surface
consisting of a rectangular box, whose edges are parallel to the x,
y, and z axes.
(b) If there are no charges in this region of space, what could be
making this electric �eld?

48 (a) In a series LC circuit driven by a DC voltage (! = 0),
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compare the energy stored in the inductor to the energy stored in
the capacitor.
(b) Carry out the same comparison for an LC circuit that is oscil-
lating freely (without any driving voltage).
(c) Now consider the general case of a series LC circuit driven by
an oscillating voltage at an arbitrary frequency. Let UL and be the
average energy stored in the inductor, and similarly for UC . De�ne
a quantity u = UC=(UL + UC), which can be interpreted as the ca-
pacitor’s average share of the energy, while 1 � u is the inductor’s
average share. Find u in terms of L, C, and !, and sketch a graph
of u and 1 � u versus !. What happens at resonance? Make sure
your result is consistent with your answer to part a.

p

49 Use Gauss’ law to �nd the �eld inside an in�nite cylinder
with radius b and uniform charge density �. (The external �eld has
the same form as the one in problem 46.)

p

50 (a) In a certain region of space, the electric �eld is given
by E = bxx̂, where b is a constant. Find the amount of charge
contained within a cubical volume extending from x = 0 to x = a,
from y = 0 to y = a, and from z = 0 to z = a.
(b) Repeat for E = bxẑ.
(c) Repeat for E = 13bzẑ� 7czŷ.
(d) Repeat for E = bxzẑ.

51 Light is a wave made of electric and magnetic �elds, and the
�elds are perpendicular to the direction of the wave’s motion, i.e.,
they’re transverse. An example would be the electric �eld given by
E = bx̂ sin cz, where b and c are constants. (There would also be an
associated magnetic �eld.) We observe that light can travel through
a vacuum, so we expect that this wave pattern is consistent with the
nonexistence of any charge in the space it’s currently occupying. Use
Gauss’s law to prove that this is true.

52 This is an alternative approach to problem 49, using a dif-
ferent technique. Suppose that a long cylinder contains a uniform
charge density � throughout its interior volume.
(a) Use the methods of section 10.7 to �nd the electric �eld inside
the cylinder.

p

(b) Extend your solution to the outside region, using the same tech-
nique. Once you �nd the general form of the solution, adjust it so
that the inside and outside �elds match up at the surface.

p

53 The purpose of this homework problem is to prove that
the divergence is invariant with respect to translations. That is, it
doesn’t matter where you choose to put the origin of your coordinate
system. Suppose we have a �eld of the form E = axx̂ + byŷ + czẑ.
This is the most general �eld we need to consider in any small region
as far as the divergence is concerned. (The dependence on x, y, and
z is linear, but any smooth function looks linear close up. We also
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don’t need to put in terms like xŷ, because they don’t contribute to
the divergence.) De�ne a new set of coordinates (u, v,w) related to
(x, y, z) by

x = u+ p

y = v + q

z = w + r,

where p, q, and r are constants. Show that the �eld’s divergence is
the same in these new coordinates. Note that x̂ and û are identical,
and similarly for the other coordinates.

54 Using a techniques similar to that of problem 53, show that
the divergence is rotationally invariant, in the special case of ro-
tations about the z axis. In such a rotation, we rotate to a new
(u, v, z) coordinate system, whose axes are rotated by an angle �
with respect to those of the (x, y, z) system. The coordinates are
related by

x = u cos � + v sin �

y = �u sin � + v cos �

Find how the u and v components the �eld E depend on u and
v, and show that its divergence is the same in this new coordinate
system.

55 An electric �eld is given in cylindrical coordinates (R,�, z)
by ER = ce�ujzjR�1 cos2 �, where the notation ER indicates the
component of the �eld pointing directly away from the axis, and
the components in the other directions are zero. (This isn’t a com-
pletely impossible expression for the �eld near a radio transmitting
antenna.) (a) Find the total charge enclosed within the in�nitely
long cylinder extending from the axis out to R = b. (b) Interpret
the R-dependence of your answer to part a.

56 Use Euler’s theorem to derive the addition theorems that
express sin(a+ b) and cos(a+ b) in terms of the sines and cosines of
a and b. . Solution, p. 1037

57 Find every complex number z such that z3 = 1.
. Solution, p. 1037

58 Factor the expression x3�y3 into factors of the lowest possible
order, using complex coe�cients. (Hint: use the result of problem
57.) Then do the same using real coe�cients.

59 A dipole consists of two point charges lying on the x axis, a
charge �q at the origin, and a +q at x = ‘. The dipole is immersed
in an externally imposed, nonuniform electric �eld with Ex = bx,
where b is a constant. Add the forces acting on the dipole. Verify
that the total force depends only on the dipole moment, not on q or
‘ individually, and that the result is the same as the one found by a
fancier method in example 7 on p. 585. . Solution, p. 1037
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Problem 62.

60 In problem 24 on p. 656, you estimated the energy released
in a bolt of lightning, based on the energy stored in the electric �eld
immediately before the lightning occurs. The assumption was that
the �eld would build up to a certain value, which is what is necessary
to ionize air. However, real-life measurements always seemed to
show electric �elds strengths roughly 10 times smaller than those
required in that model. For a long time, it wasn’t clear whether the
�eld measurements were wrong, or the model was wrong. Research
carried out in 2003 seems to show that the model was wrong. It is
now believed that the �nal triggering of the bolt of lightning comes
from cosmic rays that enter the atmosphere and ionize some of the
air. If the �eld is 10 times smaller than the value assumed in problem
24, what e�ect does this have on the �nal result of problem 24?

p

61 A charged particle of mass m and charge q is below a hor-
izontal conducting plane. We wish to �nd the distance ‘ between
the particle and the plane so that the particle will be in equilibrium,
with its weight supported by electrostatic forces.
(a) Determine as much as possible about the form of the answer
based on units.
(b) Find the full result for ‘.
(c) Show that the equilibrium is unstable.

62 A point charge q is situated in the empty space inside a corner
formed by two perpendicular half-planes made of sheets of metal.
Let the sheets lie in the y-z and x-z planes, so that the charge’s
distances from the planes are x and y. Both x and y are positive.
The charge will accelerate due to the electrostatic forces exerted by
the sheets. We wish to �nd the direction � in which it will accelerate,
expressed as an angle counterclockwise from the negative x axis, so
that 0 < � < �=2.
(a) Determine as much as possible about the form of the answer
based on units.
(b) Find the full result for �.
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Problem 63.

63 This problem deals with the cubes and cube roots of complex
numbers, but the principles involved apply more generally to other
exponents besides 3 and 1/3. These examples are designed to be
much easier to do using the magnitude-argument representation of
complex numbers than with the cartesian representation. If done
by the easiest technique, none of these requires more than two or
three lines of simple math. In the following, the symbols �, a, and
b represent real numbers, and all angles are to be expressed in radi-
ans. As often happens with fractional exponents, the cube root of
a complex number will typically have more than one possible value.
(Cf. 41=2, which can be 2 or �2.) In parts c and d, this ambiguity
is resolved explicitly in the instructions, in a way that is meant to
make the calculation as easy as possible.
(a) Calculate arg

�
(ei�)3

�
.

p

(b) Of the points u, v, w, and x shown in the �gure, which could be
a cube root of z?
(c) Calculate arg

�
3
p
a+ bi

�
. For simplicity, assume that a+ bi is in

the �rst quadrant of the complex plane, and compute the answer
for a root that also lies in the �rst quadrant.

p

(d) Compute
1 + i

(�2 + 2i)1=3
.

Because there is more than one possible root to use in the denomina-
tor, multiple answers are possible in this problem. Use the root that
results in the �nal answer that lies closest to the real line. (This is
also the easiest one to �nd by using the magnitude-argument tech-
niques introduced in the text.)

p

Key to symbols:
easy typical challenging di�cult very di�cultp

An answer check is available at www.lightandmatter.com.
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Exercises
Exercise 10A: Field Vectors

Apparatus:

3 solenoids

DC power supply

compass

ruler

cut-o� plastic cup

At this point you’ve studied the gravitational �eld, g, and the electric �eld, E, but not the
magnetic �eld, B. However, they all have some of the same mathematical behavior: they act
like vectors. Furthermore, magnetic �elds are the easiest to manipulate in the lab. Manipulating
gravitational �elds directly would require futuristic technology capable of moving planet-sized
masses around! Playing with electric �elds is not as ridiculously di�cult, but static electric
charges tend to leak o� through your body to ground, and static electricity e�ects are hard to
measure numerically. Magnetic �elds, on the other hand, are easy to make and control. Any
moving charge, i.e., any current, makes a magnetic �eld.

A practical device for making a strong magnetic �eld is simply a coil of wire, formally known
as a solenoid. The �eld pattern surrounding the solenoid gets stronger or weaker in proportion
to the amount of current passing through the wire.

1. With a single solenoid connected to the power supply and laid with its axis horizontal, use a
magnetic compass to explore the �eld pattern inside and outside it. The compass shows you the
�eld vector’s direction, but not its magnitude, at any point you choose. Note that the �eld the
compass experiences is a combination (vector sum) of the solenoid’s �eld and the earth’s �eld.

2. What happens when you bring the compass extremely far away from the solenoid?

What does this tell you about the way the solenoid’s �eld varies with distance?

Thus although the compass doesn’t tell you the �eld vector’s magnitude numerically, you can
get at least some general feel for how it depends on distance.
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3. The �gure below is a cross-section of the solenoid in the plane containing its axis. Make a
sea-of-arrows sketch of the magnetic �eld in this plane. The length of each arrow should at least
approximately reect the strength of the magnetic �eld at that point.

Does the �eld seem to have sources or sinks?

4. What do you think would happen to your sketch if you reversed the wires?

Try it.
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5. Now hook up the two solenoids in parallel. You are going to measure what happens when
their two �elds combine at a certain point in space. As you’ve seen already, the solenoids’
nearby �elds are much stronger than the earth’s �eld; so although we now theoretically have
three �elds involved (the earth’s plus the two solenoids’), it will be safe to ignore the earth’s
�eld. The basic idea here is to place the solenoids with their axes at some angle to each other,
and put the compass at the intersection of their axes, so that it is the same distance from each
solenoid. Since the geometry doesn’t favor either solenoid, the only factor that would make one
solenoid inuence the compass more than the other is current. You can use the cut-o� plastic
cup as a little platform to bring the compass up to the same level as the solenoids’ axes.

a)What do you think will happen with the solenoids’ axes at 90 degrees to each other, and equal
currents? Try it. Now represent the vector addition of the two magnetic �elds with a diagram.
Check your diagram with your instructor to make sure you’re on the right track.

b) Now try to make a similar diagram of what would happen if you switched the wires on one
of the solenoids.

After predicting what the compass will do, try it and see if you were right.

c)Now suppose you were to go back to the arrangement you had in part a, but you changed one
of the currents to half its former value. Make a vector addition diagram, and use trig to predict
the angle.

Try it. To cut the current to one of the solenoids in half, an easy and accurate method is
simply to put the third solenoid in series with it, and put that third solenoid so far away that
its magnetic �eld doesn’t have any signi�cant e�ect on the compass.
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a / The pair of charged parti-
cles, as seen in two different
frames of reference.

Chapter 11

Electromagnetism

Think not that I am come to destroy the law, or the prophets: I am
not come to destroy, but to ful�ll. Matthew 5:17

11.1 More about the magnetic field
11.1.1 Magnetic forces

In this chapter, I assume you know a few basic ideas about Ein-
stein’s theory of relativity, as described in sections 7.1 and 7.2. Un-
less your typical workday involves rocket ships or particle accelera-
tors, all this relativity stu� might sound like a description of some
bizarre futuristic world that is completely hypothetical. There is,
however, a relativistic e�ect that occurs in everyday life, and it is
obvious and dramatic: magnetism. Magnetism, as we discussed
previously, is an interaction between a moving charge and another
moving charge, as opposed to electric forces, which act between any
pair of charges, regardless of their motion. Relativistic e�ects are
weak for speeds that are small compared to the speed of light, and
the average speed at which electrons drift through a wire is quite
low (centimeters per second, typically), so how can relativity be be-
hind an impressive e�ect like a car being lifted by an electromagnet
hanging from a crane? The key is that matter is almost perfectly
electrically neutral, and electric forces therefore cancel out almost
perfectly. Magnetic forces really aren’t very strong, but electric
forces are even weaker.

What about the word \relativity" in the name of the theory? It
would seem problematic if moving charges interact di�erently than
stationary charges, since motion is a matter of opinion, depending
on your frame of reference. Magnetism, however, comes not to de-
stroy relativity but to ful�ll it. Magnetic interactions must exist
according to the theory of relativity. To understand how this can
be, consider how time and space behave in relativity. Observers
in di�erent frames of reference disagree about the lengths of mea-
suring sticks and the speeds of clocks, but the laws of physics are
valid and self-consistent in either frame of reference. Similarly, ob-
servers in di�erent frames of reference disagree about what electric
and magnetic �elds and forces there are, but they agree about con-
crete physical events. For instance, �gure a/1 shows two particles,
with opposite charges, which are not moving at a particular mo-
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b / A large current is created
by shorting across the leads of
the battery. The moving charges
in the wire attract the moving
charges in the electron beam,
causing the electrons to curve.

c / A charged particle and a
current, seen in two different
frames of reference. The second
frame is moving at velocity v
with respect to the first frame,
so all the velocities have v sub-
tracted from them. (As discussed
in the main text, this is only
approximately correct.)

ment in time. An observer in this frame of reference says there are
electric �elds around the particles, and predicts that as time goes
on, the particles will begin to accelerate towards one another, even-
tually colliding. A di�erent observer, a/2, says the particles are
moving. This observer also predicts that the particles will collide,
but explains their motion in terms of both an electric �eld, E, and a
magnetic �eld, B. As we’ll see shortly, the magnetic �eld is required
in order to maintain consistency between the predictions made in
the two frames of reference.

To see how this really works out, we need to �nd a nice sim-
ple example that is easy to calculate. An example like �gure a is
not easy to handle, because in the second frame of reference, the
moving charges create �elds that change over time at any given lo-
cation. Examples like �gure b are easier, because there is a steady
ow of charges, and all the �elds stay the same over time.1 What is
remarkable about this demonstration is that there can be no elec-
tric �elds acting on the electron beam at all, since the total charge
density throughout the wire is zero. Unlike �gure a/2, �gure b is
purely magnetic.

To see why this must occur based on relativity, we make the
mathematically idealized model shown in �gure c. The charge by
itself is like one of the electrons in the vacuum tube beam of �g-
ure b, and a pair of moving, in�nitely long line charges has been
substituted for the wire. The electrons in a real wire are in rapid
thermal motion, and the current is created only by a slow drift su-
perimposed on this chaos. A second deviation from reality is that
in the real experiment, the protons are at rest with respect to the
tabletop, and it is the electrons that are in motion, but in c/1 we
have the positive charges moving in one direction and the negative
ones moving the other way. If we wanted to, we could construct a
third frame of reference in which the positive charges were at rest,
which would be more like the frame of reference �xed to the table-
top in the real demonstration. However, as we’ll see shortly, frames
c/1 and c/2 are designed so that they are particularly easy to ana-
lyze. It’s important to note that even though the two line charges
are moving in opposite directions, their currents don’t cancel. A
negative charge moving to the left makes a current that goes to the
right, so in frame c/1, the total current is twice that contributed by
either line charge.

Frame 1 is easy to analyze because the charge densities of the
two line charges cancel out, and the electric �eld experienced by the

1For a more practical demonstration of this e�ect, you can put an ordinary
magnet near a computer monitor. The picture will be distorted. Make sure that
the monitor has a demagnetizing (\degaussing") button, however! Otherwise
you may permanently damage it. Don’t use a television tube, because TV tubes
don’t have demagnetizing buttons.
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lone charge is therefore zero:

E1 = 0

In frame 1, any force experienced by the lone charge must therefore
be attributed solely to magnetism.

Frame 2 shows what we’d see if we were observing all this from
a frame of reference moving along with the lone charge. Why don’t
the charge densities also cancel in this frame? Here’s where the
relativity comes in. Relativity tells us that moving objects appear
contracted to an observer who is not moving along with them. Both
line charges are in motion in both frames of reference, but in frame 1,
the line charges were moving at equal speeds, so their contractions
were equal, and their charge densities canceled out. In frame 2,
however, their speeds are unequal. The positive charges are moving
more slowly than in frame 1, so in frame 2 they are less contracted.
The negative charges are moving more quickly, so their contraction
is greater now. Since the charge densities don’t cancel, there is an
electric �eld in frame 2, which points into the wire, attracting the
lone charge. Furthermore, the attraction felt by the lone charge
must be purely electrical, since the lone charge is at rest in this
frame of reference, and magnetic e�ects occur only between moving
charges and other moving charges.2

To summarize, frame 1 displays a purely magnetic attraction,
while in frame 2 it is purely electrical.

Now we can calculate the force in frame 2, and equating it to
the force in frame 1, we can �nd out how much magnetic force
occurs. To keep the math simple, and to keep from assuming too
much about your knowledge of relativity, we’re going to carry out
this whole calculation in the approximation where all the speeds
are fairly small compared to the speed of light.3 For instance, if
we �nd an expression such as (v=c)2 + (v=c)4, we will assume that
the fourth-order term is negligible by comparison. This is known as
a calculation \to leading order in v=c." In fact, I’ve already used
the leading-order approximation twice without saying so! The �rst

2One could object that this is circular reasoning, since the whole purpose of
this argument is to prove from �rst principles that magnetic e�ects follow from
the theory of relativity. Could there be some extra interaction which occurs
between a moving charge and any other charge, regardless of whether the other
charge is moving or not? We can argue, however, that such a theory would lack
self-consistency, since we have to de�ne the electric �eld somehow, and the only
way to de�ne it is in terms of F=q, where F is the force on a test charge q which is
at rest. In other words, we’d have to say that there was some extra contribution
to the electric �eld if the charge making it was in motion. This would, however,
violate Gauss’ law, and Gauss’ law is amply supported by experiment, even when
the sources of the electric �eld are moving. It would also violate the time-reversal
symmetry of the laws of physics.

3The reader who wants to see the full relativistic treatment is referred to
E.M. Purcell, Electricity and Magnetism, McGraw Hill, 1985, p. 174.

Section 11.1 More about the magnetic field 671



time I used it implicitly was in �gure c, where I assumed that the
velocities of the two line charges were u�v and �u�v. Relativistic
velocities don’t just combine by simple addition and subtraction like
this, but this is an e�ect we can ignore in the present approximation.
The second sleight of hand occurred when I stated that we could
equate the forces in the two frames of reference. Force, like time
and distance, is distorted relativistically when we change from one
frame of reference to another. Again, however, this is an e�ect that
we can ignore to the desired level of approximation.

Let �� be the charge per unit length of each line charge with-
out relativistic contraction, i.e., in the frame moving with that line
charge. Using the approximation  = (1� v2=c2)�1=2 � 1 + v2=2c2

for v � c, the total charge per unit length in frame 2 is

�total, 2 � �
�
1 +

(u� v)2

2c2

�
� �

�
1 +

(�u� v)2

2c2

�
=
�2�uv

c2
.

Let R be the distance from the line charge to the lone charge. Ap-
plying Gauss’ law to a cylinder of radius R centered on the line
charge, we �nd that the magnitude of the electric �eld experienced
by the lone charge in frame 2 is

E =
4k�uv

c2R
,

and the force acting on the lone charge q is

F =
4k�quv

c2R
.

In frame 1, the current is I = 2�1u (see homework problem 5),
which we can approximate as I = 2�u, since the current, unlike
�total, 2, doesn’t vanish completely without the relativistic e�ect.
The magnetic force on the lone charge q due to the current I is

F =
2kIqv

c2R
.

Discussion Question

A Resolve the following paradox concerning the argument given in this
section. We would expect that at any given time, electrons in a solid would
be associated with protons in a definite way. For simplicity, let’s imagine
that the solid is made out of hydrogen (which actually does become a
metal under conditions of very high pressure). A hydrogen atom consists
of a single proton and a single electron. Even if the electrons are moving
and forming an electric current, we would imagine that this would be like
a game of musical chairs, with the protons as chairs and the electrons
as people. Each electron has a proton that is its “friend,” at least for the
moment. This is the situation shown in figure c/1. How, then, can an
observer in a different frame see the electrons and protons as not being
paired up, as in c/2?
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d / The right-hand relation-
ship between the velocity of a
positively charged particle, the
magnetic field through which it is
moving, and the magnetic force
on it.

e / The unit of magnetic field,
the tesla, is named after Serbian-
American inventor Nikola Tesla.

11.1.2 The magnetic field

De�nition in terms of the force on a moving particle

With electricity, it turned out to be useful to de�ne an electric
�eld rather than always working in terms of electric forces. Likewise,
we want to de�ne a magnetic �eld, B. Let’s look at the result of
the preceding subsection for insight. The equation

F =
2kIqv

c2R

shows that when we put a moving charge near other moving charges,
there is an extra magnetic force on it, in addition to any electric
forces that may exist. Equations for electric forces always have a
factor of k in front | the Coulomb constant k is called the coupling
constant for electric forces. Since magnetic e�ects are relativistic
in origin, they end up having a factor of k=c2 instead of just k.
In a world where the speed of light was in�nite, relativistic e�ects,
including magnetism, would be absent, and the coupling constant
for magnetism would be zero. A cute feature of the metric system is
that we have k=c2 = 10�7 N �s2=C2 exactly, as a matter of de�nition.

Naively, we could try to work by analogy with the electric �eld,
and de�ne the magnetic �eld as the magnetic force per unit charge.
However, if we think of the lone charge in our example as the test
charge, we’ll �nd that this approach fails, because the force depends
not just on the test particle’s charge, but on its velocity, v, as well.
Although we only carried out calculations for the case where the
particle was moving parallel to the wire, in general this velocity is
a vector, v, in three dimensions. We can also anticipate that the
magnetic �eld will be a vector. The electric and gravitational �elds
are vectors, and we expect intuitively based on our experience with
magnetic compasses that a magnetic �eld has a particular direction
in space. Furthermore, reversing the current I in our example would
have reversed the force, which would only make sense if the magnetic
�eld had a direction in space that could be reversed. Summarizing,
we think there must be a magnetic �eld vector B, and the force
on a test particle moving through a magnetic �eld is proportional
both to the B vector and to the particle’s own v vector. In other
words, the magnetic force vector F is found by some sort of vector
multiplication of the vectors v and B. As proved on page 1016,
however, there is only one physically useful way of de�ning such a
multiplication, which is the cross product.

We therefore de�ne the magnetic �eld vector, B, as the vector that
determines the force on a charged particle according to the following
rule:

F = qv �B [de�nition of the magnetic �eld]

From this de�nition, we see that the magnetic �eld’s units are
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f / A standard dipole made
from a square loop of wire short-
ing across a battery. It acts very
much like a bar magnet, but its
strength is more easily quantified.

g / A dipole tends to align it-
self to the surrounding magnetic
field.

h / The m and A vectors.

N � s=C � m, which are usually abbreviated as teslas, 1 T = 1 N �
s=C �m. The de�nition implies a right-hand-rule relationship among
the vectors, �gure d, if the charge q is positive, and the opposite
handedness if it is negative.

This is not just a de�nition but a bold prediction! Is it really
true that for any point in space, we can always �nd a vector B that
successfully predicts the force on any passing particle, regardless
of its charge and velocity vector? Yes | it’s not obvious that it
can be done, but experiments verify that it can. How? Well for
example, the cross product of parallel vectors is zero, so we can try
particles moving in various directions, and hunt for the direction
that produces zero force; the B vector lies along that line, in either
the same direction the particle was moving, or the opposite one. We
can then go back to our data from one of the other cases, where the
force was nonzero, and use it to choose between these two directions
and �nd the magnitude of the B vector. We could then verify that
this vector gave correct force predictions in a variety of other cases.

Even with this empirical reassurance, the meaning of this equa-
tion is not intuitively transparent, nor is it practical in most cases
to measure a magnetic �eld this way. For these reasons, let’s look
at an alternative method of de�ning the magnetic �eld which, al-
though not as fundamental or mathematically simple, may be more
appealing.

De�nition in terms of the torque on a dipole

A compass needle in a magnetic �eld experiences a torque which
tends to align it with the �eld. This is just like the behavior of an
electric dipole in an electric �eld, so we consider the compass needle
to be a magnetic dipole. In subsection 10.1.3 on page 584, we gave
an alternative de�nition of the electric �eld in terms of the torque
on an electric dipole.

To de�ne the strength of a magnetic �eld, however, we need
some way of de�ning the strength of a test dipole, i.e., we need a
de�nition of the magnetic dipole moment. We could use an iron
permanent magnet constructed according to certain speci�cations,
but such an object is really an extremely complex system consisting
of many iron atoms, only some of which are aligned with each other.
A more fundamental standard dipole is a square current loop. This
could be little resistive circuit consisting of a square of wire shorting
across a battery, f.

Applying F = v �B, we �nd that such a loop, when placed in
a magnetic �eld, g, experiences a torque that tends to align plane
so that its interior \face" points in a certain direction. Since the
loop is symmetric, it doesn’t care if we rotate it like a wheel with-
out changing the plane in which it lies. It is this preferred facing
direction that we will end up using as our alternative de�nition of
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i / The torque on a current
loop in a magnetic field. The
current comes out of the page,
goes across, goes back into the
page, and then back across the
other way in the hidden side of
the loop.

j / A vector coming out of the
page is shown with the tip of an
arrowhead. A vector going into
the page is represented using the
tailfeathers of the arrow.

k / Dipole vectors can be added.

the magnetic �eld.

If the loop is out of alignment with the �eld, the torque on it
is proportional to the amount of current, and also to the interior
area of the loop. The proportionality to current makes sense, since
magnetic forces are interactions between moving charges, and cur-
rent is a measure of the motion of charge. The proportionality to
the loop’s area is also not hard to understand, because increasing
the length of the sides of the square increases both the amount of
charge contained in this circular \river" and the amount of lever-
age supplied for making torque. Two separate physical reasons for
a proportionality to length result in an overall proportionality to
length squared, which is the same as the area of the loop. For these
reasons, we de�ne the magnetic dipole moment of a square current
loop as

m = IA,

where the direction of the vectors is de�ned as shown in �gure h.

We can now give an alternative de�nition of the magnetic �eld:

The magnetic �eld vector, B, at any location in space is de�ned by
observing the torque exerted on a magnetic test dipole mt consisting
of a square current loop. The �eld’s magnitude is

jBj = �

jmtj sin �
,

where � is the angle between the dipole vector and the �eld. This
is equivalent to the vector cross product � = mt �B.

Let’s show that this is consistent with the previous de�nition,
using the geometry shown in �gure i. The velocity vector that point
in and out of the page are shown using the convention de�ned in
�gure j. Let the mobile charge carriers in the wire have linear density
�, and let the sides of the loop have length h, so that we have
I = �v, and m = h2�v. The only nonvanishing torque comes from
the forces on the left and right sides. The currents in these sides
are perpendicular to the �eld, so the magnitude of the cross product
F = qv � B is simply jFj = qvB. The torque supplied by each of
these forces is r � F, where the lever arm r has length h=2, and
makes an angle � with respect to the force vector. The magnitude
of the total torque acting on the loop is therefore

j� j = 2
h

2
jFj sin �

= h qvB sin �,
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l / An irregular loop can be
broken up into little squares.

m / The magnetic field pat-
tern around a bar magnet is
created by the superposition of
the dipole fields of the individual
iron atoms. Roughly speaking,
it looks like the field of one big
dipole, especially farther away
from the magnet. Closer in,
however, you can see a hint of
the magnet’s rectangular shape.
The picture was made by placing
iron filings on a piece of paper,
and then bringing a magnet up
underneath.

and substituting q = �h and v = m=h2�, we have

j� j = h �h
m

h2�
B sin �

= mB sin �,

which is consistent with the second de�nition of the �eld.

It undoubtedly seems arti�cial to you that we have discussed
dipoles only in the form of a square loop of current. A permanent
magnet, for example, is made out of atomic dipoles, and atoms
aren’t square! However, it turns out that the shape doesn’t matter.
To see why this is so, consider the additive property of areas and
dipole moments, shown in �gure k. Each of the square dipoles has
a dipole moment that points out of the page. When they are placed
side by side, the currents in the adjoining sides cancel out, so they
are equivalent to a single rectangular loop with twice the area. We
can break down any irregular shape into little squares, as shown in
�gure l, so the dipole moment of any planar current loop can be
calculated based on its area, regardless of its shape.

The magnetic dipole moment of an atom example 1
Let’s make an order-of-magnitude estimate of the magnetic dipole
moment of an atom. A hydrogen atom is about 10�10 m in diam-
eter, and the electron moves at speeds of about 10�2c. We don’t
know the shape of the orbit, and indeed it turns out that accord-
ing to the principles of quantum mechanics, the electron doesn’t
even have a well-defined orbit, but if we’re brave, we can still es-
timate the dipole moment using the cross-sectional area of the
atom, which will be on the order of (10�10 m)2 = 10�20 m2. The
electron is a single particle, not a steady current, but again we
throw caution to the winds, and estimate the current it creates as
e=�t , where �t , the time for one orbit, can be estimated by divid-
ing the size of the atom by the electron’s velocity. (This is only
a rough estimate, and we don’t know the shape of the orbit, so it
would be silly, for instance, to bother with multiplying the diameter
by � based on our intuitive visualization of the electron as moving
around the circumference of a circle.) The result for the dipole
moment is m � 10�23 A�m2.

Should we be impressed with how small this dipole moment is,
or with how big it is, considering that it’s being made by a single
atom? Very large or very small numbers are never very interest-
ing by themselves. To get a feeling for what they mean, we need
to compare them to something else. An interesting comparison
here is to think in terms of the total number of atoms in a typical
object, which might be on the order of 1026 (Avogadro’s number).
Suppose we had this many atoms, with their moments all aligned.
The total dipole moment would be on the order of 103 A�m2, which
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n / Example 2.

is a pretty big number. To get a dipole moment this strong using
human-scale devices, we’d have to send a thousand amps of cur-
rent through a one-square meter loop of wire! The insight to be
gained here is that, even in a permanent magnet, we must not
have all the atoms perfectly aligned, because that would cause
more spectacular magnetic effects than we really observe. Ap-
parently, nearly all the atoms in such a magnet are oriented ran-
domly, and do not contribute to the magnet’s dipole moment.

Discussion Questions

A The physical situation shown in figure c on page 670 was analyzed
entirely in terms of forces. Now let’s go back and think about it in terms of
fields. The charge by itself up above the wire is like a test charge, being
used to determine the magnetic and electric fields created by the wire.
In figures c/1 and c/2, are there fields that are purely electric or purely
magnetic? Are there fields that are a mixture of E and B? How does this
compare with the forces?

B Continuing the analysis begun in discussion question A, can we
come up with a scenario involving some charged particles such that the
fields are purely magnetic in one frame of reference but a mixture of E and
B in another frame? How about an example where the fields are purely
electric in one frame, but mixed in another? Or an example where the
fields are purely electric in one frame, but purely magnetic in another?

11.1.3 Some applications

Magnetic levitation example 2
In figure n, a small, disk-shaped permanent magnet is stuck on
the side of a battery, and a wire is clasped loosely around the
battery, shorting it. A large current flows through the wire. The
electrons moving through the wire feel a force from the magnetic
field made by the permanent magnet, and this force levitates the
wire.

From the photo, it’s possible to find the direction of the magnetic
field made by the permanent magnet. The electrons in the copper
wire are negatively charged, so they flow from the negative (flat)
terminal of the battery to the positive terminal (the one with the
bump, in front). As the electrons pass by the permanent magnet,
we can imagine that they would experience a field either toward
the magnet, or away from it, depending on which way the magnet
was flipped when it was stuck onto the battery. By the right-hand
rule (figure d on page 673), the field must be toward the battery.

Nervous-system effects during an MRI scan example 3
During an MRI scan of the head, the patient’s nervous system

is exposed to intense magnetic fields, and there are ions moving
around in the nerves. The resulting forces on the ions can cause
symptoms such as vertigo.
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o / Magnetic forces cause a
beam of electrons to move in a
circle.

p / You can’t isolate the poles of a
magnet by breaking it in half.

q / A magnetic dipole is made
out of other dipoles, not out of
monopoles.

A circular orbit example 4
The magnetic force is always perpendicular to the motion of the

particle, so it can never do any work, and a charged particle mov-
ing through a magnetic field does not experience any change in
its kinetic energy: its velocity vector can change its direction, but
not its magnitude. If the velocity vector is initially perpendicular
to the field, then the curve of its motion will remain in the plane
perpendicular to the field, so the magnitude of the magnetic force
on it will stay the same. When an object experiences a force with
constant magnitude, which is always perpendicular to the direc-
tion of its motion, the result is that it travels in a circle.

Figure o shows a beam of electrons in a spherical vacuum tube.
In the top photo, the beam is emitted near the right side of the
tube, and travels straight up. In the bottom photo, a magnetic field
has been imposed by an electromagnet surrounding the vacuum
tube; the ammeter on the right shows that the current through the
electromagnet is now nonzero. We observe that the beam is bent
into a circle.

self-check A
Infer the direction of the magnetic field. Don’t forget that the beam is
made of electrons, which are negatively charged! . Answer, p. 1052

Homework problem 12 is a quantitative analysis of circular orbits.

A velocity filter example 5
Suppose you see the electron beam in figure o, and you want to
determine how fast the electrons are going. You certainly can’t
do it with a stopwatch! Physicists may also encounter situations
where they have a beam of unknown charged particles, and they
don’t even know their charges. This happened, for instance, when
alpha and beta radiation were discovered. One solution to this
problem relies on the fact that the force experienced by a charged
particle in an electric field, FE = qE, is independent of its veloc-
ity, but the force due to a magnetic field, FB = qv � B, isn’t. One
can send a beam of charged particles through a space containing
both an electric and a magnetic field, setting up the fields so that
the two forces will cancel out perfectly for a certain velocity. Note
that since both forces are proportional to the charge of the parti-
cles, the cancellation is independent of charge. Such a velocity
filter can be used either to determine the velocity of an unknown
beam or particles, or to select from a beam of particles only those
having velocities within a certain desired range. Homework prob-
lem 7 is an analysis of this application.

11.1.4 No magnetic monopoles

If you could play with a handful of electric dipoles and a handful
of bar magnets, they would appear very similar. For instance, a pair
of bar magnets wants to align themselves head-to-tail, and a pair of
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r / Magnetic fields have no
sources or sinks.

electric dipoles does the same thing. (It is unfortunately not that
easy to make a permanent electric dipole that can be handled like
this, since the charge tends to leak.)

You would eventually notice an important di�erence between the
two types of objects, however. The electric dipoles can be broken
apart to form isolated positive charges and negative charges. The
two-ended device can be broken into parts that are not two-ended.
But if you break a bar magnet in half, p, you will �nd that you have
simply made two smaller two-ended objects.

The reason for this behavior is not hard to divine from our mi-
croscopic picture of permanent iron magnets. An electric dipole has
extra positive \stu�" concentrated in one end and extra negative in
the other. The bar magnet, on the other hand, gets its magnetic
properties not from an imbalance of magnetic \stu�" at the two
ends but from the orientation of the rotation of its electrons. One
end is the one from which we could look down the axis and see the
electrons rotating clockwise, and the other is the one from which
they would appear to go counterclockwise. There is no di�erence
between the \stu�" in one end of the magnet and the other, q.

Nobody has ever succeeded in isolating a single magnetic pole.
In technical language, we say that magnetic monopoles not seem to
exist. Electric monopoles do exist | that’s what charges are.

Electric and magnetic forces seem similar in many ways. Both
act at a distance, both can be either attractive or repulsive, and
both are intimately related to the property of matter called charge.
(Recall that magnetism is an interaction between moving charges.)
Physicists’s aesthetic senses have been o�ended for a long time be-
cause this seeming symmetry is broken by the existence of elec-
tric monopoles and the absence of magnetic ones. Perhaps some
exotic form of matter exists, composed of particles that are mag-
netic monopoles. If such particles could be found in cosmic rays
or moon rocks, it would be evidence that the apparent asymmetry
was only an asymmetry in the composition of the universe, not in
the laws of physics. For these admittedly subjective reasons, there
have been several searches for magnetic monopoles. Experiments
have been performed, with negative results, to look for magnetic
monopoles embedded in ordinary matter. Soviet physicists in the
1960’s made exciting claims that they had created and detected mag-
netic monopoles in particle accelerators, but there was no success
in attempts to reproduce the results there or at other accelerators.
The most recent search for magnetic monopoles, done by reanalyz-
ing data from the search for the top quark at Fermilab, turned up
no candidates, which shows that either monopoles don’t exist in
nature or they are extremely massive and thus hard to create in
accelerators.

The nonexistence of magnetic monopoles means that unlike an
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s / Example 6.

electric �eld, a magnetic one, can never have sources or sinks. The
magnetic �eld vectors lead in paths that loop back on themselves,
without ever converging or diverging at a point, as in the �elds
shown in �gure r. Gauss’ law for magnetism is therefore much sim-
pler than Gauss’ law for electric �elds:

�B =
X

Bj �Aj = 0

The magnetic ux through any closed surface is zero.

self-check B
Draw a Gaussian surface on the electric dipole field of figure r that has
nonzero electric flux through it, and then draw a similar surface on the
magnetic field pattern. What happens? . Answer, p. 1052

The field of a wire example 6
. On page 672, we showed that a long, straight wire carrying
current I exerts a magnetic force

F =
2kIqv
c2R

on a particle with charge q moving parallel to the wire with velocity
v . What, then, is the magnetic field of the wire?

. Comparing the equation above to the first definition of the mag-
netic field, F = v�B, it appears that the magnetic field is one that
falls off like 1=R, where R is the distance from the wire. However,
it’s not so easy to determine the direction of the field vector. There
are two other axes along which the particle could have been mov-
ing, and the brute-force method would be to carry out relativistic
calculations for these cases as well. Although this would probably
be enough information to determine the field, we don’t want to do
that much work.

Instead, let’s consider what the possibilities are. The field can’t
be parallel to the wire, because a cross product vanishes when
the two vectors are parallel, and yet we know from the case we
analyzed that the force doesn’t vanish when the particle is moving
parallel to the wire. The other two possibilities that are consistent
with the symmetry of the problem are shown in figure s. One is
like a bottle brush, and the other is like a spool of thread. The
bottle brush pattern, however, violates Gauss’ law for magnetism.
If we made a cylindrical Gaussian surface with its axis coinciding
with the wire, the flux through it would not be zero. We there-
fore conclude that the spool-of-thread pattern is the correct one.4

4Strictly speaking, there is a hole in this logic, since I’ve only ruled out a
�eld that is purely along one of these three perpendicular directions. What if it
has components along more than one of them? A little more work is required
to eliminate these mixed possibilities. For example, we can rule out a �eld
with a nonzero component parallel to the wire based on the following symmetry
argument. Suppose a charged particle is moving in the plane of the page directly
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Since the particle in our example was moving perpendicular to
the field, we have jF j = jqjjv jjBj, so

jBj = jF j
jqjjv j

=
2kI
c2R

11.1.5 Symmetry and handedness

Imagine that you establish radio contact with an alien on another
planet. Neither of you even knows where the other one’s planet
is, and you aren’t able to establish any landmarks that you both
recognize. You manage to learn quite a bit of each other’s languages,
but you’re stumped when you try to establish the de�nitions of left
and right (or, equivalently, clockwise and counterclockwise). Is there
any way to do it?

t / Left-handed and right-handed definitions.

If there was any way to do it without reference to external land-
marks, then it would imply that the laws of physics themselves were
asymmetric, which would be strange. Why should they distinguish
left from right? The gravitational �eld pattern surrounding a star
or planet looks the same in a mirror, and the same goes for electric

toward the wire. If the �eld had a component parallel to the wire, then the
particle would feel a force into or out of the page, but such a force is impossible
based on symmetry, since the whole arrangement is symmetric with respect to
mirror-reection across the plane of the page.
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u / In this scene from Swan
Lake, the choreography has a
symmetry with respect to left and
right.

v / C.S. Wu

�elds. However, the magnetic �eld patterns shown in �gure s seems
to violate this principle. Could you use these patterns to explain left
and right to the alien? No. If you look back at the de�nition of the
magnetic �eld, it also contains a reference to handedness: the di-
rection of the vector cross product. The aliens might have reversed
their de�nition of the magnetic �eld, in which case their drawings
of �eld patterns would look like mirror images of ours, as in the left
panel of �gure t.

Until the middle of the twentieth century, physicists assumed
that any reasonable set of physical laws would have to have this
kind of symmetry between left and right. An asymmetry would
be grotesque. Whatever their aesthetic feelings, they had to change
their opinions about reality when experiments by C.S. Wu et al. showed
that the weak nuclear force violates right-left symmetry! It is still
a mystery why right-left symmetry is observed so scrupulously in
general, but is violated by one particular type of physical process.
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a / The magnetic field of a
long, straight wire.

b / A ground fault interrupter.

c / Example 8.

11.2 Magnetic fields by superposition
11.2.1 Superposition of straight wires

In chapter 10, one of the most important goals was to learn
how to calculate the electric �eld for a given charge distribution.
The corresponding problem for magnetism would be to calculate the
magnetic �eld arising from a given set of currents. So far, however,
we only know how to calculate the magnetic �eld of a long, straight
wire,

B =
2kI

c2R
,

with the geometry shown in �gure a. Whereas a charge distribution
can be broken down into individual point charges, most currents
cannot be broken down into a set of straight-line currents. Never-
theless, let’s see what we can do with the tools that we have.

A ground fault interrupter example 7
Electric current in your home is supposed to flow out of one side
of the outlet, through an appliance, and back into the wall through
the other side of the outlet. If that’s not what happens, then we
have a problem — the current must be finding its way to ground
through some other path, perhaps through someone’s body. If
you have outlets in your home that have “test” and “reset” but-
tons on them, they have a safety device built into them that is
meant to protect you in this situation. The ground fault interrupter
(GFI) shown in figure b, routes the outgoing and returning cur-
rents through two wires that lie very close together. The clockwise
and counterclockwise fields created by the two wires combine by
vector addition, and normally cancel out almost exactly. However,
if current is not coming back through the circuit, a magnetic field
is produced. The doughnut-shaped collar detects this field (us-
ing an effect called induction, to be discussed in section 11.5),
and sends a signal to a logic chip, which breaks the circuit within
about 25 milliseconds.

An example with vector addition example 8
. Two long, straight wires each carry current I parallel to the y
axis, but in opposite directions. They are separated by a gap
2h in the x direction. Find the magnitude and direction of the
magnetic field at a point located at a height z above the plane of
the wires, directly above the center line.

. The magnetic fields contributed by the two wires add like vec-
tors, which means we can add their x and z components. The x
components cancel by symmetry. The magnitudes of the individ-
ual fields are equal,

B1 = B2 =
2kI
c2R

,
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so the total field in the z direction is

Bz = 2
2kI
c2R

sin �,

where � is the angle the field vectors make above the x axis. The
sine of this angle equals h=R, so

Bz =
4kIh
c2R2 .

(Putting this explicitly in terms of z gives the less attractive form
Bz = 4kIh=c2(h2 + z2).)

At large distances from the wires, the individual fields are mostly
in the �x direction, so most of their strength cancels out. It’s not
surprising that the fields tend to cancel, since the currents are
in opposite directions. What’s more interesting is that not only
is the field weaker than the field of one wire, it also falls off as
R�2 rather than R�1. If the wires were right on top of each other,
their currents would cancel each other out, and the field would be
zero. From far away, the wires appear to be almost on top of each
other, which is what leads to the more drastic R�2 dependence
on distance.

self-check C
In example 8, what is the field right between the wires, at z = 0, and
how does this simpler result follow from vector addition? . Answer,
p. 1053

An alarming in�nity

An interesting aspect of the R�2 dependence of the �eld in exam-
ple 8 is the energy of the �eld. We’ve already established on p. 606
that the energy density of the magnetic �eld must be proportional
to the square of the �eld strength, B2, the same as for the gravi-
tational and electric �elds. Suppose we try to calculate the energy
per unit length stored in the �eld of a single wire. We haven’t yet
found the proportionality factor that goes in front of the B2, but
that doesn’t matter, because the energy per unit length turns out
to be in�nite! To see this, we can construct concentric cylindrical
shells of length L, with each shell extending from R to R + dR.
The volume of the shell equals its circumference times its thickness
times its length, dv = (2�R)(dR)(L) = 2�LdR. For a single wire,
we have B � R�1, so the energy density is proportional to R�2,
and the energy contained in each shell varies as R�2 dv � R�1 dr.
Integrating this gives a logarithm, and as we let R approach in�nity,
we get the logarithm of in�nity, which is in�nite.

Taken at face value, this result would imply that electrical cur-
rents could never exist, since establishing one would require an in-
�nite amount of energy per unit length! In reality, however, we
would be dealing with an electric circuit, which would be more like
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d / A sheet of charge.

the two wires of example 8: current goes out one wire, but comes
back through the other. Since the �eld really falls o� as R�2, we
have an energy density that varies as R�4, which does not give in-
�nity when integrated out to in�nity. (There is still an in�nity at
R = 0, but this doesn’t occur for a real wire, which has a �nite
diameter.)

Still, one might worry about the physical implications of the
single-wire result. For instance, suppose we turn on an electron
gun, like the one in a TV tube. It takes perhaps a microsecond for
the beam to progress across the tube. After it hits the other side
of the tube, a return current is established, but at least for the �rst
microsecond, we have only a single current, not two. Do we have
in�nite energy in the resulting magnetic �eld? No. It takes time for
electric and magnetic �eld disturbances to travel outward through
space, so during that microsecond, the �eld spreads only to some
�nite value of R, not R =1.

This reminds us of an important fact about our study of mag-
netism so far: we have only been considering situations where the
currents and magnetic �elds are constant over time. The equation
B = 2kI=c2R was derived under this assumption. This equation is
only valid if we assume the current has been established and owing
steadily for a long time, and if we are talking about the �eld at
a point in space at which the �eld has been established for a long
time. The generalization to time-varying �elds is nontrivial, and
qualitatively new e�ects will crop up. We have already seen one
example of this on page 616, where we inferred that an inductor’s
time-varying magnetic �eld creates an electric �eld | an electric
�eld which is not created by any charges anywhere. E�ects like
these will be discussed in section 11.5

A sheet of current

There is a saying that in computer science, there are only three
nice numbers: zero, one, and however many you please. In other
words, computer software shouldn’t have arbitrary limitations like
a maximum of 16 open �les, or 256 e-mail messages per mailbox.
When superposing the �elds of long, straight wires, the really inter-
esting cases are one wire, two wires, and in�nitely many wires. With
an in�nite number of wires, each carrying an in�nitesimal current,
we can create sheets of current, as in �gure d. Such a sheet has a
certain amount of current per unit length, which we notate � (Greek
letter eta). The setup is similar to example 8, except that all the
currents are in the same direction, and instead of adding up two
�elds, we add up an in�nite number of them by doing an integral.
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e / A sheet of charge and a
sheet of current.

For the y component, we have

By =

Z
2k dI

c2R
cos �

=

Z b

�a

2k� dy

c2R
cos �

=
2k�

c2

Z b

�a

cos �

R
dy

=
2k�

c2

Z b

�a

z dy

y2 + z2

=
2k�

c2

�
tan�1 b

z
� tan�1 �a

z

�
=

2k�

c2
,

where in the last step we have used the identity tan�1(�x) =
� tan�1 x, combined with the relation tan�1 b=z + tan�1 a=z = ,
which can be veri�ed with a little geometry and trigonometry. The
calculation of Bz is left as an exercise (problem 23). More interest-
ing is what happens underneath the sheet: by the right-hand rule,
all the currents make rightward contributions to the �eld there, so
By abruptly reverses itself as we pass through the sheet.

Close to the sheet, the angle  approaches �, so we have

By =
2�k�

c2
.

Figure e shows the similarity between this result and the result for
a sheet of charge. In one case the sources are charges and the �eld
is electric; in the other case we have currents and magnetic �elds.
In both cases we �nd that the �eld changes suddenly when we pass
through a sheet of sources, and the amount of this change doesn’t
depend on the size of the sheet. It was this type of reasoning that
eventually led us to Gauss’ law in the case of electricity, and in
section 11.3 we will see that a similar approach can be used with
magnetism. The di�erence is that, whereas Gauss’ law involves the
ux, a measure of how much the �eld spreads out, the corresponding
law for magnetism will measure how much the �eld curls.

Is it just dumb luck that the magnetic-�eld case came out so
similar to the electric �eld case? Not at all. We’ve already seen
that what one observer perceives as an electric �eld, another ob-
server may perceive as a magnetic �eld. An observer ying along
above a charged sheet will say that the charges are in motion, and
will therefore say that it is both a sheet of current and a sheet of
charge. Instead of a pure electric �eld, this observer will experience
a combination of an electric �eld and a magnetic one. (We could
also construct an example like the one in �gure c on page 670, in
which the �eld was purely magnetic.)
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f / The field of any planar current
loop can be found by breaking it
down into square dipoles.

11.2.2 Energy in the magnetic field

In section 10.4, I’ve already argued that the energy density of
the magnetic �eld must be proportional to jBj2, which we can write
as B2 for convenience. To pin down the constant of proportionality,
we now need to do something like the argument on page 600: �nd
one example where we can calculate the mechanical work done by
the magnetic �eld, and equate that to the amount of energy lost by
the �eld itself. The easiest example is two parallel sheets of charge,
with their currents in opposite directions. Homework problem 53 is
such a calculation, which gives the result

dUm =
c2

8�k
B2 dv.

11.2.3 Superposition of dipoles

To understand this subsection, you’ll have to have studied sec-
tion 4.2.4, on iterated integrals.

The distant �eld of a dipole, in its midplane

Most current distributions cannot be broken down into long,
straight wires, and subsection 11.2.1 has exhausted most of the in-
teresting cases we can handle in this way. A much more useful
building block is a square current loop. We have already seen how
the dipole moment of an irregular current loop can be found by
breaking the loop down into square dipoles (�gure l on page 676),
because the currents in adjoining squares cancel out on their shared
edges. Likewise, as shown in �gure f, if we could �nd the magnetic
�eld of a square dipole, then we could �nd the �eld of any planar
loop of current by adding the contributions to the �eld from all the
squares.

The �eld of a square-loop dipole is very complicated close up,
but luckily for us, we only need to know the current at distances
that are large compared to the size of the loop, because we’re free
to make the squares on our grid as small as we like. The distant �eld
of a square dipole turns out to be simple, and is no di�erent from the
distant �eld of any other dipole with the same dipole moment. We
can also save ourselves some work if we only worry about �nding the
�eld of the dipole in its own plane, i.e., the plane perpendicular to
its dipole moment. By symmetry, the �eld in this plane cannot have
any component in the radial direction (inward toward the dipole, or
outward away from it); it is perpendicular to the plane, and in the
opposite direction compared to the dipole vector. (The �eld inside
the loop is in the same direction as the dipole vector, but we’re
interested in the distant �eld.) Letting the dipole vector be along
the z axis, we �nd that the �eld in the x � y plane is of the form
Bz = f(r), where f(r) is some function that depends only on r, the
distance from the dipole.
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g / A long, straight current-
carrying wire can be constructed
by filling half of a plane with
square dipoles.

h / Setting up the integral.

We can pin down the result even more without any math. We
know that the magnetic �eld made by a current always contains a
factor of k=c2, which is the coupling constant for magnetism. We
also know that the �eld must be proportional to the dipole moment,
m = IA. Fields are always directly proportional to currents, and
the proportionality to area follows because dipoles add according
to their area. For instance, a square dipole that is 2 micrometers
by 2 micrometers in size can be cut up into four dipoles that are
1 micrometer on a side. This tells us that our result must be of
the form Bz = (k=c2)(IA)g(r). Now if we multiply the quantity
(k=c2)(IA) by the function g(r), we have to get units of teslas, and
this only works out if g(r) has units of m�3 (homework problem 15),
so our result must be of the form

Bz =
�kIA

c2r3
,

where � is a unitless constant. Thus our only task is to determine
�, and we will have determined the �eld of the dipole (in the plane
of its current, i.e., the midplane with respect to its dipole moment
vector).

If we wanted to, we could simply build a dipole, measure its
�eld, and determine � empirically. Better yet, we can get an exact
result if we take a current loop whose �eld we know exactly, break
it down into in�nitesimally small squares, integrate to �nd the total
�eld, set this result equal to the known expression for the �eld of the
loop, and solve for �. There’s just one problem here. We don’t yet
know an expression for the �eld of any current loop of any shape |
all we know is the �eld of a long, straight wire. Are we out of luck?
No, because, as shown in �gure g, we can make a long, straight
wire by putting together square dipoles! Any square dipole away
from the edge has all four of its currents canceled by its neighbors.
The only currents that don’t cancel are the ones on the edge, so by
superimposing all the square dipoles, we get a straight-line current.

This might seem strange. If the squares on the interior have all
their currents canceled out by their neighbors, why do we even need
them? Well, we need the squares on the edge in order to make the
straight-line current. We need the second row of squares to cancel
out the currents at the top of the �rst row of squares, and so on.

Integrating as shown in �gure h, we have

Bz =

Z 1
y=0

Z 1
x=�1

dBz,
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where dBz is the contribution to the total magnetic �eld at our point
of interest, which lies a distance R from the wire.

Bz =

Z 1
y=0

Z 1
x=�1

�kI dA

c2r3

=
�kI

c2

Z 1
y=0

Z 1
x=�1

1

[x2 + (R+ y)2]3=2
dx dy

=
�kI

c2R3

Z 1
y=0

Z 1
x=�1

�� x
R

�2
+
�

1 +
y

R

�2
��3=2

dx dy

This can be simpli�ed with the substitutions x = Ru, y = Rv, and
dx dy = R2 dudv:

Bz =
�kI

c2R

Z 1
v=0

Z 1
u=�1

1

[u2 + (1 + v)2]3=2
du dv

The u integral is of the form
R1
�1(u2 + b)�3=2 du = 2=b2, so

Bz =
�kI

c2R

Z 1
v=0

1

(1 + v)2
dv,

and the remaining v integral is equals 2, so

Bz =
2�kI

c2R
.

This is the �eld of a wire, which we already know equals 2kI=c2R,
so we have �=1. Remember, the point of this whole calculation
was not to �nd the �eld of a wire, which we already knew, but
to �nd the unitless constant � in the expression for the �eld of a
dipole. The distant �eld of a dipole, in its midplane, is therefore
Bz = �kIA=c2r3 = kIA=c2r3, or, in terms of the dipole moment,

Bz =
km

c2r3
.

The distant �eld of a dipole, out of its midplane

What about the �eld of a magnetic dipole outside of the dipole’s
midplane? Let’s compare with an electric dipole. An electric dipole,
unlike a magnetic one, can be built out of two opposite monopoles,
i.e., charges, separated by a certain distance, and it is then straight-
forward to show by vector addition that the �eld of an electric dipole
is

Ez = kD
�
3 cos2 � � 1

�
r�3

ER = kD (3 sin � cos �) r�3,
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i / The field of a dipole.

j / Example 9.

where r is the distance from the dipole to the point of interest, �
is the angle between the dipole vector and the line connecting the
dipole to this point, and Ez and ER are, respectively, the compo-
nents of the �eld parallel to and perpendicular to the dipole vector.

In the midplane, � equals �=2, which produces Ez = �kDr�3

and ER = 0. This is the same as the �eld of a magnetic dipole in its
midplane, except that the electric coupling constant k replaces the
magnetic version k=c2, and the electric dipole moment D is substi-
tuted for the magnetic dipole moment m. It is therefore reasonable
to conjecture that by using the same presto-change-o recipe we can
�nd the �eld of a magnetic dipole outside its midplane:

Bz =
km

c2

�
3 cos2 � � 1

�
r�3

BR =
km

c2
(3 sin � cos �) r�3.

This turns out to be correct. 5

Concentric, counterrotating currents example 9
. Two concentric circular current loops, with radii a and b, carry
the same amount of current I, but in opposite directions. What is
the field at the center?

. We can produce these currents by tiling the region between the
circles with square current loops, whose currents all cancel each
other except at the inner and outer edges. The flavor of the calcu-
lation is the same as the one in which we made a line of current
by filling a half-plane with square loops. The main difference is
that this geometry has a different symmetry, so it will make more
sense to use polar coordinates instead of x and y . The field at
the center is

Bz =
Z

kI
c2r3 dA

=
Z b

r=a

kI
c2r3 � 2�r dr

=
2�kI
c2

�
1
a
� 1

b

�
.

The positive sign indicates that the field is out of the page.

5If you’ve taken a course in di�erential equations, this won’t seem like a very
surprising assertion. The di�erential form of Gauss’ law is a di�erential equation,
and by giving the value of the �eld in the midplane, we’ve speci�ed a boundary
condition for the di�erential equation. Normally if you specify the boundary
conditions, then there is a unique solution to the di�erential equation. In this
particular case, it turns out that to ensure uniqueness, we also need to demand
that the solution satisfy the di�erential form of Amp�ere’s law, which is discussed
in section 11.4.
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Field at the center of a circular loop example 10
. What is the magnetic field at the center of a circular current loop
of radius a, which carries a current I?

. This is like example 9, but with the outer loop being very large,
and therefore too distant to make a significant field at the center.
Taking the limit of that result as b approaches infinity, we have

Bz =
2�kI
c2a

Comparing the results of examples 9 and 10, we see that the
directions of the �elds are both out of the page. In example 9, the
outer loop has a current in the opposite direction, so it contributes
a �eld that is into the page. This, however, is weaker than the �eld
due to the inner loop, which dominates because it is less distant.

11.2.4 The g factor (optional)

In section 11.2.3 we exploited a particular trick for superimpos-
ing dipoles consisting of small square current loops. Let’s now turn
to a somewhat di�erent way of superimposing dipoles. The idea is
that matter is made out of atoms, which may act like little magnetic
dipoles, but atoms are themselves made out of subatomic particles
such as electrons, neutrons and protons | and there is no obvious
way that we can ever know whether we have taken this process of re-
ductionism (p. 18) to its conclusion. We can, however, look for clues
in the electrical and mechanical properties of matter. Suppose that
a particle of charge q and mass m is whizzing around and around
some closed path. We don’t even care whether the trajectory is a
square or a circle, an orbit or a random wiggle. But let’s say for
convenience that it’s a planar shape. The magnetic dipole moment
(averaged over time) is m = IA. But the angular momentum of a
unit mass can also be interpreted (sec. 4.1.2, p. 256) as twice the
area it sweeps out per unit time. Aside from the factor of two,
which is just a historical glitch in the de�nitions, this mathematical
analogy is exact: mass is to charge as angular momentum L is to
magnetic dipole moment m. Therefore we have the identity

q

m
� jLj
jmj

= 2

(where m is the dipole moment, while m is the mass). The left-
hand side is called the g factor. We expect g = 2 for single orbiting
particle.

Now suppose that we have a collection of particles with identical
values of q=m (or a continuous distribution of charge and mass in
which the ratio of the charge and mass densities is constant). Then
vector addition of the L and m values gives the same g = 2 for the
system as a whole. On the other hand, if the di�erent members of
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the system do not all have the same q=m, then the g of the system
as a whole need not be 2. For example, a collection of positive and
negative charges could easily have zero net charge but m 6= 0, giving
g = 0.

Particles such as the electron, the neutron, and the proton may
be pointlike, or they may be composites of other particles. The elec-
ton and proton, which are charged, have the expected g factors of
exactly 2 when we measure the L and m that they have due to their
motion through space. But we also �nd that electrons, neutrons,
and protons all come equipped with a built-in angular momentum,
present even when they are at rest. This intrinsic angular momen-
tum, called spin, is �xed in magnitude but can vary in direction,
like that of a gyroscope. Thus if we measure the L and m of these
particles when they are at rest, they have �xed g factors, which are
as follows:

electron 2.002319304361
neutron 0
proton 5.58569471

The electron’s intrinsic g factor is extremely close to 2, and if
we ignore the small discrepancy for now, we are led to imagine
that the electron is either a pointlike particle or a composite of
smaller particles, each of which has the same charge-to-mass ratio.
The neutron does have a nonvanishing dipole moment, so its zero
g factor suggests that it is a composite of other particles whose
charges cancel. The proton’s g factor is quite di�erent from 2, so we
infer that it, too, is composite. The current theory is that protons
and neutrons are clusters of particles called quarks. Quarks come in
di�erent types, and the di�erent types have di�erent values of q=m.

It is remarkable that we can infer these facts about the internal
structures of neutrons and protons without having to do any exper-
iments that directly probe their interior structure. We don’t need
a super-powerful microscope, nor do we need a particle accelerator
that can supply enough energy to shake up their internal structure,
like shaking a gift-wrapped box to tell what’s inside. Merely by
measuring the external, aggregate properties of the \box," we can
get clues about the structure inside. This is closely analogous to the
Tolman-Stewart experiment (example 11, p. 588), in which the sub-
atomic structure of metals was probed by measuring inertial e�ects
in an electric circuit. A more famous and important imperiment
using these ideas, by Stern and Gerlach, is described in sec. 14.1,
p. 949.

11.2.5 The Biot-Savart law (optional)

In section 11.2.3 we developed a method for �nding the �eld due
to a given current distribution by tiling a plane with square dipoles.
This method has several disadvantages:
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k / Two ways of making a current
loop out of square dipoles.

l / The new method can han-
dle non-planar currents.

� The currents all have to lie in a single plane, and the point at
which we’re computing the �eld must be in that plane as well.

� We need to do integral over an area, which means one integral
inside another, e.g.,

R R
: : : dx dy. That can get messy.

� It’s physically bizarre to have to construct square dipoles in
places where there really aren’t any currents.

Figure k shows the �rst step in eliminating these defects: instead
of spreading our dipoles out in a plane, we bring them out along an
axis. As shown in �gure l, this eliminates the restriction to currents
that lie in a plane. Now we have to use the general equations for
a dipole �eld from page 690, rather than the simpler expression for
the �eld in the midplane of a dipole. This increase in complication
is more than compensated for by a fortunate feature of the new
geometry, which is that the in�nite tube can be broken down into
strips, and we can �nd the �eld of such a strip for once and for all.
This means that we no longer have to do one integral inside another.
The derivation of the most general case is a little messy, so I’ll just
present the case shown in �gure m, where the point of interest is
assumed to lie in the y � z plane. Intuitively, what we’re really
�nding is the �eld of the short piece of length d‘ on the end of the
U; the two long parallel segments are going to be canceled out by
their neighbors when we assemble all the strips to make the tube.
We expect that the �eld of this end-piece will form a pattern that
circulates around the y axis, so at the point of interest, it’s really
the x component of the �eld that we want to compute:

dBx =

Z
dBR cos�

=

Z
kI d‘dx

c2s3
(3 sin � cos � cos�)

=
3kI d‘

c2

Z 1
0

1

s3

�xz
s2

�
dx

=
3kIz d‘

c2

Z 1
0

x

(x2 + r2)5=2
dx

=
kI d‘ z

c2r3

=
kI d‘ sin�

c2r2

In the more general case, l, the current loop is not planar, the point
of interest is not in the end-planes of the U’s, and the U shapes
have their ends staggered, so the end-piece d‘ is not the only part of
each U whose current is not canceled. Without going into the gory
details, the correct general result is as follows:

dB =
kI d‘� r

c2r3
,
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m / The field of an infinite U.

n / The geometry of the Biot-
Savart law. The small arrows
show the result of the Biot-Savart
law at various positions relative
to the current segment d‘. The
Biot-Savart law involves a cross
product, and the right-hand
rule for this cross product is
demonstrated for one case.

o / Example 12.

which is known as the Biot-Savart law. (It rhymes with \leo bazaar."
Both t’s are silent.) The distances d‘ and r are now de�ned as
vectors, d‘ and r, which point, respectively, in the direction of the
current in the end-piece and the direction from the end-piece to
the point of interest. The new equation looks di�erent, but it is
consistent with the old one. The vector cross product d‘� r has a
magnitude r d‘ sin�, which cancels one of r’s in the denominator
and makes the d‘ � r=r3 into a vector with magnitude d‘ sin�=r2.

The field at the center of a circular loop example 11
Previously we had to do quite a bit of work (examples 9 and 10),
to calculate the field at the center of a circular loop of current of
radius a. It’s much easier now. Dividing the loop into many short
segments, each d‘ is perpendicular to the r vector that goes from
it to the center of the circle, and every r vector has magnitude a.
Therefore every cross product d‘ � r has the same magnitude,
a d‘, as well as the same direction along the axis perpendicular
to the loop. The field is

B =
Z

kIa d‘
c2a3

=
kI

c2a2

Z
d‘

=
kI

c2a2 (2�a)

=
2�kI
c2a

Out-of-the-plane field of a circular loop example 12
. What is the magnetic field of a circular loop of current at a point
on the axis perpendicular to the loop, lying a distance z from the
loop’s center?

. Again, let’s write a for the loop’s radius. The r vector now has
magnitude

p
a2 + z2, but it is still perpendicular to the d‘ vector.

By symmetry, the only nonvanishing component of the field is
along the z axis,

Bz =
Z
jdBj cos �

=
Z

kI r d‘
c2r3

a
r

=
kIa
c2r3

Z
d‘

=
2�kIa2

c2(a2 + z2)3=2 .
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Is it the �eld of a particle?

We have a simple equation, based on Coulomb’s law, for the elec-
tric �eld surrounding a charged particle. Looking at �gure n, we can
imagine that if the current segment d‘ was very short, then it might
only contain one electron. It’s tempting, then, to interpret the Biot-
Savart law as a similar equation for the magnetic �eld surrounding a
moving charged particle. Tempting but wrong! Suppose you stand
at a certain point in space and watch a charged particle move by.
It has an electric �eld, and since it’s moving, you will also detect
a magnetic �eld on top of that. Both of these �elds change over
time, however. Not only do they change their magnitudes and di-
rections due to your changing geometric relationship to the particle,
but they are also time-delayed, because disturbances in the electro-
magnetic �eld travel at the speed of light, which is �nite. The �elds
you detect are the ones corresponding to where the particle used
to be, not where it is now. Coulomb’s law and the Biot-Savart law
are both false in this situation, since neither equation includes time
as a variable. It’s valid to think of Coulomb’s law as the equation
for the �eld of a stationary charged particle, but not a moving one.
The Biot-Savart law fails completely as a description of the �eld of
a charged particle, since stationary particles don’t make magnetic
�elds, and the Biot-Savart law fails in the case where the particle is
moving.

If you look back at the long chain of reasoning that led to the
Biot-Savart law, it all started from the relativistic arguments at the
beginning of this chapter, where we assumed a steady current in an
in�nitely long wire. Everything that came later was built on this
foundation, so all our reasoning depends on the assumption that the
currents are steady. In a steady current, any charge that moves away
from a certain spot is replaced by more charge coming up behind it,
so even though the charges are all moving, the electric and magnetic
�elds they produce are constant. Problems of this type are called
electrostatics and magnetostatics problems, and it is only for these
problems that Coulomb’s law and the Biot-Savart law are valid.

You might think that we could patch up Coulomb’s law and the
Biot-Savart law by inserting the appropriate time delays. However,
we’ve already seen a clear example of a phenomenon that wouldn’t
be �xed by this patch: on page 616, we found that a changing
magnetic �eld creates an electric �eld. Induction e�ects like these
also lead to the existence of light, which is a wave disturbance in the
electric and magnetic �elds. We could try to apply another band-
aid �x to Coulomb’s law and the Biot-Savart law to make them deal
with induction, but it won’t work.

So what are the fundamental equations that describe how sources
give rise to electromagnetic �elds? We’ve already encountered two
of them: Gauss’ law for electricity and Gauss’ law for magnetism.
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a / The electric field of a sheet of
charge, and the magnetic field of
a sheet of current.

b / A Gaussian surface and
an Ampèrian surface.

c / The definition of the circu-
lation, � .

Experiments show that these are valid in all situations, not just
static ones. But Gauss’ law for magnetism merely says that the
magnetic ux through a closed surface is zero. It doesn’t tell us
how to make magnetic �elds using currents. It only tells us that we
can’t make them using magnetic monopoles. The following section
develops a new equation, called Amp�ere’s law, which is equivalent
to the Biot-Savart law for magnetostatics, but which, unlike the
Biot-Savart law, can easily be extended to nonstatic situations.

11.3 Magnetic fields by ampère’s law
11.3.1 Ampère’s law

As discussed at the end of subsection 11.2.5, our goal now is to
�nd an equation for magnetism that, unlike the Biot-Savart law, will
not end up being a dead end when we try to extend it to nonstatic
situations.6 Experiments show that Gauss’ law is valid in both static
and nonstatic situations, so it would be reasonable to look for an
approach to magnetism that is similar to the way Gauss’ law deals
with electricity.

How can we do this? Figure a, reproduced from page 686, is our
roadmap. Electric �elds spread out from charges. Magnetic �elds
curl around currents. In �gure b/1, we de�ne a Gaussian surface,
and we de�ne the ux in terms of the electric �eld pointing out
through this surface. In the magnetic case, b/2, we de�ne a surface,
called an Amp�erian surface, and we de�ne a quantity called the
circulation, � (uppercase Greek gamma), in terms of the magnetic
�eld that points along the edge of the Amp�erian surface, c. We
break the edge into tiny parts sj , and for each of these parts, we
de�ne a contribution to the circulation using the dot product of ds
with the magnetic �eld:

� =
X

sj �Bj

The circulation is a measure of how curly the �eld is. Like a Gaus-
sian surface, an Amp�erian surface is purely a mathematical con-
struction. It is not a physical object.

In �gure b/2, the �eld is perpendicular to the edges on the ends,
but parallel to the top and bottom edges. A dot product is zero
when the vectors are perpendicular, so only the top and bottom
edges contribute to �. Let these edges have length s. Since the
�eld is constant along both of these edges, we don’t actually have
to break them into tiny parts; we can just have s1 on the top edge,
pointing to the left, and s2 on the bottom edge, pointing to the right.
The vector s1 is in the same direction as the �eld B1, and s2 is in
the same direction as B2, so the dot products are simply equal to

6If you didn’t read this optional subsection, don’t worry, because the point is
that we need to try a whole new approach anyway.
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d / Positive and negative signs in
Ampère’s law.

e / Example 13: a cutaway
view of a solenoid.

the products of the vectors’ magnitudes. The resulting circulation
is

� = js1jjB1j+ js2jjB2j

=
2�k�s

c2
+

2�k�s

c2

=
4�k�s

c2
.

But �s is (current/length)(length), i.e., it is the amount of current
that pierces the Amp�erian surface. We’ll call this current Ithrough.
We have found one speci�c example of the general law of nature
known as Amp�ere’s law:

� =
4�k

c2
Ithrough

Positive and negative signs

Figures d/1 and d/2 show what happens to the circulation when
we reverse the direction of the current Ithrough. Reversing the cur-
rent causes the magnetic �eld to reverse itself as well. The dot
products occurring in the circulation are all negative in d/2, so the
total circulation is now negative. To preserve Amp�ere’s law, we need
to de�ne the current in d/2 as a negative number. In general, deter-
mine these plus and minus signs using the right-hand rule shown in
the �gure. As the �ngers of your hand sweep around in the direction
of the s vectors, your thumb de�nes the direction of current which is
positive. Choosing the direction of the thumb is like choosing which
way to insert an ammeter in a circuit: on a digital meter, reversing
the connections gives readings which are opposite in sign.

A solenoid example 13
. What is the field inside a long, straight solenoid of length ‘ and
radius a, and having N loops of wire evenly wound along it, which
carry a current I?

. This is an interesting example, because it allows us to get a
very good approximation to the field, but without some experi-
mental input it wouldn’t be obvious what approximation to use.
Figure e/1 shows what we’d observe by measuring the field of a
real solenoid. The field is nearly constant inside the tube, as long
as we stay far away from the mouths. The field outside is much
weaker. For the sake of an approximate calculation, we can ideal-
ize this field as shown in figure e/2. Of the edges of the Ampèrian
surface shown in e/3, only AB contributes to the flux — there is
zero field along CD, and the field is perpendicular to edges BC
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f / A proof of Ampère’s law.

and DA. Ampère’s law gives

� =
4�k
c2 Ithrough

(B)(length of AB) =
4�k
c2 (�)(length of AB)

B =
4�k�

c2

=
4�kNI

c2‘

self-check D
What direction is the current in figure e? . Answer, p. 1053

self-check E
Based on how ‘ entered into the derivation in example 13, how should
it be interpreted? Is it the total length of the wire? . Answer, p. 1053

self-check F
Surprisingly, we never needed to know the radius of the solenoid in
example 13. Why is it physically plausible that the answer would be
independent of the radius? . Answer, p. 1053

Example 13 shows how much easier it can sometimes be to cal-
culate a �eld using Amp�ere’s law rather than the approaches de-
veloped previously in this chapter. However, if we hadn’t already
known something about the �eld, we wouldn’t have been able to
get started. In situations that lack symmetry, Amp�ere’s law may
make things harder, not easier. Anyhow, we will have no choice in
nonstatic cases, where Amp�ere’s law is true, and static equations
like the Biot-Savart law are false.

11.3.2 A quick and dirty proof

Here’s an informal sketch for a proof of Amp�ere’s law, with no
pretensions to rigor. Even if you don’t care much for proofs, it would
be a good idea to read it, because it will help to build your ability
to visualize how Amp�ere’s law works.

First we establish by a direct computation (homework problem
26) that Amp�ere’s law holds for the geometry shown in �gure f/1,
a circular Amp�erian surface with a wire passing perpendicularly
through its center. If we then alter the surface as in �gure f/2,
Amp�ere’s law still works, because the straight segments, being per-
pendicular to the �eld, don’t contribute to the circulation, and the
new arc makes the same contribution to the circulation as the old
one it replaced, because the weaker �eld is compensated for by the
greater length of the arc. It is clear that by a series of such modi�-
cations, we could mold the surface into any shape, f/3.

Next we prove Amp�ere’s law in the case shown in �gure f/4:
a small, square Amp�erian surface subject to the �eld of a distant
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square dipole. This part of the proof can be most easily accom-
plished by the methods of section 11.4. It should, for example, be
plausible in the case illustrated here. The �eld on the left edge is
stronger than the �eld on the right, so the overall contribution of
these two edges to the circulation is slightly counterclockwise. How-
ever, the �eld is not quite perpendicular to the top and bottoms
edges, so they both make small clockwise contributions. The clock-
wise and counterclockwise parts of the circulation end up canceling
each other out. Once Amp�ere’s law is established for a square sur-
face like f/4, it follows that it is true for an irregular surface like f/5,
since we can build such a shape out of squares, and the circulations
are additive when we paste the surfaces together this way.

By pasting a square dipole onto the wire, f/6, like a ag attached
to a agpole, we can cancel out a segment of the wire’s current
and create a detour. Amp�ere’s law is still true because, as shown
in the last step, the square dipole makes zero contribution to the
circulation. We can make as many detours as we like in this manner,
thereby morphing the wire into an arbitrary shape like f/7.

What about a wire like f/8? It doesn’t pierce the Amp�erian sur-
face, so it doesn’t add anything to Ithrough, and we need to show that
it likewise doesn’t change the circulation. This wire, however, could
be built by tiling the half-plane on its right with square dipoles, and
we’ve already established that the �eld of a distant dipole doesn’t
contribute to the circulation. (Note that we couldn’t have done this
with a wire like f/7, because some of the dipoles would have been
right on top of the Amp�erian surface.)

If Amp�ere’s law holds for cases like f/7 and f/8, then it holds
for any complex bundle of wires, including some that pass through
the Amp�erian surface and some that don’t. But we can build just
about any static current distribution we like using such a bundle of
wires, so it follows that Amp�ere’s law is valid for any static current
distribution.

11.3.3 Maxwell’s equations for static fields

Static electric �elds don’t curl the way magnetic �elds do, so we
can state a version of Amp�ere’s law for electric �elds, which is that
the circulation of the electric �eld is zero. Summarizing what we
know so far about static �elds, we have

�E = 4�kqin

�B = 0

�E = 0

�B =
4�k

c2
Ithrough.

This set of equations is the static case of the more general relations
known as Maxwell’s equations. On the left side of each equation, we
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g / Discussion question A.

h / Discussion question B.

i / Discussion question C.

j / Discussion question D.

k / Discussion question E.

have information about a �eld. On the right is information about
the �eld’s sources.

It is vitally important to realize that these equations are only
true for statics. They are incorrect if the distribution of charges
or currents is changing over time. For example, we saw on page
616 that the changing magnetic �eld in an inductor gives rise to
an electric �eld. Such an e�ect is completely inconsistent with the
static version of Maxwell’s equations; the equations don’t even refer
to time, so if the magnetic �eld is changing over time, they will
not do anything special. The extension of Maxwell’s equations to
nonstatic �elds is discussed in section 11.6.

Discussion Questions

A Figure g/1 shows a wire with a circular Ampèrian surface drawn
around its waist; in this situation, Ampère’s law can be verified easily
based on the equation for the field of a wire. In panel 2, a second wire has
been added. Explain why it’s plausible that Ampère’s law still holds.

B Figure h is like figure g, but now the second wire is perpendicular
to the first, and lies in the plane of, and outside of, the Ampèrian surface.
Carry out a similar analysis.

C This discussion question is similar to questions A and B, but now the
Ampèrian surface has been moved off center.

D The left-hand wire has been nudged over a little. Analyze as before.

E You know what to do.
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