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Machine lemmatization and part-of-speech tagging of ancient Greek have been done using
multiple methods, including pattern matching and unsupervised machine learning. The
accuracy of the results has generally been much lower than for other European languages.
I describe significantly improved results obtained with a large lookup table of inflected
words, built using multiple sources of lexical data. For lemmatization of Attic prose, its
failure rate is about an order of magnitude lower than those of other existing models.
Testing shows that when attempting to resolve ambiguities in the part of speech, no
existing model does much better than a strategy of frequency-based guessing plus a few
simple pattern-matching heuristics to take advantage of context.

1. Introduction

Systematic lemmatization and part-of-speech tagging of ancient Greek goes back at least
170 years, to Wigram’s hand-constructed Analytical Greek Lexicon (Wigram 1852), in
which every inflected form in the New Testament was listed alphabetically with its POS
analysis and lemma. An early computerized attack on the problem was begun in 1985
by Joshua Kosman and Neel Smith, and later completed and described in the literature
by Gregory Crane (Crane 1992). This system, called Morpheus, was adapted to the
computing resources of the time, and was also limited by the nonexistence of the internet
or publicly available lexical resources in machine-readable form, so that the authors were
compelled to construct their own lexical database by hand. The system, which remains
in use today, uses pattern-matching techniques, although these are difficult to apply to
Greek, not just because of its complex morphology but because of the language’s movable
accent, which, as pointed out by Smith (Smith 2016), makes certain classes of parsing
algorithms inapplicable.

Thus machine inflection of the language is an easier problem than machine parsing,
but the parsing problem can be reduced to that of inflection, provided that one has
sufficient computing resources. In the work described here, a large lookup table was
constructed which contained every possible inflected form in the language — or, in
practice, a big enough set of forms so that other, rarer ones could be reduced to them
through pattern-matching.

Although the current trend in morphological parsing of high-resource languages is
to use character-level neural network models, we will see that, compared to the method
presented here, that approach performs badly on ancient Greek.
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2. Morphological Engine

The system is based on a morphological engine that represents a Greek word in a format
more convenient than its direct representation as a unicode string. For example, “M7vw”
would be represented as the two-element list (un,vw), consisting of one Unicode string
for each syllable, the syllabification being carried out according to a modernized and ra-
tionalized version of the best practices of ancient scribes (Stuart-Jones 1901). Additional
meta-data describe the length of the morae; the word’s accentuation, capitalization, and
any breathing marks; and whether the word is a compound, contains crasis or elision, or
is an incomplete word such as a stem or suffix. An object in this format can be converted
to and from a canonical Unicode form using the NFC normalization with only composed
characters.

The engine, named Ifthimos, includes facilities for concatenation and pattern match-
ing, which are considerably complicated by the need to take into account the morpho-
logical processes of sandhi and vowel contraction. Since these processes are sometimes
optional or unpredictable, or may depend on data such as etymology that are not
available, an operation such as concatenation is in general a many-valued function, and its
software implementation returns a list of results rather than just one word. This one-to-
many design of the API is an important factor in making the results of the computations
trustworthy; in comparison, most neural-network approaches to natural language parsing
are designed so that they always produce exactly one result, which may not be the right
one and may in some cases be a hallucination. In addition, all operations in the system
described here produce an “explainer” along with the list of results. The explainer is a
list of strings that explain how the result was arrived at, for example by referring to a
section number in one of the standard grammars. The name Ifthimos is meant to evoke
the fact that the software was designed from the ground up to provide results that can
be trusted, or at least verified in the sense that a human can tell how they were obtained.

An additional benefit of incorporating contraction and sandhi in all operations is
that, compared to earlier systems, it allows the morphological production rules to be
stated in simpler form and with fewer exceptions, and the number of distinct categories
of declension and conjugation patterns is greatly reduced.

A disadvantage of this design is that it can have an impact on computing time. When
a series of operations is carried out, each of which produces multiple results, the result
is a decision tree whose number of nodes grows exponentially. This problem is somewhat
mitigated because the depth of the tree is not too great for real words, and the software
also uses some heuristics to prune the tree. However, the computational requirements
would have helped to make such a design computationally impractical in the era of
(Crane 1992). An especially time-consuming operation turns out to be the parsing of
compounds, since Greek has historically tended to load more and more prepositions onto
the front of verbs, and the morphological rules for stringing them together are complex.

The full set of morphological operations includes many for which one needs to know
the POS and lexical data such as the lengths of vowels in a stem. The POS tag, if
known, is stored along with the word. The software can carry out most operations with
incomplete data. For example, if told to construct a word object from the written form
owTijpa, it does not require a lexicon to tell it that the final alpha is short, since that can
be inferred from the accent. However, lexical data are taken advantage of in some cases
when they are available.
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3. Sources of Lexical Data

Lexical data were compiled from two main groups of sources. Dictionary entries were ex-
tracted from Wiktionary and from the Liddell-Scott-Jones dictionary (Henry George Lid-
dell and Stuart-Jones 1843), the latter with ad hoc pattern-recognition scripts to extract
machine-friendly data. In addition, I compiled lemma and POS data for Greek texts from
multiple treebanks: the Perseus Digital Library’s Ancient Greek Dependency Treebank
(AGDT) (Project Perseus 2021), the Global Bible Initiative (Global Bible Initiative
2024), and Zeman and Swanson’s treebank of the Septuagint version of Genesis.(Zeman
and Swanson 2024) Some other treebanks were collected in the same repository but
excluded from the analysis because their licenses were not compatible with the others or
with the intended license of this project.

The treebanks are in theory the best training data, because they tell us how words
were actually inflected by ancient authors. However, they contain a large number of errors,
which has been acknowledged to be a serious problem by workers using them as training
data (Dik and Whaling 2009). Problems also arise due to differences in the tagging
habits of the individuals who participated in the collaborations (Giuseppe Celano and
Majidi 2016). The AGDT is no longer actively maintained, with the result that multiple
researchers have created their own versions of it. The most notable prior systematic
attempt to correct errors has been in a proprietary system at the University of Chicago
(Dik and Whaling 2008). As part of the present work, I have constructed a database of
the POS and lemmatization data from the multiple sources listed above, and have tried
to correct as many errors as possible and to make more uniform the tagging habits of
the individual workers. To my knowledge this is the only such systematic effort that has
been made publicly accessible and has respected the intention of the treebanks’ original
creators to make them part of the public commons without further restrictions.

In the business of classification, “lumpers” and “splitters” have always been in
conflict. For example, the verbs diappirréw and dwappimTw (to scatter) are variants of one
another, and their forms could be lemmatized either separately or together, according
to taste. The treebank collaborators sometimes lumped and sometimes split. But for the
purpose of training a machine to inflect words, splitting such variants is desirable, and
that is the policy that I have tried to impose in my patches to the databases.

4. Analysis and Synthesis

The software then automatically determined the stems and inflection classes from the
tagged data. This was done not by unsupervised machine learning using neural networks
but by strict algorithmic analysis in terms of human-defined inflection classes. For
example, the noun &yyos (spear) occurs in eleven forms in the treebank, all of them
classified as neuter nouns. In addition to the lexical form, we have the plural nominative
éyxea. These two observations are sufficient to determine that the word is a third-
declension neuter noun of an inflection class that is labeled in the software as 3-n-os.
The other nine inflected forms are also consistent with this analysis. Therefore the word
is recorded as having stem é&yy- and this inflection class.

Verbs are treated in much the same way, except that each principal part is handled
separately. Ancillary information is gathered in a separate data structure, so that, for
example, elmov is tagged as a second aorist.

These computations take about 50 hours of CPU time, so that on current desktop
hardware with parallel processing, they can be completed in a few hours of wall-clock
time.
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As a supplement to this analysis, additional data on stems and inflection classes
were extracted from Wiktionary and Liddell-Scott-Jones (LSJ), the latter being especially
useful for rare lemmas. In some cases principal parts of verbs were inferred algorithmically,
but some trial and error was needed in order tell which patterns were actually reliable.
For example, if one were to be given only the dictionary head-word miélw, it would be
possible to infer reliably that it would have a first perfect memlexa, but for a word like
Taoow one cannot infer the perfect réraya without knowing further information, such as
the etymology.

Once the stems and inflection classes have been determined, a comparable amount
of CPU time is required in order to build a look-up table of all possible inflected forms.
The resulting database is about 4 Gb in size and contains 22M inflected forms.

5. Parsing

Once the database has been constructed, parsing is in principle very simple. A given
word has its accentuation and capitalization converted to a canonical form. We then
look up that form in the database. This may result in multiple hits, since, e.g., dvAAa
(leaves) can be either nominative or accusative. Better results can, however, be obtained
by supplementing the table lookup with a little bit of pattern-matching.

Since formation of compounds from verbs is productive, one can always encounter
forms that are not in the lexical data, e.g., a complex compound such as éfvmavioryue
(=éé-vmdé-dvd-tomyue). This would be reduced by pattern matching to a simpler form
such as aviorgu or {ornue for which lexical data are available. Pattern matching is also
used for crasis, and for suffixes found in words like ofowomep, TovTovi, and Tocoide. The
code also uses pattern matching on verbal adjectives in -1éos, some compound numerals
such as Terpakwoyiha, and for rare parts of speech such as the future perfect participle,
which is only known to have occurred once in all of classical Greek.

The treebanks are overwhelmingly slanted toward a few dialects: epic, Attic, and
koine. In the lookup table, we attempt to produce correct forms for all of these, plus
Tonic. Each word is recorded in the lookup table along with a four-bit mask indicating
which of these “big four” dialects it could occur in. Queries to the parser specify a
potentially complex data structure giving a fine-grained description of the dialect and
period, but when the search is actually carried out this is reduced (possibly with a loss of
precision) to a four-bit mask. Some dialectical differences are handled by pattern-based
manipulation of the input to make it more “vanilla.” For example, Attic 8dAarra would
be automatically converted to 8d\acoa, and lonic dmikeTo to ddikero.

When the fancier pattern-matching is turned off, the parser is rather fast. For
example, the 10M word Diorisis corpus (Vatri and McGillivray 2018) was lemmatized in
6 hours of wall-clock time on a 16-core 5.4 GHz Intel desktop machine, taking advantage
of memoization. This converts to about 35 ms per word. With full functionality, including
POS disambiguation as described below, the CPU time per word is about double this
figure.

6. Tests of Performance
6.1 Failure Rate for Lemmatization
To evaluate the performance of this model for lemmatization, I tested it along with

two NN systems, Stanza 1.7.0 (Qi et al. 2020) and OdyCy 0.7.0 (Kostkan and Kardos
2024), which I chose because they have parsers trained on ancient Greek and are freely



Benjamin Crowell IJCoL: Progress in machine parsing of ancient Greek

available under licenses that are compatible with common licenses for free and open-
source software as defined by the Open Source Initiative. In addition, I tested Morpheus
1.0.0 (September 15, 2017). All three main parsing approaches were therefore represented:
pattern-matching, table lookup, and NN. The software to reproduce all the tests is
publicly available (sec. 7).

I measured the success of each parser in lemmatizing words in one Attic text and
one in the epic dialect. In order to avoid bias, I used texts that were not included in
any of the codes’ training data: for Attic, the Cyropaedia by Xenophon, and for the epic
dialect, book 13 of the Astronautilia, by Jan Kresadlo. The Astronautilia is a modern
science fiction epic written in an imitation of the Homeric style. Because the NN models
often hallucinate nonexistent lemmas, I only counted the output as a success if it was one
of the head-words in the Liddell-Scott-Jones dictionary (or an equivalent when filtered
through a simple function to account for differences in spelling, dialect, and the differing
choices of lexicographers). The Astronautilia contains many words that are Kresadlo’s
own coinages, and when these words occur in the text, all the algorithms are almost
guaranteed to fail, since the (correct) lemma will not have been in LSJ. One therefore
should take the results on that text only as a comparison of the models, not as an
absolute measure of their performance. As inputs, I excluded the 3000 most common
words in ancient Greek.

In this test, I did not require that the software produce the right lemma. For example,
if the software output a list of possibilities, that was considered a success. It would have
been more desirable to test whether each model got the lemmatization right according
to some ground truth. Such a notion is slippery, however, since it depends so much on
the preferences of a particular lexicographer, such as whether to use active oiw or middle
olopat as a lemma.

The results of this test are shown in Table 1. For standard Attic, the failure rate of
the model described here is an order of magnitude less than those of the other models.

Table 1
Failure rates (percentages) in the test of ability to lemmatize words, excluding the 3000 most
common words. Lemming is the parser described in this work.

Morpheus Lemming Stanza OdyCy
Cyropaedia (Attic) 25 3 18 30
Astronautilia (epic) 39 26 27 47

6.2 Disambiguation of the Part of Speech

The algorithm as described so far considers words entirely in isolation, so that if the
POS is ambiguous based on the written form, it is impossible to disambiguate it except
on a statistical basis, such as by knowing that although the vocative case usually has
the same form as the nominative, the nominative is far more common. Neural network
(NN) methods for POS tagging are designed to take advantage of context, and therefore
could potentially do better at this task, although this is somewhat of an apples-to-
oranges comparison, since the nature of the application determines whether one cares
more about getting a correct and complete list of possibilities or a single educated guess.
It is of interest, however, to know whether NN models do in fact succeed at using context
for this task in Greek. They were after all designed, tested, and optimized for English.
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Greek’s highly inflected nature and its relatively free word order make it a very different
test case.

I am concerned here only with the fine-grained portion of the POS tags, such as case
and tense, not with the coarse POS categories such as preposition and adverb, represented
by the first character in the Perseus tagging system. Previous work (Giuseppe Celano
and Majidi 2016) shows that the latter depends so greatly on lexicographical preferences
as to be difficult to evaluate. To the extent that I have made an effort to impose more
uniformity on such choices in my patches to the training data, testing the ability of
parsers to reproduce the coarse-grained POS would merely verify that my own parser
behaved according to my own preferences.

I formulated two tests of whether the NN models made effective use of context.
These were constructed as one-on-one comparisons between the parser described in this
work (Lemming) and one of the NN models. The test data came from the first chapters
of Xenophon’s Cyropaedia and Hellenica, which have been tagged by hand for POS by
Vanessa Gorman (Gorman 2024).

In the first testing method, I looked for words for which Lemming and the NN model
agreed on a single lemma, and Lemming found more than one possible POS analysis.
I took the list of possible analyses output by Lemming for a given word, and selected
the most likely one based on a hand-coded heuristic, which is essentially an estimate of
frequency, with smoothing to handle the incomplete coverage of the set of fine-grained
POS analyses. For example, the nominative and vocative cases usually look the same,
but the nominative is more common, so in such cases it would be selected as the more
likely one. My test code would then count how often this probabilistic guessing method
was right and how often the NN model was right (assuming the human analysis to be
correct). I computed the ratio r of the former count divided by the latter. A result of
r = 1 would support the extreme null hypothesis that the NN model made no effective
use of context at all. Such a result would say that the model’s output was like predicting
the weather in Southern California simply by saying that every day will be sunny.

The value of r was 0.87 for Stanza and 0.82 for OdyCy. That is, 82-87% of the time,
the disambiguation of an ambiguous POS could have been accomplished equally well by
guessing the most common POS.

In the second test, I randomly shuffled the order of the words in each sentence. If
this had little effect on the model’s accuracy, it would be evidence that the model was
not making much effective use of “local” context, i.e., what a word’s nearby neighbors
were in the sentence. I found that shuffling the order of the words in a sentence caused
very little degradation in the performance of Stanza. Without shuffling, Stanza correctly
disambiguated the part of speech 87% of the time. With shuffling, it did it 83% of the
time. Thus Stanza does make some successful use of local context for disambiguating
POS, but the extent of this success is limited. The figures for OdyCy were 88 and 81%,
showing somewhat more effective use of context.

I was able to improve Lemming’s frequency-based heuristic to make a little use of
context and give results that came even closer to matching the NN methods. To do
this, I implemented a few simple pattern-matching algorithms in order to do things like
correlating the gender and number of an article with the gender and number of the
nominal that it refers to. For example, suppose that the text contains the phrase 7ots
orparyyols. The gender of 7ots, taken in isolation, can be either masculine or neuter. The
word oTpatnyols is masculine and agrees with 7ols in case and number, so we guess that
the gender of 7ois is likely to be masculine. With several such improvements, the value
of the r statistic became 0.91 for Stanza and 0.89 for Odycy.
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It seems, then, that the NN models tested here do not make very much effective use of
context to disambiguate the POS analysis of a language with the specific characteristics
of ancient Greek. As an indication of the progress that remains to be made on this front,
all the systems tested here fail to correctly parse the sentence ¢piAda pfjia éoliovow,
“sheep eat leaves.” The difficulty is that there are no surface clues such as inflection or
word order that distinguish the role of the subject and object in this sentence, so that
the models are apt to interpret it as “leaves eat sheep,” or to assign both words the same
case, which is syntactically impossible. The correct parsing of this type of ambiguity in
natural language requires data about semantics or lexical preferences (Hindle and Rooth
1993). The trend in the field has been to turn away from attempts to encode such data
explicitly and instead to try to train NN models so that they incorporate them implicitly,
but the models tested here do not seem to have succeeded at this for ancient Greek. The
language’s corpus is not very big and not growing, so one cannot simply throw more data
at the NN models. Some workers in the field have been making attempts to build a body
of more explicit semantic data that would be relevant for this type of task, for example in
an ancient Greek implementation of WordNet (Boschetti, Del Gratta, and Diakoff 2016).

7. Implementation and Applications

The model is implemented in about 45,000 lines of Ruby code, and the
database in SQLite. (When interfacing with Python code, I have either set up
a pipeline that passed data through text files, or else executed one language
from within the other using a shell.) The code is under the GPL open source
license, and the data are either public domain or under the licenses chosen
by the third parties who did the original work. The code can be obtained
from https://bitbucket.org/ben-crowell/lemming/src/master/INSTALL.md.
The code to run the performance comparisons in section 6 is available at
https://bitbucket.org/ben-crowell/test_lemmatizers/src/master/summary.md.

The model has been used in several applications to date. I have used it to create a
student text of Xenophon’s Anabasis with glosses based on machine-generated lemma-
tization; in an online Greek Word Explainer application, which explains the inflectional
rules used to produce a given Greek word; for lemmatization as a preprocessing step in
the creation of word2vec word embeddings (Tomas Mikolov and Dean 2013) from the
Diorisis corpus; and as part of an English-Greek bitext alignment system.

8. Conclusions

This paper has described a new system for lemma and POS tagging of ancient Greek
using table lookup. When used on standard Attic Greek, its failure rate as a lemmatizer is
about an order of magnitude lower than those of other presently existing systems that use
pattern matching or neural network approaches. It enumerates all possible lemma-POS
analyses and provides a human-readable description of how it arrived at them.

Although the main finding of this work is that an explicit algorithm works much
better for this task than NN methods, there are also various ways in which the two
approaches could complement one another or be used together. A NN lemmatizer could
be constrained to produce a result from among the possibilities enumerated by Lemming.
NN output could be supplemented with human-readable explanations from this code.
Unsupervised machine learning models would probably perform better if they were
trained on the data described in section 3, which have had some errors corrected and
lumping/splitting decisions made with a view to such applications.
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Near the completion of this work, I got in touch with Neel Smith, one of the original
authors of the Morpheus code, and learned that he was working on a similar project
using table lookup for parsing. I thank him for his cordial and helpful communication.
His forthcoming system promises to have better handling of dialectical differences than
the one described here, and will also cover Latin and Hebrew.
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