Syllabus for Physics 221, fall 2017 Ben Crowell, Fullerton College

prerequisites

The prerequisite is Math 150 with a grade of C or better. The corequisite is Math 151.

office hours

Dr. Shotwell and I will be doing our office hours cooperatively, so each of us is available to help the other's students. The office hours listed below will be in room 415-P (not our offices). In the list below, the times marked with asterisks are Dr. Shotwell's: M 9:30-10, Tu 9-10, 12-1*, 4:30-5:30, W 9-10, Th 9-10, 12-1*, 4:30-5:30, 4:40-7:10*. I'm also usually available in my office (411-14) in the early mornings, and by appointment on Tuesday and Thursday afternoons. I urge you to pick at least one of these office hours to come to every week as part of your habitual schedule. When you show up to my office hours for help with homework, I expect you to bring both the book and your own copy of your reading notes (see below).

web page

www.lightandmatter.com/area3phys221.html To e-mail me, use your Spotter account.

required materials

The text is *Mechanics*. Printed copies are available at the bookstore, and you also have the option of downloading the book from the class's web page. You will also need to download the lab manual from the class's web page and print it

You will need a cheap calculator, two bound lab notebooks (either $10 \times 7\frac{3}{4}$ -inch or $9\frac{3}{4} \times 7\frac{1}{2}$ -inch) with graph paper pages (across from the colored pens in the bookstore), a metric ruler, and a protractor. You can use a dictionary on exams, but it has to be a printed dictionary, not an electronic one.

getting started

Here's a quick summary of the things you need to do by the second class meeting:

- 1. Get everything listed under "required materials" above. Download and print the lab manual. The downloads are linked to from the class's web
- 2. Read this syllabus.
- 3. Consult the schedule on page 4. Do the listed reading and the homework problems. Take notes on the reading, and print two copies of them.
- 4. If you don't already have e-mail, get an account.

grading

Grades will be determined as follows:

homework	131 problems @ 1 point each	131
reading quizzes	47 questions @ 2 point each	94
reading notes	23 @ 1 points each	23
check-off labs	10 @ 10 points each	100
lab writeups	5 @ 20 points each	100
prelabs	9 @ 2 points each	18
exams	3 @ 200 points each	600

points	grade
80%	Ā
69%	В
80% 69% 58%	C
47%	D

reading notes

I'll maintain a folder for you containing your notes on the reading. These are the notes you get to use on the exams. You should do the notes on a computer (for ease of revision), and do them after you read, not while reading (so that you know what ended up being the main points).

On any date when reading is assigned, you should be prepared for an open-notes quiz, and print out an extra copy of your notes on the reading; you'll turn in the copy, and I'll add it to your folder. It has to be a copy, because you need the original for your own use in studying and problem solving. I expect you to bring

your own copy of your notes to school so that, e.g., we can refer to them together if you're getting help in my office hours. I will not accept hand-written notes.

Your notes need to be entirely in your own words; stating everything in your own words is a good way to test and consolidate your own understanding. Cutting and pasting from the book would be a form of cheating on exams (because the exams are not open-book), and would also be plagiarism if the copied material wasn't properly attributed.

Shorter is better. The laws of physics are fundamentally simple. I would suggest limiting yourself to no more than quarter of a page per chapter. By the end of the semester, the simple underlying structure of the material will have become more and more obvious to you, and I think you should be able to go back over your notes and edit them down to no more than about a page total. It's not against the rules for your notes to be too long, but it's not smart, either; long notes usually indicate that you're not distinguishing fundamental principles from trivia, or that you're making futile efforts to write a cookbook of problem-solving techniques, which is a self-defeating way to approach problem solving. If it feels too scary to walk into an exam with short notes, I suggest making a separate long version as a security blanket, but sealing them shut with a big binder clip to remind yourself that using them is probably a mistake, indicating that you aren't working from basic principles.

Google Docs for note-taking

For note-taking, I recommend that you use Google Docs, docs.google.com, which makes it easy to do equations. It works in any web browser, and you don't have to install any software. To do an equation, go to the Insert menu and choose Equation. You can then type in your math. A toolbar also comes up, just above the top of the page, with symbols in it like square roots. I found the toolbar confusing when it came to doing exponents; the easiest way to do it is to enter, e.g., x^2 for x squared. Printing works, but is a little awkward and ugly. A PDF file pops up, with your equations rendered at low resolution. You then have to print the PDF file (i.e., you have to do two print commands in order to get the output to actually go to the printer).

Spotter

Spotter is computer software I've written to help you check your answers to homework problems. It can check both numerical answers and symbolic ones. Having Spotter helps you more than having answers in the back of the book, because it is programmed to give you helpful pointers. If you put in an wrong answer that I've anticipated, it will explain why it's wrong. If your answer doesn't make sense in terms of units, it will tell you that. If you get a wrong answer, you can redo the problem and put in the right answer later for full credit.

Problems that are underlined on the homework page of the syllabus have purely mathematical answers, and are in Spotter. To get credit for an online homework problem, you need to enter a correct answer in Spotter, and also turn in your written calculations and explanations along with the rest of the homework. What I'm really trying to do here is get you to come to my office hours and get help if you can't get the right answer — Spotter helps you by letting you know whether you have the problem right before you turn it in.

You don't need to install the software; you just use it through a web browser. Start from the class's web page, then click on the "homework" link to the class's Spotter page. Once you're in Spotter, make sure to log in, or else you won't get credit for your work! Once you're logged in, all your answers will be recorded.

When using Spotter, you have to be careful about the notation you use for inputting mathematical expressions. Spotter is designed to allow you to use something resembling normal human mathematical notation, as opposed to the notation used in computer programs. However, human math notation is designed for humans, not computers, and you need to learn a few things about how to type your expressions in a form that Spotter will interpret correctly.

First, everything you type will be smashed down to one line of text, eliminating the superscripts and subscripts. For example, a variable name with a subscript, like x_1 , is entered as x_1 . Since there are no superscripts, you have to enter exponents using the $\hat{}$ symbol (shift-6), e.g., x_1^2 becomes x_1^2 . You can enter a square root as either sqrt(x) or x_1^2 . There is no way to enter the times symbol, x_1^2 , without confusing the computer and making it think you meant the variable x_1^2 , so in scientific notation you should simply leave a space where you

would normally put the times symbol, e.g., 5×10^6 becomes 5 10⁶. Don't try to enter this as 5e+6; that's what a lot of computer software would want, but Spotter is trying to interpret everything as normal human notation, so it will think you meant 5e + 6, where e is a variable.

Human languages, including human math notation, are ambiguous. Use parentheses liberally to make your meaning clear. There are two main situations where you need to watch out. First, arguments to functions: $\sin 2x$ will be interpreted as $(\sin 2)(x)$; if you intended $\sin(2x)$, you should have entered $\sin(2x)$. Second, the bottom of fractions: 1/3c will be interpreted as (1/3)c, so if you want $\frac{1}{3c}$, you need to enter 1/(3c).

As you type your answer, the computer will display a rendering of it into "real" human math notation so that you can see how your input is being interpreted. If you're using this feature in a browser such as Internet Explorer that has poor math support, it will be slow, especially the first time you use it on a particular computer.

academic honesty policy

In cases of serious academic dishonesty, I will assign a zero on the work, and I will also pursue action at the college level, which may result in penalties such as suspension or expulsion.

Serious academic dishonesty includes cheating on an exam, or turning in homework that is plagiarized from my solutions.

I will also assign a zero in cases where two students turn in homework or lab reports that contain identical or nearly identical work. A good rule of thumb is that if A is helping B, only B's paper should be out, and the pen should be in B's hand.

labs At the end of the first lab in the lab manual, there is information about the organization of labs. Most labs have prelab questions, which you're expected to turn in on a piece of paper (not in a lab notebook) at the beginning of lab.

If you miss a lab, you can only make it up in one of my other lab classes over the rest of the week, and it is still due at the same time it's due for everyone else. If you want to make up a lab, email me, and I'll coordinate with the physics technician.

drops I will drop you under any of the following conditions:

- You miss any lab or lecture during the first two weeks without contacting me in advance by e-mail. If I don't receive any written work from you, I will consider that the same as an absence on that day.
- You don't turn in two consecutive homework assignments during the first two weeks. You don't need to get any problems right in order to fulfill this requirement, but you do need to show some attempt at a solution for at least some problems on each assignment. It's not enough to write "I don't know how to do this problem," but it is enough if you write, "I tried to do this problem using the equation $v^2 = 2ax$, but that didn't work because I couldn't figure out how to get x."
- You miss an exam without contacting me in advance by e-mail.
- Over a period of seven consecutive days, you don't turn in any homework papers or quizzes, and don't complete all the lab work (participating in lab, and turning in written lab work when it's due).

Schedule for Physics 221, fall 2017

		read ch.	hw	topics	la	b	
Aug.29	Tu				1	interactions	
O	Th	0,2.1-5*	1*	Velocity and relative motion.			
Sep. 5	Tu	1,3	2	Acceleration and free fall.	pr	oblem solving	
-	Th		3		•	•	
12	Tu	4.1-5	4	Force and motion.	2	the local gravitational field	
	Th	5.1-6	5	Analysis of forces.			
19	Tu		6		3	Newton's second law	
	Th	6	7	Newton's laws in three dimensions.			
26	Tu	7	8	Vectors.	4	vector addition of forces	
	Th	8	9	Vectors and motion.			
Oct. 3	Tu		10	exam 1†	5	acceleration in two dimensions	
	Th		11				
10	Tu	9	12	Circular motion.	6	conservation laws	
	Th	10	13	Gravity.			
17	Tu	11*	14	Conservation of energy.	7	absolute zero	
	Th	12	15	The energy zoo.			
24	Tu		16	problem solving, hw due at 6:30	ex	exam 2†	
	Th	13*	17	Work.			
31	Tu		18	problem solving	8	conservation of energy	
	Th	14*	19	Conservation of momentum.			
Nov. 7	Tu	15.1-3	20	Conservation of angular momentum	9	momentum	
	Th	15.4	21	Torque			
14	Tu	15.5-6	22	Statics	10	torque	
	Th	15.7	23	Rigid-body rotation			
21	Tu	15.8*	24	Angular momentum in 3 dimensions	11	the moment of inertia	
	Th			Thanksgiving			
28	Tu	16	25	Vibrations.	12	torque in 3 dimensions	
	Th	17	26	Resonance. Analyze lab 12.			
Dec. 5	Tu		27	problem solving			
	Th		28	Lab 13, resonance.			
12	Tu		29	Analyze lab 13.			
	Th			Exam 3†			

^{*} Whenever reading is assigned, you should bring both copies of your notes to class. Sections 2.6, 11.6, 12.4, 13.8, and 14.7 on relativity are not required reading, nor is the final subsection of 15.8, on rigid-body dynamics in three dimensions. To find out what homework problems you've been assigned, go to the class's web page and click on the link that says "homework printout."

†Bring a bluebook. All exams are cumulative. Each exam will concentrate on the material that you haven't yet been tested on. The last date to add notes to your folder for use on an exam is the preceding lecture.

Exam 1 covers the reading through ch. 4. Exam 2 is through ch. 9. Exam 3 is comprehensive.

To get a printout of your individualized homework assignments, go to the class's web page at lightandmatter.com/area3phys221.html and click on the link that says "homework printout for Physics 221

student learning outcomes

- I. Outcome: Upon successful completion of PHYS 221 F General Physics III, the student will be able to determine qualitative outcomes of various physics scenarios by applying deductive reasoning with the appropriate laws and principles of physics. Assessment:Common questions or problems embedded in a final. Project assessed against a department standard. Students demonstrate their ability to determine qualitative outcomes of various physics scenarios in regularly scheduled conceptual homework assignments, group projects in class, and conceptual examinations for each major topic throughout the course and in a cumulative final examination at the end of the semester.
- II. Outcome: Upon successful completion of PHYS 221 F General Physics III, the student will be able to determine quantitative outcomes of various physics scenarios by applying algebra, trigonometry, geometry, and calculus with the appropriate laws and principles of physics. Assessment:Common questions or problems embedded in a final. Students demonstrate their ability to determine quantitative outcomes of various physics scenarios in regularly scheduled analytic homework
- III. Outcome: Upon successful completion of PHYS 221 F General Physics III, the student will be able to investigate various physics scenarios experimentally and explain the results in terms of the appropriate laws and principles of physics. Assessment:Project assessed against a department standard. Students demonstrate their ability to investigate various physics scenarios experimentally by doing so in the laboratory under instructor supervision in regularly scheduled laboratory sessions throughout the course. They demonstrate their ability to explain the results in a written report for each laboratory session.

students with disabilities

Fullerton College is committed to providing educational accommodations for students with disabilities upon the timely request by the student to the instructor. Verification of the disability must also be provided. The Disability Support Services office functions as a resource for students and faculty in the determination and provision of educational accommodations. (Faculty Resource Guide at http://staffdev.fullcoll.edu/)