
c / Energy levels of the N2
molecule.

d / Excited states of the nu-
cleus 178Hf. Black squares
represent states that are inter-
preted as end-over-end rotation,
while white diamonds show parti-
cle excitations. For each angular
momentum, the graph shows the
lowest-energy state of each type,
where known.

By the correspondence principle, we expect that when the quantum
mechanical version of such a system is highly excited, it should emit
a large number of photons of this frequencyf , so that the discrete
quantum jumps are undetectable and the radiation appears as a
classical wave. We can thus infer that for a quantum vibrator, the
excited states should show anevenly spacedladder of energy levels.

Figure c shows how the series of red lines in �gure a arises. For
an excitation consisting only of vibrational motion, we expect based
on the correspondence principle to see the evenly spaced ladder of
states shown in a stack built above the ground state, with all of the
photons having the same energy. These states and transitions do
exist, but the light lies in the infrared spectrum and so is not seen
in �gure a. The red visible-light lines arise as shown in the second
box, from states that involve both a certain particle excitation and
some vibration. Because the spacing of the two ladders is slightly
unequal, the red lines all have slightly di�erent wavelengths.

14.2.3 Rotation

What about rotation? An interesting thing happens here due
to the structure of quantum mechanics. Quantum mechanics can
describe motion only as a wave, with the value of the wave oscillat-
ing from one place to another. But this implies that according to
quantum mechanics, no object can rotate about one of its axes of
symmetry, for the rotated version of a state would then be the same
state. This is why rotational excitations are never seen in individ-
ual atoms, or in nuclei that have spherical shapes. In examples like
the ones in �gure b, which have a single axis of symmetry, we can
therefore have end-over-end rotation, but never rotation about the
symmetry axis. Such end-over-end rotational states are observed in
N2, for example, but because this involves large motions by the high-
mass nuclei, the moment of inertiaI is quite large, and therefore the
rotational energies | classically, K = L 2=2I | are very small, and
infrared rather than visible photons are emitted. If rotation about
the symmetry axis were possible, then the moment of inertia would
be thousands of times smaller, because in such a rotation the nu-
clei would not move. The energies involved would be thousands of
times higher, and the photons would lie approximately in the visible
region of the spectrum. No such visible lines are actually observed.

Perhaps more vivid evidence for the nonexistence of rotation
about a symmetry axis is shown in �gure d. The states involving
end-over-end rotation of the nucleus as a whole (\collective" rota-
tion) are approximately a parabola on this graph, which is reason-
able given the classical relationK = L 2=2I . But angular momentum
cannot be generated along the symmetry axis through collective ro-
tation. Instead, we see an irregular set of energy levels in which �rst
one particle (for L � 8~) and then two (14 and 16~) are excited.
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Note that only even multiples of ~ are observed in collective
rotation in �gure d. This is because the nucleus’s shape has an
additional mirror symmetry, so that it is una�ected by a 180-degree
rotation. This means that the wavefunction describing the collective
rotation must oscillate twice as we pass through a full rotation.

14.2.4 Corrections to semiclassical energies

So far we’ve been using the correspondence principle to make
educated guesses about quantum-mechanical expressions for the en-
ergies of vibrators and rotors. This style of reasoning is called
semiclassical, because it combines ideas from classical and quantum
physics. These expressions are guaranteed to be good approxima-
tions in the classical limit obtained when the quantum numbers are
large, but �gure e shows that the approximations can be poorer
when the quantum numbers are small.

e / Quantum-mechanical correc-
tions to the semiclassical results
for the energy of a vibrator and
a rotor. The rotational levels are
shown for the case of a rotor
with mirror symmetry, so that only
even values of ‘ occur.

In the case of thenth excited state of a vibrator, the energy is
(n + 1=2)~! , where the +1=2 term represents a quantum correction
to the semiclassical approximation. This shifts the entire ladder up-
ward in energy by half a step. In particular, the energy of the ground
state is not zero but rather (1=2)~! . This can be veri�ed quantita-
tively by calculating the energy for the solution to the Schr�odinger
discussed using the guess-and-check method in problem 23, p. 934.
It is easy to see why the answer cannot be zero, for if it were, then
the particle in the ground state would have zero kinetic energy and
zero potential energy. To have zero kinetic energy, it would have
to have a momentum of exactly zero, so �p = 0, but to have zero
potential energy it would also have to sit still at exactly the equi-
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librium position, so � x = 0. But this would violate the Heisenberg
uncertainty principle and so is impossible.

The inevitable motion that is present even in the ground state is
known as zero-point motion, and its energy is the zero-point energy.
Relativity tells us that E = mc2, so the zero-point energy of par-
ticles is equivalent to a certain amount of mass. In fact, nearly all
the mass of ordinary matter arises from the zero-point energy of the
quarks inside the neutrons and protons. Another interesting appli-
cation is to spontaneous nuclear �ssion, which is the basis for nuclear
energy, providing the kick-o� for a chain reaction. Spontaneous �s-
sion requires that a nucleus become more and more elongated until
it breaks apart into two pieces. The very elongated shapes have a
high potential energy, so that spontaneous �ssion requires quantum-
mechanical tunneling. If it were not for the zero-point vibrational
energy associated with this motion, the tunneling probability for
uranium and plutonium isotopes would be extremely small. These
isotopes would decay only by alpha emission, and nuclear reactors
and bombs would not work.

f / Each panel of the �gure shows
a standing wave on a sphere, with
the convention that gray is zero,
white is a positive real number,
and black is a negative real num-
ber. (These could instead have
been drawn as traveling waves,
but then we would have needed
to represent complex numbers
using color, as in �gure c on
p. 913.) Only 2 is a solution of the
Schr¤odinger equation.Figure f shows visually the reason for the correction of‘ 2 to

‘ (‘ + 1). Each of these standing waves hasj‘ z j = 16, where z is the
vertical axis. But only f/2 is a solution of the Schr�odinger equation
for a state of de�nite ‘ . To be a solution of the Schr�odinger equa-
tion, such a wave must have the same kinetic energy everywhere.
Each of these three has the same kinetic energy associated with its
wavelength in the \east-west," or azimuthal, direction. Wave f/1 is
not a solution, because near the equator, it has an extremely short
wavelength in the \north-south," or longitudinal, direction, and this
gives it a greater kinetic energy near the equator than elsewhere.
The opposite problem occurs in f/3, where the wave is constant in
the longitudinal direction; at the poles, the wavefunction varies in-
�nitely rapidly, and therefore the kinetic energy blows up to in�nity
there. The only valid solution is f/2, which has a Goldilocks-style
just-right wavelength in the longitudinal direction. The kinetic en-
ergy associated with this wavelength is the di�erence between the
semiclassical‘ 2 and the correct quantum mechanical‘ (‘ + 1).

A di�erent example that is particularly easy to reason about is
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the wavefunction 	 10 shown in �gure d on p. 914, for ‘ = 1 and
‘ z = 0. (The odd value of ‘ is possible for a rotor that doesn’t have
mirror symmetry, e.g., the carbon monoxide molecule CO.) The
ratio of the correct quantum mechanical energy to the semiclassical
one is ‘ (‘ + 1) =‘2 = 2, and the factor of two makes sense because
at the poles, the wave has equal contributions to its kinetic energy
due to oscillations in the two perpendicular directions that occur in
the Laplacian @2=@x2 + @2=@y2.

Discussion Question

A The correction of the semiclassical proportionality for the energy of
a rotor from ‘ 2 to ‘ (‘ + 1) is effectively the addition of a correction equal
to ‘ . What if someone tells you that there is an additional correction term
that depends only on ‘ z (for a �xed ‘ )? Is this plausible?

B Can the correction ‘ 2 ! ‘ (‘ + 1) be tested experimentally by mea-
suring the energy of a spinning steel ring in the laboratory? Can the
correction n ! n + 1=2 be tested using a cart on an air track that vibrates
back and forth between two springs?

14.3 ? A tiny bit of linear algebra
This optional section is a self-contained presentation of a very small
amount of linear algebra. None of the later physics requires this
material, but reading it may be helpful as review for the reader who
has already had an entire linear algebra course, or to help make
connections for the one who is taking such a course concurrently or
will take it in the future.

A vector spaceis a set of objects, which we refer to as vectors,
along with operations of addition and scalar multiplication de�ned
on the vectors. The scalars may be the real numbers or the com-
plex numbers. We require that the addition and scalar multiplica-
tion operations have the properties that addition is commutative
(u + v = v + u), that we have an additive identity 0 and additive
inverses (v + ( � v ) = 0), and that both operations are associative
and distributive in the ways that we would expect from the no-
tation. The prototypical example of a vector space is vectors in
three-dimensional space, with the scalars being the real numbers.

The vector space of polynomials example 1
Consider the set of all polynomials. If we de�ne addition of poly-
nomials and multiplication of a polynomial by a real number in the
obvious ways, then these functions are a vector space. Note that
there is no well-de�ned division operation, since dividing a poly-
nomial by a polynomial typically does not give a polynomial.

In quantum mechanics, we are interested in the vector space of
wavefunctions, with the scalars being the complex numbers.

A set of vectors is said to belinearly independent if it is not
possible to form the zero vector as a linear combination of them.
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For vectors in three-dimensional space, a set of three vectors is not
linearly independent if they lie in the same plane. The set of poly-
nomials f 1,xg is linearly independent, but the set f P , Q, Rg, where
P = 1, Q = 1 � x, and R = 1 + x, is not, because� 2P + Q + R = 0.

A basis for a vector space is a linearly independent set of vectors,
called basis vectors, such that any vector can be formed as a lin-
ear combination of basis vectors. The standard basis for vectors in
two-dimensional space isf x̂, ŷg, while a possible basis for the poly-
nomials is the in�nite set f 1,x, x2, x3, : : :g. A basis exists for any
vector space, and in fact there are normally many di�erent bases to
choose from, with none being preferred. In the plane, for example,
we can choose to rotate the standardf x̂, ŷg basis by any angle we
like. Every basis for a given vector space has the same number of el-
ements, and this number is called thedimension of the vector space.
The plane is a two-dimensional vector space. The polynomials are
an in�nite-dimensional vector space.

A linear operator is a function O that takes a vector as an input
and gives a vector as an output, with the propertiesO(u + v ) =
O(u) + O(v ) and O(� u) = � O(u). A rotation in the plane is a
linear operator.

Differentiation as a linear operator example 2
Consider the set of all differentiable functions, taken as a vec-
tor space over either the real numbers or the complex numbers.
Then the derivative is a linear operator, as is the second deriva-
tive. The kinetic energy term in the Schr¤odinger equation is built
out of second derivatives, so it is a linear operator.

For vectors in three-dimensional space, we have a dot product,
which is a function that takes two vectors as inputs and gives a scalar
as its output. A vector space may or may not come equipped with
such an operation. If it does, we call the operation aninner product.
The inner product on wavefunctions is introduced in section 14.6.2,
p. 970. In quantum mechanics, the inner product is a basic tool used
to de�ne probabilities, and for example normalization becomes the
requirement that a wavefunction have an inner product with itself
that equals 1. That is, a normalized wavefunction is a kind of unit
vector.

When a vector space is �nite-dimensional and a basis has been
chosen, then if we wish we can represent vectors in column vector
notation. For example, in the space of �rst-order polynomials with
the basis f 1,xg, the polynomial 3 + 5x can be represented by (35 ).
Linear operators can similarly be represented by matrices, but we
will seldom �nd this possible or useful in this book. For example, we
can’t represent the derivative as a matrix, because the vector space
is in�nite-dimensional.
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Unobservability of phase and
normalization
When we say that phase and
normalization don’t count as
knowledge of a system, we’re
saying something very mathe-
matically speci�c: that 	 and
c	 represent the same state,
where c 6= 0 is a complex num-
ber; the magnitude of c would
only a�ect the normalization,
and its argument would only
a�ect the phase. We do not
mean, for example, that wave-
functions like sinx and cosx
are indistinguishable. The sine
and cosine give di�erent prob-
ability distributions, so they
are distinguishable. For ex-
ample, the sinx wavefunction
gives zero probability of detec-
tion at x = 0. See also prob-
lem 17, p. 1002 and example 8,
p. 968.

Linear algebra application
Wavefunctions can be de-
scribed by vectors in a vector
space (p. 954). A state is a
one-dimensional subspace of
the vector space, i.e., the set of
all wavefunctions of the form
c	 for some �xed 	.

14.4 The underlying structure of quantum me-
chanics, part 1

So far we have been building up the structure of quantum mechanics
by casually laying one brick on top of another, but at this point it
will be advantageous to pause and consider the broader blueprint.

14.4.1 The time-dependent Schr ¤odinger equation

For simplicity, our discussion of the Schr�odinger equation in sec-
tion 13.3.6, p. 897, was limited to standing waves, allowing us to
avoid explicitly discussing how the wavefunction changed with pass-
ing time. Let’s consider the generalization to the full time-dependent
case.

Classically, suppose I show you a picture of a baseball next to
a tree, and I ask you how long it will take to hit the ground. You
can’t tell, because you also need information about the ball’s initial
velocity. That is, the future time-evolution of the system x(t) de-
pends not just on the initial position x(0) but also on its initial time
derivative x0(0).

But if I show you a uranium atom in its lowest energy state, you
don’t need to know any other information to predict everything that
can be predicted about its future decay. Whereas the baseball could
be thrown downward in order to make it reach the ground more
quickly, nobody knows of any way to prepare the uranium nucleus
in such a way that it is any more likely to decay sooner. Knowing
the initial wavefunction 	(0) to be that of the ground state lets us
say as much as can be said about the future time-evolution 	(t),
and it’s neither necessary nor helpful to know the time derivative
	 0(t).

This is an example of a more general idea about the interpre-
tation of quantum mechanics, which is that the wavefunction is a
complete description of any system. There isn’t more information
that can be known about the system. This principle seems to be
widely agreed upon by physicists, but doesn’t seem to have a stan-
dard name. (The phase and normalization of the wavefunction are
not considered to give any information, since the phase is unobserv-
able, and the normalization can be standardized so that the total
probability is 1. See the sidebar for more detail.)

Wavefunction fundamentalism
All knowable information about a system is encoded in its wave-
function (ignoring phase and normalization).

An example of an idea that would violate this principle is the pilot
wave theory proposed by de Broglie around 1927, and improved
by Bohm in the 1950’s. In this theory, an electron-particle is a
separate object from an electron-wave, with the particle sur�ng the
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wave along a deterministic trajectory.

Another example that shows the contrast with the classical de-
scription is that if I show you a snapshot of a wave on a string, you
can’t tell which direction it’s going | as with the baseball, you need
to know its initial velocity in addition. But if I show you a snap-
shot of a quantum-mechanical traveling wave, youcan tell which
direction it’s going, because of the complex phase, as shown in �g-
ures t/2 and t/3 on page 905. Note that this mechanism wouldn’t
work if wavefunctions were always real numbers, so wavefunction
fundamentalism implies complex wavefunctions.

Given the wavefunction at some initial time, we can predict its
evolution into the future by making use of the principle that E =
hf . Suppose for example that we have a sinusoidal plane wave
traveling to the right. Then we expect the value of the wavefunction
at a particular point in space to rotate clockwise about the origin
in the complex plane at the appropriate frequency f , showing a
time dependencee� i!t (where, as usual,! = 2 �f ). Thus the time
derivative of the wavefunction is 	 0 = � i! 	 = � i (E=~)	, so that
E 	 = i~	 0. Then to generalize the time-independent Schr�odinger
equation to its time-dependent version, the most obvious thing to
try is simply to substitute i~@	 =@tfor E 	, which gives

i~
@	
@t

= �
~2

2m
r 2	 + U	.

(In section 14.6.4, p. 978, we will generalize this to cases where the
wavefunction is not expressed in terms of the spatial coordinatesx,
y, and z.) Unlike Newton’s laws of motion, which refer to a second
derivative with respect to time, the Schr�odinger equation involves
only a �rst time derivative. This is why we don’t need initial data
on @	 =@t, but only 	: if we know 	, then the right-hand side of the
Schr�odinger equation is what gives us @	 =@t. But the Schr�odinger
equation has some other properties that match up with those of
Newton’s laws.

A plane wave example 3
Consider a free particle of mass m in one dimension, with the
wavefunction

	 = ei(kx � ! t),

where k = 2� =� = p=~ is called the wavenumber. If k and ! are
both positive, we can tell that the particle is moving to the right,
because the signs inside the exponential are such that x could
increase as t increases while keeping the phase the same. This
would happen for k � x � !� t = 0, or v = ! =k , which is the phase
velocity (not the same as the group velocity, sec. 13.3.2, p. 886).

Suppose that the particle is in free space, so that U is constant,
and for convenience take U = 0. Application of the Schr¤odinger
equation, i~@	 =@t = � (~2=2m)@2	 =@x2, gives ~! e(:::) = ~2k2

2m e(:::),
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and if this is to hold true for all values of x and t , then we must
have ~! = ~2k2

2m , which is simply an expression of the Newtonian
relation K = p2=2m, since k � = 2� and p = h=� . Flipping the sign
of k results in an equally valid solution, and a negative k is how
we would represent a wave traveling to the left.

We have two solutions to the Schr¤odinger equation corresponding
to the two signs of k , and because the Schr¤odinger equation is
linear, it follows that we can make a more general solution of the
form

Aei(kx � ! t) + Bei(� kx � ! t),

where A and B are any two complex numbers. (We could also try
to elaborate on this theme by allowing for an arbitrary phase angle
� inside the complex exponentials, e.g., changing the argument
of the �rst exponential to i(kx � ! t + � ). However, this would be
equivalent to changing A to Aei � , which is just a change in A’s
phase angle, not a new solution.)

Dispersion of a wave packet example 4
An annoying feature of example 3 is that the wavefunction can-
not be normalized because it extends in all directions to in�nity.
This type of in�nite plane wave is at best an idealization of the
wavefunction for a realistic example such an electron launched
by a cathode ray tube, or an alpha particle emitted by a nucleus.
As a more realistic example, we might try something like a wave
packet, such as a pulse with a certain shape, traveling in a cer-
tain direction. This works for waves on a string or for electromag-
netic waves: the pulse or packet simply glides along while rigidly
maintaining its shape. To investigate this idea using the time-
dependent Schr¤odinger equation, it will be convenient to adopt
the frame of reference in which the particle is at rest. In this frame,
we would expect the wave to look frozen, just as an ocean wave
looks frozen in place to a surfer who is riding it. It must therefore
be of the form

	 = e� i ! t f (x),

where f is some function specifying the shape of the wave packet.
But this 	 is not a solution to the Schr¤odinger equation. On
the left-hand side of the Schr¤odinger equation, evaluating the
time derivative gives ~!	 , which is just the original wavefunc-
tion multiplied by a constant. If we are to satisfy the Schr¤odinger
equation, then the right-hand side, which is the second derivative
with respect to x , must also be equal to the original wavefunc-
tion multiplied by a constant. But the only functions for which
(d2 =dx2)(: : :) = (constant)(: : :) are exponentials and sine waves.
An exponential shape obviously isn’t a physical realization of a
wave packet. A sine wave works, but it just describes an in�nite
plane wave like the one in example 3, not a wave packet that can
be localized and normalized.
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Linear algebra application
Time evolution is represented
by a linear operator (p. 955).
Unitarity is an additional re-
quirement for this linear oper-
ator.

The underlying reason for this result is that the Schr¤odinger equa-
tion is dispersive: waves with different wavelengths travel at dif-
ferent speeds (because they correspond to different momenta).
Suppose a pulse has the shape f (x) at t = 0. Since a pulse is
not a sine wave, it doesn’t have a single well-de�ned wavelength,
and therefore it doesn’t have a de�nite momentum or velocity. In
fact, the spread in momentum must be at least a certain size due
to the Heisenberg uncertainty principle � p� x & h. This causes
the pulse to spread out over time.

This leads to a strange thought experiment. Suppose that a
uranium atom in the Andromeda galaxy emits an alpha particle,
which then travels thousands of light years and eventually �ies
past the earth. Its wave packet may initially have been as nar-
row as the diameter of an atomic nucleus, � 10� 15 m, but by the
time it arrives perhaps it is the size of an aircraft carrier. Will an
observer see a gigantic alpha particle �ying by? No, because ob-
serving it constitutes a measurement of its position, and by the
probability interpretation of the wavefunction this measurement
simply has a certain probability of giving a result that is anywhere
within some region the size of an aircraft carrier.

14.4.2 Unitarity

The Schr�odinger equation is completely deterministic, so that if
we know 	 initially, we can always predict it in the future. We can
also \predict" backward in time, so that the system’s history can
always be recovered from knowledge of its present state. Thus there
is never any loss of information over time. Furthermore, it can be
shown that probability is always conserved, in the sense that if the
wavefunction is initially normalized, it will also be normalized at all
later times.

Unitary evolution of the wavefunction
The wavefunction evolves over time, according to the Schr�odinger

equation, in a deterministic and unitary manner, meaning that prob-
ability is conserved and information is never lost.

(Unitarity is de�ned more rigorously on p. 974.)

Since we think of quantum mechanics as being all about ran-
domness, this determinism may seem surprising. But determinism
in the time-evolution of the wavefunction isn’t the same as deter-
minism in the results of experiments as perceived and recorded by
a human brain. Suppose that you prepare a uranium atom in its
ground state, then wait one half-life and observe whether or not
it has decayed, as in the thought experiment of Schr�odinger’s cat
(p. 877). There is no uncertainty or randomness about the wave-
function of the whole system (atom plus you) at the end. We know
for sure what it looks like. It consists of an equal superposition of
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two states, one in which the atom has decayed and your brain has
observed that fact, and one in which the atom has not yet decayed
and that fact is instead recorded in your brain.

To get more of a feeling for what is meant by unitarity, it may be
helpful to consider some examples of how it could be violated. One is
the mythical \collapse" of the wavefunction in naive interpretations
of the Copenhagen approximation (p. 879). Another example of
nonunitarity is given in example 14 on p. 979.

A more exotic example is the disappearance of matter into a
black hole. If I throw my secret teenage diary into a black hole,
then it contributes a little bit to the black hole’s mass, but the
embarrassing information on the pages is lost forever. This loss
of information seems to imply nonunitarity. This is one of several
arguments suggesting that quantum mechanics cannot fully handle
the gravitational force. Thus although physicists currently seem to
possess a completely successful theory of gravity (Einstein’s theory
of general relativity) and a completely successful theory of the mi-
croscopic world (quantum mechanics), the two theories are irrecon-
cilable, and we can only make educated guesses, for example, about
the behavior of a hypothetical microscopic black hole.

14.5 Methods for solving the Schr ¤odinger equa-
tion

14.5.1 Cut-and-paste solutions

Quite a few of the interesting phenomena of quantum mechanics
can be demonstrated by �nding solutions to the one-dimensional
Schr�odinger equation using the following \cut and paste" method.
We break up the x axis into pieces, where the potentialU(x) does
di�erent things, and such that we already know the solutions of the
Schr�odinger equation for each piece. We then splice together the
di�erent parts of the solution, requiring that no discontinuities occur
in the wavefunction 	 or its derivative @	 =@x. (If the momentum
and kinetic energy are to be �nite, and U is �nite, then we need all
derivatives up to the second to be de�ned.)

Partial reection at a step

The simplest example of this kind is a potential step,

U(x) =

(
U1, x < 0
U2, x > 0,

where U1 and U2 are constants, and the energy of the particle is
such that both sides are classically allowed. We have discussed this
example 18 on p. 900, where we cheated by drawing real-valued
wavefunctions, and simply assumed that we could still use our pre-
vious results for classical wave reection (p. 375). It is not actually
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a / An incident wave is partially
re�ected and partially transmitted
at a step in the potential U. The
complex wavefunctions are rep-
resented using a complex plane
perpendicular to the direction of
propagation, so that they look
like corkscrews. The incident and
re�ected wavefunctions actually
superposed, but are drawn as
separate entities and offset for
purposes of visualization.

obvious that we should be able to get away with recycling that result,
both because our quantum-mechanical wavefunctions are complex
and because the Schr�odinger equation is dispersive, so we can no
longer assume, as we did there, that a wave packet simply glides
along rigidly (example 4, p. 958).

To sidestep the problem of dispersion, we will carry out our anal-
ysis using an in�nitely long wave-train with a de�nite wavelength.
Let the incident wave have unit amplitude and travel to the right,

	 I = ei (kx � !t ) (x < 0),

as in example 3, p. 957. Recall that the wavenumberk is basically
just momentum, p = ~k.

For the reected and transmitted parts of the wave, we take

	 R = Rei ( � kx � !t ) (x < 0),

and
	 T = T ei (k0x � !t ) (x > 0),

where the reected and transmitted amplitudes R and T are un-
known, and our goal is to �nd them. The di�erent sign inside the
exponential for 	 R corresponds to the opposite direction of motion
at the same speedv, while in the expression for 	 T we have motion
to the right, but with a di�erent momentum p0 = ~k0 as required by
conservation of energy.

Demanding continuity of 	 gives

1 + R = T .

The derivatives are@	 I =@x= ik 	 I , @	 R=@x= � ik 	 R , and @	 T =@x=
ik 0	 T , and evaluating these atx = 0, t = 0 gives ik , � ikR , and ik 0T .
If the derivative is to be the same for x ! 0� and for x ! 0+ , we
need to haveik � Rik = iT k 0, or

1 � R =
k0

k
T ,

But these two equations are exactly the same as the ones found on
p. 375 for a classical, nondispersive wave, the only di�erence being
the replacement ofv=v0 with k0=k. To keep the writing simple, let
� = k0=k. With this replacement, the solutions are the same as
before, R = (1 � � )=(1 + � ) and T = 2=(1 + � ). For a particle of
energy E , we can �nd the momentum ratio � using conservation
of energy, � =

p
(E � U2)=(E � U1). There is partial reection

not just in the case of a sudden rise in the potential, but also at
a sudden drop (U2 < U 1), which is surprising and seems to violate
the correspondence principle, but actually does not, as discussed in
example 18 on p. 900.
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b / A particle in a box.

One of our principles of quantum mechanics is unitarity (p. 959),
which says, in part, that probability is conserved. Normally we
would interpret this to mean that a wavefunction stays normalized if
it was originally normalized. In this example, the wavefunctions are
not normalizable, but we still expect the uxes of particles balance
out. We have

ux = (probability density)(group velocity)

= 	 2 �
p
m

=
~
m

k	 2,

so that if we want the total incident ux to equal the total outgoing
ux, we need

k = kR2 + k0T2,
which is straightforward to verify.

In�nite potential well

In sec. 13.3.3, p. 889, we analyzed the one-dimensional particle
in a box. There was nothing wrong with those results, but it is of in-
terest to see how they �t into the framework of the time-dependent
Schr�odinger equation. If we want the walls of the box to be com-
pletely impenetrable, then we should describe it using a potential
such as

U(x) =

8
><

>:

1 , x < 0
0, 0 < x < L ,
1 , x > L ,

shown in �gure b/1. Because the potential is in�nite outside the
box, we expect that there is no tunneling, and zero probability of
�nding the particle outside.

In general when we do the cut-and-paste technique, we expect
both the wavefunction and its �rst derivative to be continuous where
the pieces are joined together. But because we have already solved
this problem by more elementary methods, we know that there will
be kinks in the wavefunction at the walls of the box, x = 0 and L .
The kink is a point where the second derivative@2	 =@x2 is unde-
�ned, and it’s unde�ned because it’s in�nite. The second derivative
is essentially the kinetic energy operator, and normally it would not
be possible to have the kinetic energy be�1 . But in this prob-
lem, it is reasonable to have a kinetic energy of�1 , because the
potential energy is +1 .

Within the box, for a �xed energy E = ~! , the possible wave-
functions will be those of a free particle, which we have already
found. There are two possibilities, of the form

	 1 = ei (kx � !t )

	 2 = ei ( � kx � !t ) ,
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�gure b/2, where k is a positive real number satisfyingk = p=~ =p
2mE=~. 	 1 is a wave traveling to the right, and 	 2 is a wave trav-

eling to the left. The most general solution will be a superposition
of these,

	 = A 	 1 + B 	 2.

Because the wavefunction has to be continuous atx = 0, where
	 1 = 	 2, we must haveA + B = 0. Since eiz � e� iz = 2 sin z, we
end up with

	 = 2 A sinkxe� i!t .

Throwing out the time-dependent phase, we get the sinusoidal so-
lutions to the time-independent Schr�odinger equation that we have
already found, e.g., �gure b/3. Imposing the additional constraint
that 	 be continuous at x = L , we get the condition kL = n� ,
where n is an integer, and this makes the energies quantized, as we
found before.

14.5.2 Separability

When we �rst generalized the Schr�odinger equations from one
dimension to two and three dimensions, a trick for �nding solutions
was to take solutions to the one-dimensional equation and multiply
them. For example, we knew that in the case of a constant poten-
tial (a free particle), the one-dimensional time-independent equation
had solutions of the form sinax and eax . We then saw in problem
37, p. 937, that eby sinax was a solution to the two-dimensional
equation. This is because the two-dimensional time-independent
Schr�odinger equation for a free particle, which has the form

r 2	 = c	,

has a property calledseparability. What this means is that if func-
tions X and Y are both solutions of the one-dimensional version
of the equation, then 	( x, y) = X (x)Y (y) is a solution of the two-
dimensional one. To see this, we calculate

r 2	 = r 2[X (x)Y (y)]

=
�

@2

@x2
+

@2

@y2

�
[X (x)Y (y)]

= Y (y)X 00(x) + X (x)Y 00(y).

We’re looking for functions X and Y such that this is a solution to
the two-dimensional equation, so that

Y (y)X 00(x) + X (x)Y 00(y) = cX (x)Y (y).

Dividing both sides by X (x)Y (y) simpli�es this equation to

X 00(x)
X (x)

+
Y 00(y)
Y (y)

= c.

Section 14.5 Methods for solving the Schr¤odinger equation 963



c / A solution to the Schr¤odinger
equation found by separability.
Positive values are shown as light
colors, negative ones as dark
colors.

But if X and Y are solutions of the one-dimensional equation, then
both terms on the left are constants, so we have a valid solution to
the two-dimensional equation.

As an example, we know that sinkx is a solution to the one-
dimensional Schr�odinger equation, so the function sinkx sinky is
also a solution. The result, shown in �gure c, can be chopped o�
and made into a solution of the two-dimensional particle in a box.
Solutions similar to this one are found in real-life examples such
as microwave photons in a microwave oven. For more about sep-
arability, and how it compares with entanglement, see sec. 14.11,
p. 994.

14.6 The underlying structure of quantum me-
chanics, part 2

14.6.1 Observables

By the time my �rst-year mechanics students have been in class
for a week, they know how to answer when I ask them the velocity
of the tape dispenser at the front of the classroom: \We don’t know,
it depends on your frame of reference." Theabsolutevelocity of an
object is a meaningless concept, part of the mythical dungeons-and-
dragons cosmology of Aristotelian physics. Quantum mechanics is
as great a break from Newton as Newton was from Aristotle, and
similar care is required in rede�ning what concepts areobservables
| meaningful things to talk about measuring.

Classically, we describe the state of the system as a point in phase
space (sec. 5.4.2, p. 324) | which is just a fancy way of saying that
we specify all the positions and momenta of its particles | and an
observable is de�ned as a function that takes that point as an input
and produces a real number as an output. (By the way, the word
\phase" in \phase space" doesn’t refer directly to the phase of a
wave, which we’ll also be discussing below.) For example, kinetic
energy is a classical observable, andK ( ) = 0, where the picture
represents a tennis ball at rest. For a moving tennis ball with one
unit of energy, K ( ) = 1. For a vibrating violin string, we could
have U( ) = 1, and U( ) = 4 (where doubling the amplitude
gives four times the energy).

Quantum-mechanically, the Heisenberg uncertainty principle tells
us that we can’t independently dial in the desired values of a par-
ticle’s position and momentum. They aren’t two variables that are
independent of one another. Therefore we don’t have a phase space,
so an observable has to be represented by a function whose input is
a wavefunction. Furthermore, we expect that:

� The output shouldn’t depend on the phase1 of the wavefunc-
1 \Phase" as in the phase of a wave, not as in \phase space."
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tion.

� The output shouldn’t depend on amplitude (because a dif-
ferent amplitude might just mean an incorrectly normalized
state).

� The output should be well de�ned when we superpose any two
states.

These requirements are hard to reconcile with the idea that the
output of the observable is just a real number representing the result
of the measurement. We could decree that the input wavefunction
is just required to be have the standard normalization, but there’s
no obvious way to de�ne a standardization of phase. And suppose
we have a particle in a one-dimensional box, with the two lowest
energies beingE ( ) = 1 and E ( ) = 4. Then what should
we de�ne for the superposition E ( + )? We could de�ne it
to be the average, 2.5, but that isn’t even a possible value of the
measurement; in reality, the result of the measurement would be
either 1 or 4, with equal probability.

For a clue as to a better way to proceed, note the structure of the
time-independent Schr�odinger equation for a free particle, omitting
all constant factors like m, 2, and ~. It isn’t (d 2 =dx2)	 = E , it’s
(d2 =dx2)	 = E 	. This �xes all the problems. For example, if
we change the phase of the wavefunction by ipping its sign, the
equation still holds with the same value of E . This equation is a
speci�c example of a more general type of equation that looks like

operator(input) = number � input.

Another, simpler example is (d=dx)f = 3 f , which is satis�ed if
f = Ae3x , where A is any constant. Such an equation says that
applying the operator to the input just gives back the input itself ,
multiplied by some constant. For this reason, this type of equation is
called an eigenvalue equation, because \eigen" is the German word
for \self." We say that 3 is the eigenvalue of the eigenvalue equation
(d=dx)f = 3 f . In the time-independent Schr�odinger equation, the
eigenvalue is the energy, and a solution 	 is called a state of de�nite
energy (or \eigenstate").

All observables in quantum mechanics are described by opera-
tors such as derivatives. The second derivative (with the appropriate
factor of � h2=2m) is the kinetic energy operator in quantum me-
chanics. Given an operatorO that describes a certain observable,
a state 	 with a de�nite value c of that observable is one for which
O(	) = c	. Although it’s common to use parentheses when no-
tating functions, as in cos(� ) = � 1, they are optional, and we can
write cos� = � 1, so we will often use notations likeO	 instead of
O(	), but keep in mind that this not multiplication, just as cos �
doesn’t mean multiplying cos by � .

Section 14.6 The underlying structure of quantum mechanics, part 2 965



Linear algebra application
Observables are represented a
linear operators (p. 955). We
also require that this operator
have real eigenvalues.

When we carried over the classical kinetic energy observable to
quantum mechanics, we weren’t going blind. For example, the factor
of � h2=2m in front is tightly constrained by requirements like units
and the need for a traveling sine wave to have positive energy. But
for the superposition of two states, classical mechanics will never
give us any guidance. For example, what is the body temperature
of Schr�odinger’s cat? For the energy operators appearing in the
Schr�odinger equation, we used linear operators. The result was that
our law of physics was perfectly linear, and this is a hard require-
ment, for the reasons described on p. 906. It therefore seems natural
to require that all observables be represented by linear operators,

O(	 1 + 	 2) = O	 1 + O	 2.

Indeed, if they were not linear, then quantum mechanics would lack
self-consistency, for the act of measurement can be described by
applying the Schr�odinger equation to a big system consisting of the
system being observed interacting with the measuring device.

Finally, we have one more requirement, which is that the linear
operator representing an observable should have eigenvalues that
are real. This isn’t because the results of a measurement must log-
ically be real | e.g., we can measure complex impedances. But in
any real-world application of the complex number system, we must
always choose some arbitrary phase conventions, such as that an
inductor has a positive imaginary impedance to represent the fact
that the voltage leads the current by 90 degrees. (Such phase con-
ventions are always arbitrary because we de�nei as

p
� 1, but this

doesn’t distinguish i from � i .) These phase conventions are all in-
dependent of one another, and the classical ones are independent of
the convention used for wavefunctions in quantum mechanics, which
is that a state with positive energy twirls clockwise in the complex
plane. (See also example 14, p. 979.)

Observables
In quantum mechanics, any observable is represented by a linear
operator that takes a wavefunction as an input and has real eigen-
values.

Some important examples of observables are momentum (example
5 below), position (example 7), energy, and angular momentum.
These are represented by linear operatorsOx , Op, OE , and OL ,
respectively.

The momentum operator example 5
Quantum mechanics represents motion as a dependence of the
wavefunction on position, so that a constant wavefunction has
no motion. This suggests de�ning the momentum operator as
the derivative with respect to position. This almost works, but
needs to be tweaked a little. We expect that a state of de�nite
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momentum is a sine wave of the form 	 = eikx . We have k � = 2�
and p = h=� = ~k , and the sign is a matter of convention. Taking
the derivative of 	 gives an eigenvalue ik , which has the wrong
units (easily �xed by tacking on a factor of ~), but more importantly
is not real. This suggests de�ning the momentum operator as

Op = � i~
d

dx
.

A further note about the momentum operator is example 13 on
p. 975.

A nonexample example 6
Consider the one-dimensional particle in a box, and restrict our
attention to the two lowest-energy states and their superpositions.
De�ne an operator O by the rule

O( ) =
O( ) = � ( ).

Since O is linear, de�ning its action on and suf�ces to
de�ne its action on the superpositions of these states as well.
This operator has eigenvalues, one of which is i , corresponding
to the state � i . (It also has a second eigenvalue, which
is imaginary as well.) Because this operator doesn’t have real
eigenvalues, it is not a valid observable.

Note that in examples 5 and 6, it doesn’t matter whether the
operator is de�ned using complex numbers. Our de�nition of the
momentum operator was stated using an equation that had ani in
it, but its eigenvalues are real, so that’s OK. The operator O in
example 6 was de�ned using only real numbers, but its eigenvalues
are not real.

Position is an observable example 7
If we have a wavefunction 	 (x) expressed as a function of po-
sition x , then we simply take the operator for position Ox to be
multiplication by the number x ,

Ox (	 ) = x 	 .

For example, if 	 = eix (ignoring units), then Ox (	 ) = xeix . This
operator is de�nitely linear, because multiplication by a number is
linear, e.g., 7(a + b) = 7a + 7b. The only question is whether it has
eigenvalues, and whether those are real. A state of de�nite x , say
a state with x = 0, would have to be represented by a wavefunc-
tion 	 (x) for which there was zero probability of having x 6= 0, and
this requires us to have 	 (x) = 0 for nonzero x . But what would
be the value of 	 (0)? It has to be in�nite if 	 is to be properly nor-
malized. With this motivation, the physicist P.A.M. Dirac de�ned
the Dirac delta function,

� (x) =

(
0 for x 6= 0
+1 for x = 0
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Its graph is an in�nitely narrow, in�nitely tall spike at x = 0, and it
has

R+1
�1 � (x) dx = 1. Mathematicians will shake their heads and

say that this is not a de�nition of a function, but it’s very useful to
pretend that it is, and the delta �function� is widely used in a vari-
ety of �elds such as electrical engineering. Because it was useful,
mathematicians felt obliged to de�ne a theory in which functions
are generalized to things called distributions or generalized func-
tions.

Because we represent an observable as an operator that changes
a wavefunction into a new wavefunction, a common misconception is
that this change represents the e�ect of measurement on the system.
Although it is often true that microscopic systems are delicate, so
that the act of measurement may have a signi�cant e�ect on them,
that action of the operator on the wavefunction does not represent
that e�ect. For example, the position operator Ox from example 7
consists simply of multiplication of the wavefunction by x. Suppose
we have a particle in a box with a wavefunction given by 	 = sin x,
where we ignore units and normalization, and the box is de�ned by
0 � x � � . Then Ox 	 eats the input wavefunction sin x and poops
out the new function x sinx. But the act of measuring the particle’s
position clearly can’t do anything like this | for one thing, the
function x sinx has larger values on the right side of the box than
on the left, but there is nothing to create such an asymmetry in
either the original state or the measuring process. The real-world
e�ect of the measurement would probably be to knock the particle
out of the box completely, since a high-resolution measurement will
have a small uncertainty � x, which by the Heisenberg uncertainty
principle means creating a large � p.

Nor is it always true that measuring a system disturbs it. For
example, suppose that we prepare a beam of silver atoms, as in the
Stern-Gerlach experiment, in such a way that every atom is guar-
anteed to be in either a state of de�nite L x = +1 =2 or L x = � 1=2.
That is, the beam may be a mixture of both of these possibilities,
but each atom is guaranteed have its spin either exactly aligned
with the magnetic �eld or exactly antiparallel to it. Then the e�ect
of the magnetic �eld is simply to sort out the two types of atoms
according to spin, without having the slightest e�ect on those spins.

Phase is not an observable example 8
On p. 964 we listed three criteria for implementing the concept of
an observable in quantum mechanics, and one of these was that
since wavefunctions that differ only by a phase describe the same
state, the result of an observation should not depend on phase.
For this reason, it should not be a surprise that the mathematical
de�nition of an observable that we came up with does not allow
for the creation of an observable to describe measurement of a
phase.

968 Chapter 14 Additional Topics in Quantum Physics



By way of rigorous proof, suppose to the contrary that we did
have such an observable Oph. By our de�nition of an observ-
able, it would have to have some set of eigenvalues that were
real numbers. Consider such an eigenvalue ’ , which might per-
haps be the argument of the wavefunction in the complex plane,
although we will not need to assume that. Let 	 be the state of
de�nite phase having the phase ’ , so that

[1] Oph	 = ’	 .

We can change the phase of 	 to create a new wavefunction.
Let’s retard its phase by 90 degrees, creating i 	 . Since 	 was a
state of de�nite phase, clearly i 	 is as well, and and it must have
some different eigenvalue ’ 0. Perhaps ’ 0 = ’ + � =2, but in any
case we must have ’ 0 6= ’ . Then

[2] Oph(i 	 ) = ’ 0(i 	 ).

But by linearity equation [2] is equivalent to iOph	 = i ’ 0	 , or
Oph	 = ’ 0	 , and therefore by comparison with equation [1], ’ =
’ 0, which is a contradiction, so we conclude that there cannot be
an observable representing phase.

The result of example 8 was a bit of a foregone conclusion, since
we speci�cally designed our notion of an observable to be insensitive
to phase. Therefore this argument is subject to the objection that
perhaps there is some way to measure a quantum-mechanical phase,
but our de�nition of an observable is just too restrictive to describe
it. However, we will see on p. 988 that there are more concrete
reasons why phase cannot be measured.

Time is not an observable example 9
We do not expect to have a time operator in quantum mechan-
ics. This follows simply because an operator is supposed to be
a function that takes a wavefunction as an input, but we typically
can’t tell what time it is by looking at the wavefunction. For exam-
ple, if the electron in a hydrogen atom is in its ground state, then
we could say its energy is zero, so its frequency is zero, the pe-
riod is in�nite, and the wavefunction doesn’t vary at all with time.
(We can choose our reference level for the electrical energy Uelec
to be anything we like. Even if we choose it such that the energy
of the ground state is nonzero, the only change in the electron’s
wavefunction over time will be a phase rotation, which by example
8 is not observable.)

Of course this doesn’t mean that quantum mechanics forbids us
from building clocks. It just tells us that many quantum mechan-
ical systems are too simple to function as clocks. In particular,
we would be misled if we pictured a hydrogen atom classically in
terms of an electron traveling in a circular orbit around a proton,
in which case it really could act like the hand on a tiny clock. For
further discussion of this idea, see p. 987
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Since you’ve already studied relativity, you’ve had carefully in-
culcated in you the idea that space and time are to be treated sym-
metrically, as parts of a more general thing called spacetime. The
di�ering results of examples 7 and 9 are clearly not consistent with
relativity. This is to be expected because the Schr�odinger equa-
tion is nonrelativistic (cf. self-check G, p. 897), and the principles
laid out in this section are the principles of nonrelativistic quantum
mechanics.

Parity example 10
In freshman calculus you will have encountered the notion of even
and odd functions. In quantum mechanics, we can have even
and odd wavefunctions, and they can be distinguished from one
another using the parity operator P . If 	 (x) is a wavefunction,
then P 	 is a new wavefunction, call it 	 0, such that 	 0(x) = 	 (� x).
In other words, the parity operator �ips the wavefunction across
the origin. (In three dimensions, we negate all three coordinates.)
States of de�nite parity are represented by wavefunctions that are
even (eigenvalue +1) or odd (� 1).

States of de�nite angular momentum example 11
In section 14.2.4, p. 952, we saw that the kinetic energy of a
quantum mechanical rotor is proportional not to ‘ 2 but instead
to ‘ (‘ + 1). This was justi�ed qualitatively in terms of the solutions
of the Schr¤odinger equation for a particle on a sphere, but in fact
there is a deeper reason, which is that the eigenvalues of the
orbital angular momentum operator turn out to be ‘ (‘ + 1). The
parity of such a state is (� 1)‘ , which can be seen in �gure h on
p. 919.

If we have two observables, it may or may not be possible to
measure them both on the same state and get exact and meaningful
results. Position and momentum p and x are incompatible observ-
ables, as expressed by the Heisenberg uncertainty principle. No state
is simultaneously a state of de�nite p and of de�nite x. The mag-
nitude of an angular momentum L and its component along some
axis L z are compatible. It is common to have a state that is simul-
taneously a state of de�nite L and of de�nite L z. Another example
of incompatible observables isL z and L x , as proved on p. 913.

14.6.2 The inner product

We’ve de�ned the normalization of a wavefunction as the re-
quirement

R+ 1
�1 	 � 	 d x = 1, which means that the total probability

that the particle is somewhereequals 1. (Another way of writing
	 � 	 would be j	 j2.) This assumes that the wavefunction is writ-
ten as a function of the position x. But it is also possible to have
a wavefunction that depends on some other variable, such as spin
or momentum, or on some combination of variables, e.g., both the
spin s and the position x of an electron, 	( x, s). We can also use
a wavefunction to describe a correlation between multiple particles,

970 Chapter 14 Additional Topics in Quantum Physics



Linear algebra application
The vectors notated with right-
hand angle brackets like j : : :i
are the ones that we could
represent as column vectors
(p. 955) if the vector space is
�nite-dimensional. Left-hand
angle brackets are like row vec-
tors. A row vector multiplied
by a column vector is a way
of notating an inner product,
which is the same idea as a no-
tation like h: : : j : : :i . To turn a
column vector into a row vec-
tor, we transpose it and take
complex conjugates of its ele-
ments. This is analogous to
the rule of taking complex con-
jugates when converting back
and forth between left-hand an-
gle brackets (\bras") and right-
hand ones (\kets"). In both
contexts, the basic reason for
the complex conjugation is that
we want the inner product of a
vector with itself to be a posi-
tive real number.

in which case the wavefunction might look like 	( x1, x2). The vari-
ables that the wavefunction depends on may be either continuous,
like position and momentum, or discrete, like spin or angular mo-
mentum. Given all of these possibilities, we need to �gure out an
appropriate generalization of the integral over x that we originally
used to de�ne our normalization condition. To provide for exibility
and generality, we will start by simply de�ning a new notation that
looks like this:

h	 j	 i = 1.

In the case where 	 is a function of x alone, the angle brackets
h: : : j : : :i basically mean just an integral overx, and we think of the
h: : : j part as automatically implying the complex conjugation of the
thing inside it. The operation h: : : j : : :i is called the inner product.

Because negative probabilities don’t make sense, we require that
the inner product of a wavefunction with itself always be positive,

hujui � 0.

This makes it similar to the dot product used with vectors in Eu-
clidean geometry.

In the case of Euclidean geometry, the ability to add vectors
and measure their lengths automatically gives us a way to judge
the similarity of two vectors. For example, if juj = 1, jvj = 1, and
ju + vj = 2, then we conclude that u and v are in the same direction.
On the other hand, if juj = 1, jvj = 1, and ju+ vj =

p
2, then we can

tell that u and v are perpendicular, which makes them as di�erent
as two unit-length vectors can be. More generally, (u + v) � (u + v) =
juj2+ jvj2+2u�v, because the dot product is linear, so we can see that
the information about how similar u and v are is all contained in
their dot product u�v. Making the analogy with quantum mechanics,
we expect that since we can de�ne normalization of wavefunctions,
we should automatically get, \for free," a way of measuring how
similar two states are.

With this motivation, we assume that there is an inner product
on wavefunctions that has properties analogous to those of the dot
product. We assume linearity, so that if u, v, and w are wavefunc-
tions, then

huj�v + �w i = � hujvi + � hujwi

and

h�u + �v jwi = � � hujwi + � � hvjwi .

In the second equation, we need to take the complex conjugates� �

and � � , for if we omitted the conjugation, then when hujui = 1
we would havehiu jiu i = � 1, describing a negative probability. For
similar reasons, we require that

hujvi = hvjui �
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Linear algebra application
The properties listed here for
inner products in quantum me-
chanics are just standard rules
for inner products in linear al-
gebra.

rather than the more familiar property of the Euclidean dot product
u � v = v � u.

Inner product
Wavefunctions come equipped with an inner product that has the
properties described above.

If we’re dealing with wavefunctions that are expressed as func-
tions of position, then it’s pretty clear how to de�ne an appropriate
inner product: hujvi =

R
u� v dx. The inner product axiom stated

above then requires that this (possibly improper) integral converge
in all cases, which means, for example, that we have to exclude
in�nite plane waves from consideration. However, because it’s so
convenient sometimes to talk about plane waves, we may break this
rule when nobody is looking. Note the similarity between the ex-
pression

R
u� v dx and the expressionuxvx + uyvy + uzvz for a dot

product: the integral is a continuous sum, and the dot product is a
discrete sum.

Two wavefunctions have a zero inner product if and only if they
are completely distinguishable from each other by the measurement
of some observable. By analogy with vectors in Euclidean space,
we say that the two wavefunctions are orthogonal. For example,
h j i = 0, as can be veri�ed from the integral

R�
0 sinx sin 2x dx =

0. These states are also distinguishable by measuring either their
momentum or their energy.

Let’s consider more carefully the general justi�cation for this
assertion that perfect distinguishability is logically equivalent to a
zero inner product. We have described valid observables in quantum
mechanics as being represented by operators that have real eigen-
values. An alternative description of such an operatorO, called a
hermitian operator2 after Charles Hermite, is that it is one such
that for any u and v, the equation hOujvi = hujOvi holds.3 Being
hermitian is, for an operator, analogous to being real for a number.
(Cf. problem 8, p. 999.) Just as a randomly chosen complex number
is unlikely to be real, a randomly chosen linear operator will almost
never be hermitian. Like love, patriotism, or beauty, a nonhermitian
operator fails to translate into anything a physicist can measure.

Using this alternative characterization of what makes a valid
2The mathematician’s standard de�nition of a hermitian operator adds an

additional technical condition, which is that all of the operator’s eigenvalues
should have magnitudes below a certain �xed bound. This is much too restrictive
for our purposes, since, for example, an alpha particle in free space can have an
arbitrarily large kinetic energy. In fact, nothing really bad happens if we relax
our requirement for quantum-mechanical operators to be that they merely need
a property called being normal .

3Proof that a hermitian operator has real eigenvalues: Let e be an eigenvalue,
Ou = eu for u 6= 0. Then hOujui = hujOui , so heujui = hujeui , and e� hujui =
ehujui , so e� = e, meaning that e is real.
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observable, we can prove, as claimed above, that if two states are
distinguishable because they have de�nite, di�erent values of some
observable, then they are orthogonal.4

a / Some examples of interpreta-
tion of the inner product. The
�rst three examples are explained
immediately below. The fourth,
about averages, is justi�ed on
p. 975.

Suppose that u and v are both properly normalized wavefunc-
tions. If jhujvij = 1, then the states are identical.5 If hujvi = 0, then
u and v are completely distinguishable from one another. There is
also the intermediate case wherehujvi has a magnitude greater than
0 but less than 1. In this case, we could say thatu is a mixture of
v plus some other statew that is distinguishable from v, i.e., that

jui = � jvi + � jwi .

where hvjwi = 0. We then have

hujvi = ( � hvj + � hwj)jvi = � .

Now suppose that we make measurements capable of determining
whether or not the system is in the state v. If the system is pre-
pared in state u, and we make these measurements on it, then by

4Proof: Consider states u and v with Ou = e1u and Ov = e2v. If O is
Hermitian, we have hOujvi = hujOvi , so e�

1hujvi = e2hujvi . But since e1 and e2

are real and unequal, we must havehujvi = 0.
5 If the inner product is, for example, � 1, then the wavefunctions di�er only

by an unobservable di�erence in phase, so they really describe the same state.
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the linearity of the Schr�odinger equation, the result is that the mea-
suring apparatus or observer ends up in a Schr�odinger’s-cat state
that looks like

� jobservedvi + � jobservedwi .

We interpret squares of amplitudes as probabilities, so

P = j� j2 = jhujvij 2

gives us the probability that we will have observed the state to be
v. This �nal leap in the logic, to a probability interpretation, has
felt mysterious to several generations of physicists, but recent work
has clari�ed the situation somewhat.

On p. 927 we stated the Pauli exclusion principle by saying that
two particles with half-integer spins could never occupy the same
state. This was not a completely rigorous de�nition of the principle,
since we didn’t really de�ne \same state." A more mathematically
precise statement is that if one electron’s wavefunction isu and
another’s is v, then hujvi = 0. In other words, we are ruling out not
just the case whereu and v are the same wavefunction,hujvi = 1,
but also the intermediate case wherehujvi is greater than 0 but less
than 1.

A unitary transformation is one that preserves inner products.
That is, hOujOvi = hujvi . This is similar to the way in which rota-
tions preserve dot products in Euclidean geometry. This provides a
more rigorous de�nition of what we meant by postulating the uni-
tary evolution of the wavefunction (p. 959). It can be shown that if
the Hamiltonian is hermitian, then the evolution of the wavefunc-
tion over time is a unitary operation. This protects us from bad
scenarios like the one described in example 14, p. 979.

Traveling waves in the quantum moat example 12
On p. 911 we discussed the �quantum moat,� in which a parti-
cle is constrained to a circle like the moat around a castle. For
the ‘ = 1 state, the two degenerate traveling wave solutions to
the Schr¤odinger equation are (ignoring normalization) the coun-
terclockwise jccwi = ei � and the clockwise jcwi = e� i � . These
states are distinguishable by their angular momenta ‘ z = � 1, so
we expect them to be orthogonal. Let’s check that directly.

hccwjcwi =
Z 2�

0

h
(ei � )�

i
e� i � d�

=
Z 2�

0
e� i � e� i � d�

=
Z 2�

0
e� 2i � d�
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This is easily seen to be zero without an explicit calculation, be-
cause when we take the antiderivative of e� 2i � , we will get the
same type of exponential, whose values when we plug in the up-
per and lower limits of integration will cancel each other out.

Imaginary momentum? example 13
Here’s a paradox. If we take a wavefunction erx , where r is a
constant, then applying the momentum operator Op = � i d=dx
(example 5, p. 966) gives

Operx = � i rerx .

For a state of de�nite momentum, we normally have in mind, as
in examples 5 and 12, an oscillating wave where r = ik is purely
imaginary. But what if r is real, say r = 1 (ignoring units)? Then
our wavefunction is ex , and it’s a state of de�nite momentum
� imaginary momentum. Oh no, what’s going on? Nice polite
observables like momentum aren’t supposed to have imaginary
eigenvalues.

The resolution to this paradox lies in the fundamental principles of
quantum mechanics that we’ve learned. Wavefunctions are sup-
posed to belong to a vector space in which we have a well-de�ned
inner product. A wavefunction like 	 = ex is ruled out by this re-
quirement, because h	 j	 i is in�nite, and therefore unde�ned.

Of course we could raise the same objection to a wavefunction
like � = eikx de�ned for all real values of x . But when we work
with wavefunctions like � , we usually just have in mind a compu-
tational shortcut, with the actual wavefunction being some kind of
wavepacket or wave train consisting of a �nite number of wave-
lengths. (Or we could be talking about rotation, as in the quantum
moat of example 12. Note that in such an example, oscillating
functions can be made to join smoothly to themselves as they
wrap around, but this doesn’t work with functions like ex .)

Averages

The average family lives down the street from me. Their family
income in 2014 was $72,641, and they have 2.5 kids. This joke
depends on the fact that you can’t superpose families to make a
single family | but we can do this for wavefunctions. Suppose
that the particle-in-a-box wavefunction has a de�nite energy of
1 unit, OE = 1 . This says that is a state of de�nite energy
1, so that when we act on it with the energy operatorOE , the result
is just to multiply the wave by 1 (the eigenvalue).

If this is true, then shortening the wavelength by a factor of 2
means increasing the momentum by a factor of 2, and increasing the
energy by a factor of 4. Therefore the wavefunction has 4 units
of energyOE = 4 .

Now there is nothing wrong with mixing these together to get a
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state 	 = c + c0 . If both c and c0 are nonzero, then we expect
to get a state with properties in between those of and . If we
measure the energy of such a state, then our wavefunction becomes
entangled with that of the particle, and we look like this:

c We measured the
energy to be 1. + c0We measured the

energy to be 4. .

Suppose we make the mixture an equal one,c = c0. Then the average
should be (1 + 4)=2 = 2.5. This turns out to be easily expressible
using an inner product:

h	 jOE 	 i = 2.5.

It’s a good exercise to work this out for yourself (problem 20, p. 1003).
The key point is that 	 can be expressed as a superposition of states
of de�nite energy 	 = c + c0 , and when the operatorOE works
on 	, it gives OE 	 = c + 4c0 . (And remember that by nor-
malization, jcj = jc0j = 1=

p
2.)

This is a general rule for calculating averages: for a state 	, the
average value for an observableO is h	 jO	 i . Because observables
are hermitian, this is the same ashO	 j	 i .

Discussion Questions

A Suppose that by rotating vectors we could change the results of
dot products. Explain why this would be very naughty, �rst by using an
example in which u � u = 1, and then, just to make it naughtier, one where
u � v = 0.

B Suppose that as a system evolved over time, inner products of
wavefunctions could change. As in discussion question A, give shockingly
naughty examples where initially we have h	 j	 i = 1 and h	 j� i = 0, but
later these inner products change.

14.6.3 Completeness

We have used math to back up our claim that distinguishable
states are orthogonal. Going in the opposite direction, suppose that
hujvi = 0. How can we then conclude that there exists some ob-
servableO that can distinguish them? There is no straightforward
mathematical reason why this must be true, but it would not make
sense physically to talk about two states that were utterly distinct
and yet indistinguishable by any experiment. We therefore take this
as a postulate.6

6Our statement of the completeness principle refers to taking a sum of wave-
functions. Because the physical motivation for the completeness postulate is so
appealing, physicists are willing to stretch the de�nition of the word \sum" in
order to make it true. The sum can be an in�nite sum, and in certain cases
we may even need to make it an integral, which is a kind of continuous sum.
For example, consider a one-dimensional particle in a box. A complete set of
observables for this system can be found by picking the energy operator alone.
Now suppose we throw a particle in the box, in such a way that its position is
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Linear algebra application
A basis is one of the most fun-
damental concepts in linear al-
gebra (p. 955). We don’t al-
ways need to choose a basis,
and if we do, the choice is ours
to make.

b / A beam of oxygen molecules,
with ‘ = 1, is �ltered through two
Stern-Gerlach spectrometers.

Completeness
For any system of interest, there exists a set of compatible observ-

ables, called a complete set, such that any state of the system can be
expressed as a sum of wavefunctions having de�nite values of these
observables.

The completeness postulate was discussed at a more elementary level
in section 13.4.3, p. 914.

The set of wavefunctions referred to above is called a basis. (The
terminology comes from linear algebra.) If we require normalization
and ignore the undetectable phase, then choosing a complete set
of observables is equivalent to choosing a basis. Therefore \choice
of basis" and \choice of a complete set of observables" are nearly
synonyms, so we will usually use the shorter phrase. Normally there
is more than one possible choice of basis. The choice from among
these possibilities is arbitrary, and nature doesn’t care which one
we pick. That is, there is no preferred basis. An example of this
principle is the fact that we habitually talk about \up" and \down"
for the spin of an electron, which we are free to do, although it would
be equally permissible to talk about left and right. Another good
example is the discussion of the double degeneracy of the quantum
moat on p. 911, where we were free to talk about a basis consisting
of either two standing waves or two traveling waves.

As an example of the completeness principle, we have seen in
example?? on p. ?? that for a rotor, the state with ‘ = 1 and ‘ x = 0
can be written as a sum of the states with‘ z = � 1 and ‘ z = 1. In
the language of the completeness postulate, we can express this as
follows. Let our system be the set of possible states of a rotor. The
observablesL and L z are compatible, and they turn out (although
we will not prove it here) to be a complete set of observables for
this system. The completeness postulate is satis�ed in this example
because, as shown in example??, p. ??, the state with ‘ x = 0 can
be expressed asj‘ z = � 1i =

p
2 + j‘ z = 1 i =

p
2.

Translating this scenario into a hypothetical real-world exper-
iment, suppose that, as in �gure b, we pass a beam of randomly
oriented oxygen molecules (referred to as an unpolarized beam)
through a Stern-Gerlach spectrometer that disperses them into beams
with ‘ x = � 1, 0, and +1. All three states are present, and in fact the
beam is split into three beams of equal intensity, 1=3 that of the orig-
inal beam.7 Then we throw away all but the molecules having‘ x =
0, and pass these through a second spectrometer, this one select-

equally likely to be anywhere in the box, i.e., its wavefunction is supposed to be
constant throughout the box. Ignoring normalization, this constant wavefunc-
tion can be expressed as an in�nite series in terms of the states of de�nite energy
as + 1

3 + 1
5 + : : : This kind of representation of a function as an in�nite

sum of sine waves is called a Fourier series.
7The equality of these three intensities is not obvious geometrically, but be-
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ing states according to their ‘ z. You can simulate experiments like
this using an app at physics.weber.edu/schroeder/software/
Spins.html . We have already found that the wavefunction of the
intermediate beam is equal to the sumj‘ z = � 1i =

p
2 + j‘ z = 1 i =

p
2,

so interpreting squares of amplitudes as probabilities we predict a
probability (1 =

p
2)2 = 1=2 that each particle will be measured to

have ‘ z = � 1, the same probability for � 1, and zero probability
for 0. As explored in discussion question C on p. 949, this doesnot
mean that the two beams that emerge from the second spectrometer
have de�nite values of both ‘ x and ‘ z; those two observables are not
compatible.

In most of the examples we’ve encountered so far, it has been
possible to think of the \wavefunction" as exactly what the word
implies: a mathematical function of x (and possibly also ofy, and
z), whose shape we visualize as a wave. The completeness principle,
however, does not assign any special role to the position operator,
nor does quantum mechanics in general. And there are cases where
we do not even have the option of resorting to the picture of a wave
that exists in space. For example, the intrinsic angular momentum
~=2 of an electron is not a possible amount of angular momentum for
a particle to generate by moving through space. In section 14.7.1,
p. 980, we will discuss a very simple quantum-mechanical system
consisting of an electron, at rest, surrounded by a uniform magnetic
�eld. In this example, the motion of the electron through space
is not even of interest, and a complete set of observables simply
consists ofL and L z (or s and sz, in notation that emphasizes that
we’re talking about intrinsic spin).

14.6.4 The Schr ¤odinger equation in general

This raises the question of what we mean by \the Schr�odinger
equation" in cases where nothing is being expressed as a function
of x. The basic idea of the Schr�odinger equation is that a parti-
cle’s energy is related to its frequency byE = hf , or E = ~! . In
the form of the time-dependent Schr�odinger equation that we have
discussed on p. 957,i~@	 =@t= � (~2=2m)r 2	 + U	, the quantity
on the right-hand side of the equation is just the energy operator
acting on the wavefunction. So to generalize this to cases where
the wavefunction isn’t expressed in terms ofx, we just make that
substitution:

i~
@	
@t

= OE 	.

This is as good a point as any to introduce a not-very-memorable
piece of terminology, which is that the energy operator in quantum
mechanics is called theHamiltonian , after W.R. Hamilton. There
is a classical version of the Hamiltonian, which is usually a syn-
onym for the energy of a system, although it turns out that there

comes more plausible if you consider the randomness of the unpolarized beam
as being de�ned by its having maximum entropy.
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are cases where it is not the same, e.g., when we adopt a rotating
frame of reference. In both classical and quantum mechanics, the
Hamiltonian is what determines the time-evolution of a system; in
quantum mechanics, this is because it is the Hamiltonian that oc-
curs in the Schr�odinger equation. Because the Hamiltonian occurs
so frequently, we will notate it as Ĥ rather than the more cumber-
someOE , where the hat is to remind us that it is an operator. A
similar notation can be used for other operators when it is easier to
write, e.g., ŝz rather than the clumsy Osz . In the hat notation, the
time-dependent Schr�odinger equation looks like this:

i~
@	
@t

= Ĥ 	.

An illegal energy operator example 14
We have pointed out on p. 966 some reasons to think that it would
be bad to have a quantum-mechanical observable whose eigen-
values were not real, i.e., one represented by a non-hermitian
operator (p. 972). Even worse things happen if we try to use a
non-hermitian operator for our energy operator, the Hamiltonian.
As the simplest possible example, consider a system consisting
of a particle at rest, and the Hamiltonian de�ned by

�H 	 = ik 	 ,

where k is a nonzero real constant with units of energy. That is,
the energy of the system is a constant value, which is the imagi-
nary number ik . This operator has a single eigenvalue, ik , which
is not real. The fact that it has a non-real eigenvalue is equivalent
to a statement that it is non-hermitian (problem 8, p. 999). If we
plug this in to the Schr¤odinger equation, we get i~@	 =@t = ik 	 ,
or

@	
@t

=
k
~

	 .

This differential equation is not hard to solve by the guess-and-
check method. A function whose derivative is itself (except for a
multiplicative constant) is an exponential. The solution is

	 = Ae(k=~)t ,

where A is a constant. This is bad. Very bad. If 	 is properly nor-
malized at t = 0, then it will not be normalized at other times. If k
is positive, then the total probability will become greater than 1 for
t > 0, which we could perhaps interpret as meaning that the par-
ticle is spawning more copies of itself. Almost as bad is the case
of k < 0, for which the particle exponentially vanishes into noth-
ingness like the Cheshire cat. Either behavior would violate the
principle of the unitary evolution of the wavefunction (p. 959).
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14.6.5 Summary of the structure of quantum mechanics

We can now summarize the logical structure of quantum me-
chanics using the following �ve principles.

1. Wavefunction fundamentalism: All knowable information about
a system is encoded in its wavefunction (ignoring phase and
normalization).

2. Inner product: Wavefunctions come equipped with an inner
product that has the properties huj�v + �w i = � hujvi + � hujwi
and hujvi = hvjui � .

3. Observables:In quantum mechanics, any observable is repre-
sented by a linear operatorO that takes a wavefunction as an
input and is hermitian, hOujvi = hujOvi .

4. Unitary evolution of the wavefunction: The wavefunction evolves
over time, according to the Schr�odinger equation i~@	 =@t=
Ĥ 	, in a deterministic manner. Because Ĥ is an observable,
the Schr�odinger equation is linear and alsounitary . Unitarity
means that hu(t)jv(t)i = hu(t0)jv(t0)i , so that probability is
conserved and information is never lost.

5. Completeness:For any system of interest, there exists a set of
compatible observables, called a complete set, such that any
state of the system can be expressed as a sum of wavefunctions
having de�nite values of these observables.

14.7 Applications to the two-state system
14.7.1 A proton in a magnetic �eld

As an application of the ideas discussed in section 14.6, let us
consider the example of a proton at rest in a uniform magnetic �eld.
We will �nd that this very simple example has surprising properties,
and also that it throws light on much more general ideas than would
be expected, given how speci�c the situation is. We discuss the
proton because the physics is then the physics of nuclear magnetic
resonance (NMR), which is the technology used for, among other
things, medical MRI scans.

Classically, the proton feels no magnetic force because it is at
rest, and also because the �eld is uniform (unlike the one in the
Stern-Gerlach experiment). Therefore we expect it to stay at rest.
Its energy is � m � B , and for the reasons discussed in sec. 11.2.4,
p. 689, the magnetic dipole momentm is proportional to the spin
angular momentum vector s, so that the energy can be broken up
into a sum of three terms asksxBx + ksyBy + kszBz, where k is
� 1=g times the proton’s charge-to-mass ratio.
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Application to MRI scans
In nuclear magnetic resonance
(NMR), which is the techno-
logical basis for medical MRI
scans, a very large DC mag-
netic �eld, � 3 T, is applied
to the sample using a super-
conducting magnet. Protons
in hydrogen atoms have their
spin states split in energy by by
� E = 2 " = k~. After � 1 s,
the protons reach a new ther-
mal equilibrium state in which
the probability of j #i and j "i
di�er by � 10� 5.

A brief radio-frequency pulse is
then applied at the frequency
! such that � E = ~! , so that
a radio photon has the correct
energy to cause a transition
between the two spin states.
Since there is a large num-
ber of protons, and they inter-
act with one another, their re-
sponse can be described semi-
classically. The magnetiza-
tion vector of the sample pre-
cesses in a complicated man-
ner, which can be a�ected by
the polarization and duration
of the pulse.

After the radio pulse has
stopped, the protons return
to equilibrium again, and this
changing magnetic �eld causes
induced electric �elds in a coil,
which picks up a signal at the
frequency ! . Spatial resolution
for imaging is accomplished by
adding a gradient to the mag-
netic �eld, amounting to a few
percent over a distance of one
meter, so that ! has di�erent
values for di�erent points in
space.

Quantum-mechanically, the components of the magnetic �eld
will act like ordinary numbers (since the �eld is static, and we
aren’t trying to describe its dynamics quantum-mechanically), but
the components of the angular momentum are observable properties
of the proton, to be represented by operators. There is not always a
foolproof procedure for translating a classical expression into some-
thing quantum-mechanical, but in this example it seems sensible to
imagine that the classical expression for the energy can be made
into a quantum-mechanical energy operator that is obtained simply
by substituting the components of the angular momentum operator
into the expression.

What we have determined so far is that the Hamiltonian Ĥ will
simply be a weighted sum of ŝx , ŝy , and ŝz, with the weighting
determined by the components of the magnetic �eld.

From our previous study of angular momentum in quantum me-
chanics, we know that a full description of our proton’s angular
momentum can be given by specifying the magnitude of the angu-
lar momentum, which is a �xed ~=2, and its component along some
arbitrarily chosen axis, say z. We have a statej "i which has eigen-
value sz = + ~=2, and a j #i with � ~=2. If the magnetic �eld is
parallel to the z axis, then the action of the Hamiltonian is easy to
de�ne in terms of these two states,

Ĥ j "i = " j "i and

Ĥ j #i = � " j #i ,

where to keep the notation compact we write" = k~=2, which is an
energy. The interpretation is that if there is no external magnetic
�eld ( k = 0), then the energies of these two states are the same (and
set to zero because we choose that as an arbitrary de�nition), while
in the presence of aBz the two energies become unequal. The pair
of states is \split" in energy by the �eld. Note that the above two
equations are su�cient to de�ne the Hamiltonian for all states, not
just for states in which sz has a de�nite value. This follows from
the completeness principle | a state having a de�nite value of, say,
sx can be written as some kind of linear combination of the form
� j "i + � j #i , and we then haveĤ = �" j "i � �" j #i .

Now suppose that the magnetic �eld is not parallel to the z
axis. One way to handle this situation would be simply to rede�ne
the coordinate system so that the z axis was back in alignment
with the direction of the �eld. But suppose that’s not convenient.
Then the Hamiltonian will have a di�erent form. But because the
Hamiltonian must be Hermitian (see p. 972), there is not much
freedom in choosing this form. It must look something like this:

Ĥ j "i = " j "i + f j #i

Ĥ j #i = f � j "i � " j #i .
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a / The ammonia molecule,
in states that are inverted relative
to one another.

Here the constant f is a complex number with units of energy. The
interpretation is that " tells us how much energy splitting we would
have had if the magnetic �eld had not had any x or y components,
while f brings in the e�ect of those components. We could go ahead
and work out the eigenvalues of this operator by writing down the
eigenvalue equation and solving it by brute force, but the result
is likely to seem less mysterious if we instead apply the following
physical argument.

Although f lies at some point in the complex plane with some
phase angle argf , such phase angles in quantum mechanics are not
directly observable. Since energiesare observable, it follows that the
two eigenvalues of energy can only depend on the magnitude off ,
not on its phase. By rotational invariance (sec. 3.4.2, p. 193), we also
know that these energies can only depend onjB j =

q
B 2

x + B 2
y + B 2

z ,
and in fact when the direction of the �eld is �xed they must be
proportional to jB j (not to, e.g., the cube of the �eld). We have
already interpreted " as being essentiallyBz, except for a constant
of proportionality, so it follows from units that the energies must be
of the form E = �

p
"2 + ( : : :)jf j2 = �

p
"2 + ( : : :)f � f , where (: : :)

represents a universal unitless constant, which turns out to be 1.
We therefore have for the energies the result

E = �
p

"2 + f � f .

Note that our earlier result of E = � " is recovered whenf = 0.

14.7.2 The ammonia molecule

I chose the example of the proton in a magnetic �eld in the
preceding section for ease of computation, but the treatment of the
general case wheref 6= 0 may not have seemed especially compelling,
since we would always have the freedom to align ourz axis with the
�eld, giving f = 0. But our results from that analysis are of much
greater generality. They do not depend on any facts about the
system other than the fact that it is a system with two states. To
see the full power and generality of this approach, we will apply it
to the ammonia molecule, NH3, shown in �gure a.

At ordinary temperatures, this molecule is likely to be rotating,
and its angular momentum will have some component about its
symmetry axis (the left-right axis in the diagram). Let’s say, for
example, that the angular momentum vector points to the right,
which we’ll say is the positivex direction. Then the two orientations
of the molecule shown in �gure a are distinguishable. In one, the
electric dipole vector (example 6, p. 580) points in the same direction
as the angular momentum vector, and in the other they point in
opposite directions.8 For a �xed angular momentum, we have a
two-state system, as in section 14.7.1.

8This argument shows that when L z 6= 0 we have two distinguishable states,
but it does not necessarily tell us anything about the converse. When L z = 0,
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Classically, the molecule’s moment of inertia is the same for ori-
entations a/1 and a/2, so we would expect there to be two states
with the same energy. We can always add an arbitrary constant to
the energies, so if they’re the same, we can just say they’re both
zero. Does this mean that quantum-mechanically, we simply have
Ĥ = 0? That would be boring. But this cannot be true, for the
following reason. According to the Schr�odinger equation, a state of
de�nite energy is a state that has a de�nite frequency, so it lasts
forever, just twirling its phase angle around in the complex plane at
a rate ! = E=~. So if state 1 were a state of de�nite energy, then ac-
cording to the Schr�odinger equation if we initially put the molecule
in state 1 it would stay in that state forever. But this cannot be
the case, because we know it is possible for the molecule to switch
from state 1 to state 2 by turning itself inside out like an umbrella
caught by a gust of wind. The possibility of this type of inversion is
not just an optional thing. Vibrations that ex the shape will exist
due to zero-point motion (p. 953). Even if inversion requires a lot
of energy, and the molecule doesn’t have that much energy, there is
at least some probability of having quantum-mechanical tunneling
from 1 to 2. If we prepare the molecule in state 1, and then observe
it at some later time, there is some nonzero probability of �nding
it in state 2. This is a contradiction, so our assumption of Ĥ = 0
must have been false.

So the Hamiltonian is not zero, but we already know the full
variety of forms that the Hamiltonian of a two-state system can have.
We only have a couple of parameters to play with, the numbers"
and f . We have " = 0 by symmetry, so the only possible form for
the Hamiltonian is this:

Ĥ j1i = f j2i

Ĥ j2i = f � j1i .

Because we can de�ne the statesj1i and j2i with any phases we like,
we are free to takef to be real, f � = f , although this implies a certain
relationship betweenthe phases ofj1i and j2i . If we visualize these
states as bell-shaped functions of anx coordinate describing the
position of the nitrogen relative to the plane of the hydrogens, then
it would be nice to have a phase convention such that where the tails
of the wavefunctions overlap, inside the barrier, they have the same
phase. This turns out to be the case whenf is real and negative,
so we will assume that from now on. Recycling our previous result
for the energies, we haveE = �

p
"2 + f 2 = � f . If the tunneling

probability approaches zero, then we expectf to go to zero, and
the energy splitting approaches zero, as we had expected classically.

are there two states, or only one? The analysis in this case is rather intricate,
and depends on the Pauli exclusion principle and the fact that the hydrogen
atoms are all identical, that there are three of them, and that their nuclei are
fermions. See Townes and Schawlow, Microwave Spectroscopy, 1955, pp. 69-71.
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Experimentally, we do observe these two states in ammonia. The
di�erence in energy is extremely small | e.g., for the state with
angular momentum 1~ it is about 9.8 � 10� 5 eV, so that if a photon
is emitted or absorbed in a transition between the states, it lies in
the microwave spectrum. This energy di�erence equals 2jf j, and its
smallness indicates that the tunneling probability is small.

Let’s �nd the states of de�nite energy for this system. For the
ground state, whose energy is�j f j, we need to look for a state of
the form jg.s.i = ( : : :)j1i + ( : : :)j2i such that Ĥ jg.s.i = �j f jjg.s.i =
f jg.s.i . If we don’t worry about normalization or an over-all phase,
we are free to take the �rst ( : : :) equal to 1, so that jg.s.i = j1i + � j2i ,
for some complex number� . We then have

Ĥ jg.s.i = Ĥ (j1i + � j2i )
= f j2i + � f j1i ,

and setting this equal to f jg.s.i gives � = 1, so that

jg.s.i = j1i + j2i .

The coe�cients ( : : :) that we set out to �nd are both equal to +1.
Their equal magnitudes tell us that the ground state is one in which
the molecule has anequal probability of existing in either inversion.
Since the two coe�cients are both positive, and we have de�ned j1i
and j2i such that their phases agree when they overlap inside the
barrier, this is a state of positive parity. The determination of the
excited state is left as an exercise, problem 10 on p. 1000.

From a classical point of view, we would think of the set of states

f j 1i , j2i g

as the natural way of describing the possible states of the system.
These two states are the ones that we can draw pictures of, a/1 and
a/2. But part of the structure of quantum mechanics is that there
is no preferred basis(p. 977), and there is nothing wrong with using
the ground state and �rst excited state to form the basis

f j g.s.i , jex.s.i g

instead. In the language of the completeness principle (p. 977),
one possible choice of a complete set of compatible observables for
this molecule is the set consisting of a single observable, the energy.
The f ground-state,excited-stateg basis just happens to be the one
associated with this particular observable. If the ammonia molecule
had just broken o� from some larger molecule, then it would be
oriented in a speci�c direction, and we would probably �nd it more
convenient to describe it in the f 1,2g basis.
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14.8 Energy-time uncertainty
14.8.1 Classical uncertainty relations

Consider the following classical system of analogies.

space x k � x� k & 1
time t ! � t � ! & 1

Here the quantity k = 2 �=� is called the wavenumber. The in-
equality � x� k & 1 is a kind of classical uncertainty relation that is
closely related to the Heisenberg uncertainty principle. Its classical
nature is immediately apparent because it doesn’t involve Planck’s
constant. If you look back at the argument given on p. 893 to jus-
tify the Heisenberg uncertainty principle, you will see that it carries
through equally well if we simply omit the quantum-mechanical in-
gredients and use it to put a bound on � x� k instead of � x� p.
Once we’ve established the bound on �x� k, the one on � x� p fol-
lows immediately becausep = h=� = ~k.

The second line of the table is in strict analogy to the �rst line.
A good practical example is the high-speed transmission of digital
data over transmission lines such as �ber-optic cables. Suppose that
we wish to send a string of 0’s and 1’s, and a 1 is to be represented by
a square pulse. If we want to transmit the data at high speed, then
we need the duration � t of this pulse to be short, perhaps in the
microsecond or even nanosecond range. This cannot be done if the
signal consists only of a single frequency. A signal that only contains
a single, pure frequency is just a sinusoidal wave that has existed
in�nitely far back in the past and will exist in�nitely far into the
future. Such a wave carries no information at all. Out frequency-
time uncertainty relation tells us that if the duration of a pulse is to
be, say, a microsecond, then the signal’s spread in frequency much
be at least on the order of 1 MHz. This is why we use the term
\bandwidth" to describe the speed of a communication channel.

14.8.2 Energy-time uncertainty

In a quantum-mechanical context, we haveE = ~! , so there is
an energy-time uncertainty relation,

� E � t & ~.

As with the Heisenberg uncertainty principle for momentum and
position, the symbol & means that we leave out a numerical factor,
which can only be precisely de�ned if we �x some speci�c statistical
de�nition of �, e.g., a standard deviation.

The interpretation of the energy-time uncertainty relation is a
little tricky, because although the classical analogy between space
and time is exact, the quantum-mechanical analogy breaks down.
This is because time in nonrelativistic quantum mechanics, unlike
position, is not an observable (example 9). Time in this theory

Section 14.8 Energy-time uncertainty 985



is just a universal parameter. The physicist Lev Landau liked to
tell his students that there was no energy-time uncertainty relation,
because \I can measure the energy, and look at my watch; then I
know both energy and time!" One good way of interpreting it is that
if there is a transfer of energy between two systems, then it relates
the uncertainty � E in the amount of energy transferred during the
duration � t of the interaction.

For example, suppose we wish to bounce a photon o� of a hydro-
gen atom in order to determine whether the atom is in its ground
state. This is not necessarily an easy thing to do by extracting what-
ever information we get from the reected photon, but the ground
state is orthogonal to the other states, so we are at least encour-
aged to believe that it is not theoretically impossible. But there is a
hard theoretical limit on how quickly we can make such a determi-
nation. The di�erence in energy between the ground state and the
�rst excited state is 1.6 � 10� 18 J, so we must use a photon with
an energy less than this amount, or else the act of observing the
atom may in fact destroy the property we were hoping to measure.
By the energy-time uncertainty relation, this implies that the mea-
surement process cannot be done in less than about 10� 15 seconds.
This example may seem impractical, but in fact computer memories
are starting to reach the level of speed and miniaturization at which
such fundamental constraints become relevant.

Mortality for hydrogen example 15
In atomic physics, when a photon is emitted or absorbed it is al-
most always in a wave pattern with angular momentum 1 (i.e., 1~)
and negative parity (example 10). Classically, this is the type of
radiation pattern that we would get from an electric dipole spin-
ning end over end, so we call it an electric dipole transition. Be-
cause the electromagnetic interaction has a symmetry between
left- and right-handedness (section 11.1.5, p. 679), this means
that an electric dipole transition can never cause a transition from
one state of an atom to another state with the same parity.

Now the ground state of the hydrogen atom has ‘ = 0 and is
therefore a state of positive parity. One of the �rst excited states,
referred to as the 2s state, also has these properties, and there-
fore it is impossible for the 2s state to decay to the ground state
by emitting an electric dipole photon. The happy atom proba-
bly believes that once it’s in the exalted 2s state, it can stay that
way forever. One way for it to be cheated of immortality is if it
undergoes a collision with another atom, but in some so-called
planetary nebulae (hot clouds of gas cast off by dying stars), the
density can be so low that collisions are very infrequent. In this
situation, the dominant process for decay of the 2s state can be
the simultaneous emission of two photons. An exact and rigorous
calculation of the rate of decay for this process is quite technical,
but a fairly reasonable estimate can be obtained by the following
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a / The Lissajous �gure x = cos t ,
y = sin 2t .

semiclassical argument based on the energy-time uncertainty re-
lation.

The typical rate of emission for a photon, when not forbidden by
parity, is R � 109 s� 1, i.e., it takes about a nanosecond. We can
think of the two-photon decay as an energy-nonconserving jump
up to some higher -energy state, with the emission of a photon,
followed by the emission of a second photon leading down to the
ground state. The �rst jump can happen because of the energy-
time uncertainty relation, which allows the electron to stay in the
intermediate state for a time t � h=E , which is on the order of
10� 15 s. The probability for the second photon to be emitted
within this time is Rt , so the rate for the whole two-photon pro-
cess is R2t � 10 s� 1. Considering the extremely crude nature
of this calculation, the result is in good agreement with the ob-
served rate of about 0.1 s� 1. The process is actually observed,
and contributes a continuous background spectrum in addition to
the discrete line spectrum when such nebulae are observed with
a spectrometer through a telescope.

A fundamental application of the energy-time uncertainty re-
lation is to the explication of what it means to measure time in
quantum mechanics. In example 9 on p. 969 we argued that time
is not an observable in quantum mechanics because time cannot in
general be measured by looking at a quantum-mechanical system:
many quantum-mechanical systems are too simple to function as
clocks. We can now see in more detail what \too simple" might
mean here. Microscopic systems, unlike macroscopic ones, are of-
ten encountered in a de�nite state of energy, such as the ground
state. Such a state has �E = 0 and therefore by the energy-time
uncertainty relation it has � t = 1 . In other words, the only time
evolution in such a system consists of the system’s over-all phase
twirling in the complex plane at a steady rate, but phase isn’t mea-
surable, so we can’t use this rotation like the hand on a clock. To
make a clock, we need, at a bare minimum, a system that is in a
superposition of two di�erent energy levels. We then have two in-
dependent phases. Although absolute phases are not measurable,
relative ones are, and for example when we measure a double-slit
interference pattern, that is exactly what we are doing: observing
(statistically) the di�erence between two phases. As a loose concep-
tual analogy, this is like the idea that a �gure-eight Lissajous pattern
has an identi�able feature where it crosses itself, the crossing being
like the tick of a clock.

14.9 Randomization of phase
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a / Spying on one slit in the
double-slit experiment.

14.9.1 Randomization of phase in a measurement

The energy-time uncertainty relation can help us to understand
one of the most puzzling issues in quantum mechanics, which is the
problem of measurement. What happens when we use a macroscopic
measuring device, which is well described by classical physics, to
observe a microscopic system, which is quantum-mechanical? How
do we reconcile these two seemingly incompatible descriptions of
reality when both appear to be in play simultaneously?

Consider an electron passing through a double-slit apparatus.
We have already considered the possibility of covering one slit (dis-
cussion question D, p. 873). Suppose instead that we carefully watch
one slit through a microscope, and see whether or not the electron
passed through it. If we could perform this observation without dis-
turbing the electron, then a paradox would arise. For if we haven’t
disturbed the electron, then there should still be a double-slit in-
terference pattern. But if we watch one slit, then half of the time
we should see that the electron did not go through it, and therefore
the slit’s existence is of no importance, and we can’t possibly get a
double-slit interference pattern.

To avoid this contradiction, it appears that nature must conspire
against us in such a way that observing the slit inevitably does
disturb the electron. The energy-time uncertainty relation explains
why this is so. Our observation of the electron is an interaction
between the electron and our macroscopic measuring device. This
interaction will presumably transfer some amount of energyE into
or out of the electron, and if our goal was to avoid disturbing the
electron, we would imagine that it would be best to makeE very
small. But the energy-time uncertainty � E � t & h relation tells us
that if this energy is to have a value that is con�ned to some small
range � E , then the time � t it takes for the interaction to occur
must be at least � h=� E . While the electron is being subjected to
this interaction, its phase is rotating around the complex plane like
ei!t = eiEt= ~. The total change in the phase angle� = E � t=~ is
uncertain becauseE is uncertain, so our observation will inevitably
change the phase by some random amount, which is uncertain by
an amount � � = � E � t=~, so � � & 1.

Thus is won’t actually help us if we make the interaction very
gentle, because the lengthening of the time has a compensating ef-
fect. Any slight alteration in the frequency will have more time to
accumulate into a big phase di�erence, and we still end up with a
phase uncertainty that is at least on the order of 1. Although we
haven’t stated our uncertainty relations with enough mathemati-
cal precision to state this lower bound with all the right factors of
2 and � , it turns out that � � � 2� . That is, any such observa-
tion will have the e�ect of completely randomizing the phase of the
thing being observed. In fact, macroscopic measuring devices nor-
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mally exceed the bounds set by the uncertainty relations by many
orders of magnitude, so there will typically be a vast amount of
overkill in this randomization. This is a general rule for reasoning
about quantum-mechanical measurements: they always completely
randomize the quantum-mechanical phase of the thing being mea-
sured. This provides a more physical justi�cation for our more ab-
stract mathematical proof in example 8 on p. 968 that phase is not
an observable.

In our example of the double slit, what will be the e�ect of this
randomization of the electron’s phase? In our usual description of
the double slit, we assume that the circular waves emerging from one
slit are in phase with those that come out through the other one,
so that the double-slit interference pattern has a maximum in the
center. But if, for example, one of the waves has its phase inverted,
then all the maxima of our interference pattern will become minima
and vice versa. If the phase is randomized, then the positions of the
maxima and minima are randomized as well, and thus if we try to
collect data on enough electrons to see an interference pattern, we
will not see maxima and minima at all.

One subtle question about this description is the following. The
randomization of the phase by the measurement appears to have
erased the information about the phase relationship between the
parts of the wave in the two slits. But how can this be, since one of
our principles of quantum mechanics (p. 980) is that time evolution
is always unitary, so no information is ever supposed to be lost? The
resolution of this paradox is that the phase information still exists,
but it has been taken away from the electron and owed out into
the observer and the environment. This is similar to the classical
paradox of what happens to the (classical) information written on
a piece of paper when we burn the paper: the information still
exists, and could in principle be reconstructed by observing all the
molecules and tracing their trajectories back in time using Newton’s
laws.

14.9.2 Decoherence

Starting around 1970, physicists began to realize that ideas in-
volving a loss of coherence, or \decoherence," could help to explain
some things about quantum mechanics that had previously seemed
mysterious. The classical notions of coherence and coherence length
were described in sec. 12.5.8, p. 815, and quantum-mechanical de-
coherence was briey introduced on p. 877.

One mystery was the fact that it is di�cult to demonstrate wave
interference e�ects with large objects. This is partly because the
wavelength � = h=p = h=mv tends to be small for an object with
a large mass. But even taking this into account, we do not seem
to have much luck observing, for example, double-slit di�raction
of very large molecules, even when we use slits with appropriate
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dimensions and a detector with a good enough angular resolution.

In the early days of quantum mechanics, people like Bohr and
Heisenberg imagined that there was simply a clear division between
the macroscopic and microscopic worlds. Big things and small things
just had di�erent rules: Newton’s laws in one case, quantum me-
chanics in the other. But this is no longer a tenable position, because
we now know that there is no limit on the distance scales over which
quantum-mechanical behavior can occur. For example, a commu-
nication satellite carried out a demonstration in 2017 in which a
coherence length of 1200 km was demonstrated using photons.9

The insight about decoherence was the following. Consider the
most massive material object that has so far been successfully dif-
fracted through a grating, which was a molecule consisting of about
810 atoms in an experiment by Eibenbergeret al. in 2013.10 While
this molecule was propagating through the apparatus as a wave,
the experimenters needed to keep it from simply being stopped by
a collision with an air molecule. For this reason, they had to do
the experiment inside a vacuum chamber, with an extremely good
vacuum. But even then, the molecule was being bombarded by
photons of infrared light emitted from the walls of the chamber. The
e�ect of this bombardment is to disrupt the molecule’s wavefunction
and reduce its coherence length (p. 816).

b / A large molecule such as
the one in the Eibenberger ex-
periment is represented by its
wavepacket. As the molecule
starts out, its coherence length,
shown by the arrows, is quite
long. As it �ies to the right,
it is bombarded by infrared pho-
tons, which randomize its phase,
causing its coherence length to
shorten exponentially: by a fac-
tor of two in the second panel,
and by a further factor of two in
the �nal one. When the packet
enters the double slit, its coher-
ence length is on the same order
of magnitude as the slits’ spacing
d , which will worsen but not en-
tirely eliminate the observability of
interference fringes. (This is only
a schematic representation, with
the wavepacket shown as being
many orders of magnitude bigger
than its actual size in relation to
the vacuum chamber. Also, the
real experiment used a re�ecting
grating, not a transmitting double
slit.)

This causes an e�ect similar to the one in the situation illus-
trated in �gure a, where we spy on one slit of a double-slit appa-
ratus. The microscope would operate by bouncing photons o� of
the electron, and the result is to disrupt the coherence of the elec-
tron’s wavefunction, so that the coherence length is no longer as
large as the distance between the slits. The infrared photons in
the Eibenberger experiment were not introduced intentionally, but

9Yin et al., arxiv.org/abs/1707.01339
10 arxiv.org/abs/1310.8343
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they were still bouncing o� of the molecules and producing a sim-
ilar decrease in the coherence length. This decoherence e�ect was
the reason that the experiment was limited to molecules of the size
they used. Even though the molecules took only about 400 nanosec-
onds to y through the apparatus, there was a signi�cant amount
of decoherence. A larger molecule would have been a bigger target
for photons and would have undergone decoherence more quickly,
making interference unobservable.

As in the example of spying on one slit of a double-slit experi-
ment, the question arises of what has happened to the phase infor-
mation that appears to have been erased by decoherence, violating
unitarity. The resolution is the same (p. 989): the information has
owed out into the environment, but is no longer in a form in which
it is practical to recover it.

14.10 Quantum computing and the no-cloning
theorem

Computers and information transmission systems such as the inter-
net are currently implemented as classical devices. For example, the
wavelengths of the electrons that carry signals in a computer chip
are currently orders of magnitude shorter than the size of the logic
gates, so that wave e�ects such as di�raction and interference are
not important (problem 22, p. 934). Even if the current devices
such as silicon chips and �ber-optic cables could simply be scaled
down to sizes comparable to the electrons’ wavelengths, quantum
e�ects would at some point simply make them start breaking down
or behaving unreliably.

It is possible, however, to design qualitatively di�erent devices
in which information and signals are intentionally manipulated in an
explicitly quantum-mechanical fashion. This is the frontier known
as quantum computing. In a quantum computer, the basic unit of
information is not the classical bit but the quantum bit or qubit. A
qubit can exist in a superposition of the 0 and 1 states, with a well
de�ned phase, e.g., 	 0 + 	 1 is a di�erent state than 	 0 � 	 1 or
	 0 + i 	 1. Furthermore, one qubit can have its state entangled with
another’s. For example, 	 01+	 10 describes a state in which we have
two bits, neither in a de�nite 0 or 1 state, but which are guaranteed
to add up to 1. That is, if one is true, then the other is guaranteed
to be false. It has been shown that some problems that are hard
for classical computers are more tractable for a quantum computer.
For example, there is a known quantum computing algorithm that
is capable of e�ciently factoring large integers, and when this is
eventually implemented in a practical device, it will have the e�ect
of breaking the cryptographic algorithms that you currently use for
online privacy and security, since the security of those algorithms is
predicated on the assumption that factorization is hard. This would
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be a disaster for online economic activity and could have e�ects such
as unmasking political dissidents.

A di�erent application, and one that is easier to explain, is that
quantum computing makes it possible in theory to make copy-proof
information. This would not be useful to Hollywood studios trying
to prevent copying of their movies, since the images have to pass
through classical devices anyway in order to be displayed, but it
means that one might be able to send private information through
a quantum internet in such a way that it could not be copied by
snoops, even in theory. In contrast, current classical methods of
encryption are designed to allow eavesdropping on an information
packet as it hops across the internet, but to make the copy useless
to prying eyes because it cannot be decoded.

The theoretical key to this application of quantum computing is
the counterintuitive no-cloning theorem, which states that it is not
possible to make a copy of an unknown quantum state.11 To see why
this works, suppose that we implement a qubit using the spin 1/2
of a silver atom, with the convention that the 0 state is represented
by sx = � 1=2 and 1 by sx = +1 =2. If you provide me with an
atom that you have prepared, then it might seem straightforward,
at least in principle, for me to copy its state. I can shoot it through
a magnetic spectrometer, as in the Stern-Gerlach experiment, and
measure its sx . Then I prepare another silver atom in the same
state. What’s the problem?

The problem is that if the state of the atom is truly unknown to
me, then I have no way of knowing that it is actually in one of the
two states sx = � 1=2 and sx = +1 =2. It could instead be in some
superposition of these, such as 	sx = � 1=2=

p
2 + i 	 sx =+1 =2=

p
2, with

a 90-degree phase angle between the two components. Then when
I send your atom through the spectrometer, the world becomes one
in which both the spectrometer and my brain are in a superposition
of the two states. In one of these worlds, I then go ahead and pre-
pare my copy-atom in the sx = � 1=2 state, and in the other one I
set it up as a +1=2. You could say that my copy-atom is, like the
original, in a superposition of the two sx states, but there is no rea-
son to think that it will be the same superposition, with the same
90-degree phase angle. In fact, by the argument on p. 987 we know
that it is not possible by any measurement to extract this phase
information and convert it into classical information. Furthermore,
our �nal result is not really as simple as a copy-atom in some un-
known superposition of the two sx states. It is a silver atom whose
spin is correlated with the state of the original, but also correlated
with the state of the spectrometer and the state of my brain.

The impossibility of copying an unknown quantum state is en-

11 The prohibition actually only applies to making a copy that can be separated
from the original. For the complete statement of this, see p. 996.
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forced by nature in full generality, not just by the speci�c mecha-
nisms described in the arti�cial scenario described above. To see
why, consider what would happen to the state of the \blank" atom
on which we had hoped to impose the copied state. Its state would
have been overwritten, but this would imply a loss of information,
which is forbidden by the unitarity postulate of quantum mechanics
(p. 959).

The no-cloning theorem would seem to severely limit the prac-
ticability of quantum computing. When you run a program on a
classical computer, the very �rst step to be performed by the oper-
ating system is to copy the program’s code and data from storage
into random-access memory. If a quantum computer can’t copy any-
thing, then how do we perform this initial step? But the no-cloning
theorem doesn’t actually forbid copying any quantum state | it
forbids copying an unknown state. Going back to the example of
the silver atom, imagine that rather than presenting me with a sil-
ver atom in a completely unknown quantum state, you give me a
solemn promise that it will be either in the state sx = � 1=2 or the
state sx = +1 =2 | not some superposition of these. Then if you
trace back through the logic of the scenario, you will �nd that there
is absolutely nothing preventing me from making an accurate copy.

Once the software on a quantum computer starts running, its
qubits will certainly start going into superpositions of the 0 state
and the 1 state. By the no-cloning theorem, these cannot be copied
from one memory location to another, overwriting the previous con-
tents of the target location. But that simply isn’t how quantum
computing works. Rather than attempting to copy, erase, and over-
write bits as in a classical computer, the software is designed to cre-
ate complicated correlations between the di�erent bits. This model
of computing is not necessarily better or worse over all than classi-
cal digital computing, but it di�ers from it as much as an iPhone’s
model of computing di�ers from that of a slide rule.

When a classical computer such as a cash register or phone is
done with its computation, we have to �nd out the result through
an output such as a paper tape or LCD screen. These are classical
devices. If a quantum computer is to produce a result for use by
humans, then it will also need to send its output through a clas-
sical device. We might hope to be able to convert the quantum
information faithfully into classical information. But we can prove
based on the no-cloning theorem that such a conversion will always
be \lossy" | will always involve a degradation of the information.
A lossless conversion, such as a unit conversion, is one that can be
done as a round-trip, e.g., 1 m! 100 cm ! 1 m, with the �nal
result being identical to the original. If we could completely encode
qbits into bits, then we could make a second copy of the bits and
violate no-cloning by converting back to qbits. This is a contradic-
tion, so we conclude that lossless conversion of classical information
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to quantum information is impossible.

14.11 More about entanglement
A basic di�erence between classical computing and quantum com-
puting is that qubits can be entangled with each other. We’ve only
discussed entanglement briey in sec.13.2.4, p. 874, where the basic
idea was that either Alice or Bob could detect a certain photon,
but not both. Alice and Bob’s states were entangled, as were the
macroscopic diamonds in the 2012 real-world experiment described
on p. 878. More generally, what is entanglement?

Entanglement is the opposite of separability (sec. 14.5.2). To
see what is meant by this statement, consider �gure a. In a/1, we
have the function 	 1 = sin x sin 4y. This could be a two-dimensional
particle in a box, with a certain amount of momentum in the x direc-
tion, and four times that momentum in the y direction. It is because
the Schr�odinger equation for the particle in a box is separable inx
and y that we can write down this wavefunction by multiplying two
di�erent one-dimensional wavefunctions. In �gure a/2, 	 2 is like 	 1
but with x and y interchanged, while a/3 shows the superposition
	 3 = (	 1 + 	 2)=

p
2.

a / States of a particle in a box
that are separable in terms of px
and py (1 and 2) and entangled
(3, a superposition of 1 and 2).

From a fancier theoretical point of view, we could say that this
system, which seems like a single thing (the particle), is actually
built out of two subsystems. One subsystem is the motion in the
x direction, and the other is the y. The fact that the Schr�odinger
equation is separable can be interpreted as being because thex and
y motion are independent of one another. Exactly the same thing
would happen if this were a classical pool ball on a square table. Its
x and y motion don’t a�ect each other, and, e.g., if the ball hits the
right-hand cushion and has itsx momentum reected, that doesn’t
change its y momentum. It’s as if the pool ball in two dimensions
were really two di�erent beads, one sliding along a wire parallel to
the x axis and the other sliding up and down. In either the classical
case or the quantum-mechanical case, we have built a composite
system out of two independent subsystems.

In an example like 	 1, it is possible to assign a de�nite state to
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the subsystems: continuing to ignore units, we can writepx = � 1
and py = � 4. The state with wavefunction 	 2 has the same energy
as 	 1, and again the subsystems have a de�nite state,px = � 4 and
py = � 1.

But for the superposition 	 3, this is no longer true. If we mea-
sure either px or py for this state, we may get either � 1 or � 4, with
equal probability. We say that this state is entangled in the same
way that Alice and Bob were entangled on p. 875. Neither Bob nor
Alice is in a de�nite state of I-saw-a-photon or I-never-saw-a-photon.
However, if we ask Bob whether he saw a photon, and he says yes,
then we gain information about Alice: that she didn’t see a photon.
Similarly, if we measurepx for the particle in state 	 3 and get � 4,
then we gain information about py : we know that it is � 1.

Because separable states are the simplest things we can make
by putting together subsystems like legos, it’s convenient to have a
notation for them. In the angle-bracket notation, all of the following
are possible ways that people might notate a state like 	1:

j1, 4i or j1ij 4i or j1i 
 j 4i

The cross with a circle around it, 
 , doesn’t really indicate multipli-
cation. It’s more like a punctuation mark or a conjunction, meaning
\and also," as in, \I’ll have the eggplant, and also a beer." It’s called
a tensor product, which makes it sound scary.

To show the generality of the idea of entanglement, let’s consider
an example from particle physics. The� 0 is a particle that partic-
ipates in strong nuclear interactions, and therefore can be created
in nuclear reactions. It’s known as a pion. There are other types
of pions. The � 0 is the only electrically neutral one, hence the su-
perscript 0. All pions are unstable, which is why we need to create
them in reactions rather than looking for them in rocks and trees.
The � 0 has a half-life of only 10� 16 s, and one of the ways in which
it can decay is into an electron and a positron (antielectron),

� 0 ! e� + e+ .

You can verify that charge is conserved in this reaction. In the
frame of reference where the pion is initially at rest, the speeds of
the electron and positron are �xed by conservation of energy and
momentum, so there is not much that is interesting to measure about
them other than their spins. The pion has zero spin, which makes
it somewhat unusual in the world of particle physics. If we assume
as well, for simplicity, that the electron and positron don’t have
any orbital angular momentum, then by conservation of angular
momentum, the spin-1/2 of the electron must be in the opposite
direction compared to that of the positron.

The electron and positron y o� in opposite directions due to
conservation of momentum, and they could be detected by two dif-
ferent particle detectors lying at macroscopic distances from the
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b / The decay of a neutral
pion is detected through its decay
products.

c / An attempt to measure Lx
and Lz simultaneously.

place where the decay happened, as in �gure b. Although separated,
they are entangled. Suppose each of the detectors is capable of de-
tecting the component of the spin along az axis that is de�ned by
the orientation of the detector itself. For example, the detector could
in principle be a Stern-Gerlach spectrometer (sec. 14.1, p. 947), al-
though in practice some other, more e�cient method would be used.
If one detector measuressz = +1 =2, then the other is guaranteed
to seesz = � 1=2, because anything else would violate conservation
of angular momentum. That is, the wavefunction of the system is
of the form

	 = cj "#i + c0j #"i ,

where normalization requires that c2 + c02 = 1. If we had some way
to point the pion in a certain direction before it decayed, or produce
it so that it was pointed in a certain direction, then perhaps we could
have arranged things so that one of the two possibilities, sayj "#i ,
was more likely. But the pion has spin 0, and a spinless particle is
like a perfectly smooth and featureless ping-pong ball; there is no
way to impose, de�ne, or measure an orientation for it. Therefore
by symmetry we havec2 = c02. For example, we could havec and c0

both equal to 1=
p

2, or c = i=
p

2 and c0 = � 1=
p

2. The states j "#i
and j #"i are separable in terms of the two spins, but 	 is entangled.
In the state 	, neither spin has a de�nite value, but measuring one
spin determines the other spin.

In quantum computing, once a quantum computer has started
running, all of its qbits will in general be entangled with one an-
other. That means that if we read out one qbit, then later read-
outs of other qbits will have results that are correlated with what
we got when we read out the �rst one. With classical information,
we can always do things like splitting a book up into chapters, or
distributing a long movie on two DVDs. That doesn’t always work
for a quantum computer. It might work if part of the data was sep-
arable from another part, but we would need a computer program
to scan through the data and �gure out whether this was in fact
possible. This is called the separability problem, and unfortunately
it is known to be intractable.

The no-cloning theorem described on p. 992 is only a prohibi-
tion on making a separablecopy of an unknown state. To see why,
consider an experiment like the one in �gure c, in which we set up
the detectors so that their spin-detecting axes are in perpendicular
orientations. Say one detector measures the spin of the electron
along the x axis, while the other measures the positron’sz spin.
Now it seems that we can infer simultaneous values of bothL x and
L z for each particle, but that is impossible becauseL x and L z are
incompatible observables (p. 913). Well, suppose that we measure
the electron’s L x �rst, and then the positron’s L z. This is actu-
ally equivalent to measuring � L x for the the positron, and then L z
for the positron. No paradox arises, because one of the measure-
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ments will inevitably have changed the positron’s spin. Going back
to the version of the experiment using the entangled electron and
positron, the same thing happens. For example, measuring the elec-
tron’s spin has the ability to change the positron’s spin, because
they’re entangled. The no-cloning theorem cannot possibly prohibit
making entangledcopies, because then it would forbid entanglement
itself. Only making separablecopies inevitably leads to paradoxes.
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Problems
The symbols

p
, , etc. are explained on page 1004.

1 Nearly all naturally occurring oxygen nuclei are the isotope
16O. The extremely neutron-rich isotope 22O has been produced in
accelerator experiments, but only with great di�culty, and little is
known about its properties. The only states that have been observed
and assigned reliable spins are the ground state, with spin 0, and
an excited state with spin 2 and an excitation energy of 3.2 MeV.
The excited state was detected by observing gamma rays for the
2 ! 0 transition. On the hypothesis that the spin-2 excited state
is a rotation, predict the gamma-ray energy that experimentalists
should expect from the 4! 2 transition in the same rotational band.

p

2 For vectors in two dimensions, which of the following are
possible choices of a basis?

f x̂g f x̂ , ŷg f ^� x , x̂ + ŷg f x̂ , ŷ , x̂ + ŷg

. Solution, p. 1043

3 (a) Consider the set of vectors in two dimensions. This set P
is a vector space, and can be visualized as a plane, with each vector
being like an arrow that extends from the origin to a particular
point. Now consider the line ‘ de�ned by the equation y = x in
Cartesian coordinates, and the rayr de�ned by y = x with x � 0.
Sketch ‘ and r . If we consider ‘ and r as subsets of the arrows in P,
is ‘ a vector space? Isr ?
(b) Consider the set C of angles 0� � < 2� . De�ne addition on C by
adding the angles and then, if necessary, bringing the result back into
the required range. For example, ifx = � and y = 3 �= 2, then x+ y =
�= 2. Thus if we visualize C as a circle, every point on the circle has
a single number to represent it, not multiple representations such
as �= 2 and 5�= 2. Suppose we want to make C into a vector space
over the real numbers, so that elements of C are the vectors, while
a scalar � can beany real number, not just a number from 0 to 2� .
Then for example if � = 2 is a scalar and v = � is a vector, then
�v = 0. Find an example to prove that C is not a vector space,
because it violates the distributive property � (v + w) = �v + �w .

. Solution, p. 1043

4 In the SI, we have three base units, the kilogram, the meter,
and the second. From these, we form expressions such as m=s to
represent units of velocity, and kg�m=s2 for force. Show that these
expressions form a vector space with the rational numbers as the
scalars. What operation on the units should we take as the \ad-
dition" operation? What operation should scalar \multiplication"
be? . Solution, p. 1043
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5 In problem 23 on p. 934, you showed that a wavefunction of
the form

	 0(x) = e� x2=2

was a solution of the Schr�odinger equation for the quantum har-
monic oscillator in one dimensions. (We ignore units, and the factor
of 1/2 in the exponent is just a convention.) It represents the ground
state. The wavefunction of the �rst excited state is

	 1(x) = xe� x2=2,

with the same value ofb.
(a) Show that these states are orthogonal in the sense de�ned on
p. 972.
(b) What is an observable that would distinguish them?

6 (a) When an excited state in a nucleus undergoes gamma de-
cay, the half-life depends on a variety of factors, but a fairly typical
value would be about 1 ns. Find the uncertainty in energy imposed
by the energy-time uncertainty relation, and compare with a typical
excitation energy of 1 MeV.
(b) Some very neutron-rich nuclei are unstable with respect to emis-
sion of a neutron, and in these cases the half-life is typically on the
order of 10� 21 s. Carry out an estimate as in part a.

7 As you might have guessed from the equations given in problem
5, the mth excited state of the one-dimensional quantum harmonic
oscillator has a wavefunction of the form

	 m (x) = Hm (x)e� x2=2.

Here Hm is a polynomial of order m, and Hm is an even function if
m is even, odd ifm is odd. Given these assumptions, it is possible
to �nd 	 2 simply from the requirement that it be orthogonal to 	 0
and 	 1, without having to solve the Schr�odinger equation. Find H2
by this method. (Don’t worry about normalization or phase.) Hint:
Near the end of the calculation, you will encounter integrals of the
form

R1
�1 xm e� x2 dx. This can be done using software, or you can

use integration by parts to relate this integral to the corresponding
integral for m � 2.

p

8 In example 14 on p. 979, we de�ned a very naughty energy
operator

Ĥ 	 = i 	.

Show that it is not hermitian, by directly using the de�nition on
p. 972.
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9 This problem refers to the analysis of the ammonia molecule
in sec. 14.7.2, p. 982. (a) The bond lengths in this molecule are on
the order of 0.1 nm. Use this fact to estimate the moment of inertia
for rotation about the symmetry axis, and verify that states with
L z > 0 are likely to be populated at room temperature.
(b) The original 1955 paper by Townes and Schawlow on the mi-
crowave spectroscopy of ammonia detected about 55 lines lying be-
tween 17 and 29 GHz. Each of these corresponds to a certain value
of L and L z. Since there are many lines crowded together in this
region of the spectrum, the issue arises of whether the resolution of
the experiment will be su�cient to distinguish them. One of the
factors limiting the resolution is that the molecules of ammonia gas
have velocities that are random and randomly oriented, and this
causes random Doppler shifts in the lines. Estimate the Doppler
shifts at room temperature and determine whether or not they are
likely to cause problems.

10 This problem refers to the analysis of the ammonia molecule
in sec. 14.7.2, p. 982. (a) The text constructs the ground statejg.s.i ,
which has energy�j f j = f . Use the same method to �nd the excited
state, which has energy +jf j = � f .
(b) Verify that these two states are orthogonal.
(c) Find normalized versions of the two states.

11 Consider the wavefunctions 	 1 = and 	 2 = for a par-
ticle in a one-dimensional box. Suppose we have the superposition
	 = A(2	 1 + 	 2).
(a) If 	 is to be properly normalized, what is jA j?

p

(b) Sketch the wavefunction.
(c) Suppose you can measure the position of the particle very ac-
curately. What is the probability that the particle will be found in
the left half of the box?

p

(d) Instead of measuring position, suppose you measure the energy
of the state. What is the probability that you’ll measure the ground
state energy?

p

(e) Suppose that the wavefunction had been � = A(2	 1 � 	 2).
Which of your answers to parts a-d would remain the same, and
which would change? (You need not redo the work for the ones that
would change. Just give your reasoning as to whether they would
or would not.) [Problem by B. Shotwell.]
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