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1 Measurement

This is not a textbook. It’s a book of problems
meant to be used along with a textbook. Although
each chapter of this book starts with a brief sum-
mary of the relevant physics, that summary is
not meant to be enough to allow the reader to
actually learn the subject from scratch. The pur-
pose of the summary is to show what material is
needed in order to do the problems, and to show
what terminology and notation are being used.

1.1 The SI

The Système International (SI) is a system of
measurement in which mechanical quantities are
expressed in terms of three basic units: the me-
ter (m), the kilogram (kg), and the second (s).
Other units can be built out of these. For ex-
ample, the SI unit to measure the flow of water
through a pipe would be kg/s.

To modify the units there is a consistent set of
prefixes. The following are common and should
be memorized:

prefix meaning
nano- n 10−9

micro- µ 10−6

milli- m 10−3

kilo- k 103

mega- M 106

The symbol µ, for micro-, is Greek lowercase mu,
which is equivalent to the Latin “m.” There is
also centi-, 10−2, which is only used in the cen-
timeter.

1.2 Significant figures

The international governing body for football
(“soccer” in the US) says the ball should
have a circumference of 68 to 70 cm. Tak-
ing the middle of this range and divid-
ing by π gives a diameter of approximately
21.96338214668155633610595934540698196 cm.

The digits after the first few are completely
meaningless. Since the circumference could have
varied by about a centimeter in either direction,
the diameter is fuzzy by something like a third
of a centimeter. We say that the additional, ran-
dom digits are not significant figures. If you
write down a number with a lot of gratuitous
insignificant figures, it shows a lack of scientific
literacy and imples to other people a greater pre-
cision than you really have.

As a rule of thumb, the result of a calculation
has as many significant figures, or “sig figs,” as
the least accurate piece of data that went in. In
the example with the soccer ball, it didn’t do us
any good to know π to dozens of digits, because
the bottleneck in the precision of the result was
the figure for the circumference, which was two
sig figs. The result is 22 cm. The rule of thumb
works best for multiplication and division.

The numbers 13 and 13.0 mean different
things, because the latter implies higher preci-
sion. The number 0.0037 is two significant fig-
ures, not four, because the zeroes after the dec-
imal place are placeholders. A number like 530
could be either two sig figs or three; if we wanted
to remove the ambiguity, we could write it in sci-
entific notation as 5.3× 102 or 5.30× 102.

1.3 Proportionalities

Often it is more convenient to reason about the
ratios of quantities rather than their actual val-
ues. For example, suppose we want to know what
happens to the area of a circle when we triple its
radius. We know that A = πr2, but the factor
of π is not of interest here because it’s present
in both cases, the small circle and the large one.
Throwing away the constant of proportionality,
we can write A ∝ r2, where the proportionality
symbol ∝, read “is proportional to,” says that
the left-hand side doesn’t necessarily equal the
right-hand side, but it does equal the right-hand
side multiplied by a constant.

7



8 CHAPTER 1. MEASUREMENT

Any proportionality can be interpreted as a
statement about ratios. For example, the state-
ment A ∝ r2 is exactly equivalent to the state-
ment that A1/A2 = (r1/r2)2, where the sub-
scripts 1 and 2 refer to any two circles. This in
our example, the given information that r1/r2 =
3 tells us that A1/A2 = 9.

In geometrical applications, areas are always
proportional to the square of the linear dimen-
sions, while volumes go like the cube.

1.4 Estimation

It is useful to be able to make rough estimates,
e.g., how many bags of gravel will I need to fill
my driveway? Sometimes all we need is an esti-
mate so rough that we only care about getting
the result to about the nearest factor of ten, i.e.,
to within an order of magnitude. For example,
anyone with a basic knowledge of US geography
can tell that the distance from New Haven to
New York is probably something like 100 km, not
10 km or 1000 km. When making estimates of
physical quantities, the following guidelines are
helpful:

1. Don’t even attempt more than one signifi-
cant figure of precision.

2. Don’t guess area, volume, or mass directly.
Guess linear dimensions and get area, vol-
ume, or mass from them. Mass is often best
found by estimating linear dimensions and
density.

3. When dealing with areas or volumes of ob-
jects with complex shapes, idealize them as
if they were some simpler shape, a cube or
a sphere, for example.

4. Check your final answer to see if it is rea-
sonable. If you estimate that a herd of
ten thousand cattle would yield 0.01 m2 of
leather, then you have probably made a mis-
take with conversion factors somewhere.
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Problems

1-a1 Convert 134 mg to units of kg, writing
your answer in scientific notation.

. Solution, p. 233

1-a2 Express each of the following quantities
in micrograms:
(a) 10 mg, (b) 104 g, (c) 10 kg, (d) 100× 103 g,
(e) 1000 ng.

√

1-a3 In the last century, the average age of
the onset of puberty for girls has decreased by
several years. Urban folklore has it that this
is because of hormones fed to beef cattle, but
it is more likely to be because modern girls
have more body fat on the average and possibly
because of estrogen-mimicking chemicals in the
environment from the breakdown of pesticides.
A hamburger from a hormone-implanted steer
has about 0.2 ng of estrogen (about double the
amount of natural beef). A serving of peas
contains about 300 ng of estrogen. An adult
woman produces about 0.5 mg of estrogen per
day (note the different unit!). (a) How many
hamburgers would a girl have to eat in one
day to consume as much estrogen as an adult
woman’s daily production? (b) How many
servings of peas?

√

1-d1 The usual definition of the mean (aver-
age) of two numbers a and b is (a + b)/2. This
is called the arithmetic mean. The geometric
mean, however, is defined as (ab)1/2 (i.e., the
square root of ab). For the sake of definiteness,
let’s say both numbers have units of mass. (a)
Compute the arithmetic mean of two numbers
that have units of grams. Then convert the num-
bers to units of kilograms and recompute their
mean. Is the answer consistent? (b) Do the same
for the geometric mean. (c) If a and b both have
units of grams, what should we call the units
of ab? Does your answer make sense when you
take the square root? (d) Suppose someone pro-
poses to you a third kind of mean, called the

superduper mean, defined as (ab)1/3. Is this rea-
sonable?

. Solution, p. 233

1-d2 (a) Based on the definitions of the sine,
cosine, and tangent, what units must they have?
(b) A cute formula from trigonometry lets you
find any angle of a triangle if you know the
lengths of its sides. Using the notation shown
in the figure, and letting s = (a+b+c)/2 be half
the perimeter, we have

tanA/2 =

√
(s− b)(s− c)
s(s− a)

.

Show that the units of this equation make sense.
In other words, check that the units of the right-
hand side are the same as your answer to part a
of the question.

. Solution, p. 233

Problem 1-d2.

1-d3 Jae starts from the formula V = 1
3Ah

for the volume of a cone, where A is the area of
its base, and h is its height. He wants to find
an equation that will tell him how tall a conical
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tent has to be in order to have a certain volume,
given its radius. His algebra goes like this:

V =
1

3
Ah

A = πr2

V =
1

3
πr2h

h =
πr2

3V

Use units to check whether the final result makes
sense. If it doesn’t, use units to locate the line
of algebra where the mistake happened.

. Solution, p. 233

1-d4 The distance to the horizon is given by
the expression

√
2rh, where r is the radius of the

Earth, and h is the observer’s height above the
Earth’s surface. (This can be proved using the
Pythagorean theorem.) Show that the units of
this expression make sense. Don’t try to prove
the result, just check its units. (For an example
of how to do this, see problem 1-d3 on p. 9, which
has a solution given in the back of the book.)

1-d5 Let the function x be defined by x(t) =
Aebt, where t has units of seconds and x has
units of meters. (For b < 0, this could be a fairly
accurate model of the motion of a bullet shot
into a tank of oil.) Show that the Taylor series
of this function makes sense if and only if A and
b have certain units.

1-g1 In an article on the SARS epidemic, the
May 7, 2003 New York Times discusses conflict-
ing estimates of the disease’s incubation period
(the average time that elapses from infection to
the first symptoms). “The study estimated it to
be 6.4 days. But other statistical calculations ...
showed that the incubation period could be as
long as 14.22 days.” What’s wrong here?

1-g2 The photo shows the corner of a bag of
pretzels. What’s wrong here?

Problem 1-g2.

1-j1 The one-liter cube in the photo has been
marked off into smaller cubes, with linear dimen-
sions one tenth those of the big one. What is the
volume of each of the small cubes?

. Solution, p. 233

Problem 1-j1.

1-j2 How many cm2 is 1 mm2?
. Solution, p. 233

1-j3 Compare the light-gathering powers of a
3-cm-diameter telescope and a 30-cm telescope.

. Solution, p. 233
1-j4 The traditional Martini glass is shaped
like a cone with the point at the bottom. Sup-
pose you make a Martini by pouring vermouth
into the glass to a depth of 3 cm, and then adding
gin to bring the depth to 6 cm. What are the
proportions of gin and vermouth?

. Solution, p. 233
1-j5 How many cubic inches are there in a
cubic foot? The answer is not 12. √

1-j6 Assume a dog’s brain is twice as great
in diameter as a cat’s, but each animal’s brain
cells are the same size and their brains are the
same shape. In addition to being a far better
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companion and much nicer to come home to, how
many times more brain cells does a dog have than
a cat? The answer is not 2.

1-k1 One step on the Richter scale corre-
sponds to a factor of 100 in terms of the en-
ergy absorbed by something on the surface of
the Earth, e.g., a house. For instance, a 9.3-
magnitude quake would release 100 times more
energy than an 8.3. The energy spreads out
from the epicenter as a wave, and for the sake
of this problem we’ll assume we’re dealing with
seismic waves that spread out in three dimen-
sions, so that we can visualize them as hemi-
spheres spreading out under the surface of the
earth. If a certain 7.6-magnitude earthquake and
a certain 5.6-magnitude earthquake produce the
same amount of vibration where I live, compare
the distances from my house to the two epicen-
ters.

. Solution, p. 233

1-k2 The central portion of a CD is taken
up by the hole and some surrounding clear plas-
tic, and this area is unavailable for storing data.
The radius of the central circle is about 35% of
the outer radius of the data-storing area. What
percentage of the CD’s area is therefore lost?√

1-k3 The Earth’s surface is about 70% water.
Mars’s diameter is about half the Earth’s, but it
has no surface water. Compare the land areas of
the two planets. √

1-k4 At the grocery store you will see or-
anges packed neatly in stacks. Suppose we want
to pack spheres as densely as possible, so that
the greatest possible fraction of the space is
filled by the spheres themselves, not by empty
space. Let’s call this fraction f . Mathemati-
cians have proved that the best possible result is
f ≈ 0.7405, which requires a systematic pattern
of stacking. If you buy ball bearings or golf balls,
however, the seller is probably not going to go
to the trouble of stacking them neatly. Instead
they will probably pour the balls into a box and
vibrate the box vigorously for a while to make

them settle. This results in a random packing.
The closest random packing has f ≈ 0.64. Sup-
pose that golf balls, with a standard diameter
of 4.27 cm, are sold in bulk with the closest ran-
dom packing. What is the diameter of the largest
ball that could be sold in boxes of the same size,
packed systematically, so that there would be the
same number of balls per box? √

Problem 1-k4.

1-k5 Radio was first commercialized around
1920, and ever since then, radio signals from our
planet have been spreading out across our galaxy.
It is possible that alien civilizations could de-
tect these signals and learn that there is life on
earth. In the 90 years that the signals have been
spreading at the speed of light, they have cre-
ated a sphere with a radius of 90 light-years. To
show an idea of the size of this sphere, I’ve in-
dicated it in the figure as a tiny white circle on
an image of a spiral galaxy seen edge on. (We
don’t have similar photos of our own Milky Way
galaxy, because we can’t see it from the outside.)
So far we haven’t received answering signals from
aliens within this sphere, but as time goes on, the
sphere will expand as suggested by the dashed
outline, reaching more and more stars that might
harbor extraterrestrial life. Approximately what
year will it be when the sphere has expanded to
fill a volume 100 times greater than the volume
it fills today in 2010? √
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Problem 1-k5.

1-k6 X-ray images aren’t only used with hu-
man subjects but also, for example, on insects
and flowers. In 2003, a team of researchers
at Argonne National Laboratory used x-ray im-
agery to find for the first time that insects, al-
though they do not have lungs, do not necessar-
ily breathe completely passively, as had been be-
lieved previously; many insects rapidly compress
and expand their trachea, head, and thorax in
order to force air in and out of their bodies. One
difference between x-raying a human and an in-
sect is that if a medical x-ray machine was used
on an insect, virtually 100% of the x-rays would
pass through its body, and there would be no
contrast in the image produced. Less penetrat-
ing x-rays of lower energies have to be used. For
comparison, a typical human body mass is about
70 kg, whereas a typical ant is about 10 mg. Es-
timate the ratio of the thicknesses of tissue that
must be penetrated by x-rays in one case com-
pared to the other. √

1-m1 A taxon (plural taxa) is a group of
living things. For example, Homo sapiens and
Homo neanderthalensis are both taxa — specif-
ically, they are two different species within the
genus Homo. Surveys by botanists show that the
number of plant taxa native to a given contigu-
ous land area A is usually approximately pro-
portional to A1/3. (a) There are 70 different
species of lupine native to Southern California,
which has an area of about 200, 000 km2. The
San Gabriel Mountains cover about 1, 600 km2.
Suppose that you wanted to learn to identify all

the species of lupine in the San Gabriels. Ap-
proximately how many species would you have
to familiarize yourself with?

√

(b) What is the interpretation of the fact that
the exponent, 1/3, is less than one?

?

1-m2 The population density of Los Angeles
is about 4000 people/km2. That of San Francisco
is about 6000 people/km2. How many times far-
ther away is the average person’s nearest neigh-
bor in LA than in San Francisco? The answer is
not 1.5. √

?

1-m3 In Europe, a piece of paper of the stan-
dard size, called A4, is a little narrower and taller
than its American counterpart. The ratio of the
height to the width is the square root of 2, and
this has some useful properties. For instance, if
you cut an A4 sheet from left to right, you get
two smaller sheets that have the same propor-
tions. You can even buy sheets of this smaller
size, and they’re called A5. There is a whole se-
ries of sizes related in this way, all with the same
proportions. (a) Compare an A5 sheet to an A4
in terms of area and linear size. (b) The series of
paper sizes starts from an A0 sheet, which has
an area of one square meter. Suppose we had
a series of boxes defined in a similar way: the
B0 box has a volume of one cubic meter, two B1
boxes fit exactly inside an B0 box, and so on.
What would be the dimensions of a B0 box?√

?

1-p1 Estimate the number of jellybeans in
the figure.

. Solution, p. 233

1-p2 Suppose you took enough water out of
the oceans to reduce sea level by 1 mm, and you
took that water and used it to fill up water bot-
tles. Make an order-of-magnitude estimate of
how many water bottles could you fill.

1-p3 If you filled up a small classroom with
pennies, about much money would be in the
room?
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Problem 1-p1.

1-p4 Estimate the mass of one of the hairs in
Albert Einstein’s moustache, in units of kg.

1-p5 Estimate the number of blades of grass
on a football field.

1-p6 Suppose someone built a gigantic apart-
ment building, measuring 10 km × 10 km at the
base. Estimate how tall the building would have
to be to have space in it for the entire world’s
population to live.

1-p7 (a) Using the microscope photo in the
figure, estimate the mass of a one cell of the E.
coli bacterium, which is one of the most com-
mon ones in the human intestine. Note the scale
at the lower right corner, which is 1 µm. Each
of the tubular objects in the column is one cell.
(b) The feces in the human intestine are mostly
bacteria (some dead, some alive), of which E.
coli is a large and typical component. Estimate
the number of bacteria in your intestines, and
compare with the number of human cells in your
body, which is believed to be roughly on the or-
der of 1013. (c) Interpreting your result from

part b, what does this tell you about the size of
a typical human cell compared to the size of a
typical bacterial cell?

Problem 1-p7.

1-q1 Estimate the number of man-hours re-
quired for building the Great Wall of China.

. Solution, p. 234 ?

1-q2 Plutonium-239 is one of a small num-
ber of important long-lived forms of high-level
radioactive nuclear waste. The world’s waste
stockpiles have about 103 metric tons of pluto-
nium. Drinking water is considered safe by U.S.
government standards if it contains less than
2×10−13 g/cm3 of plutonium. The amount of ra-
dioactivity to which you were exposed by drink-
ing such water on a daily basis would be very
small compared to the natural background radi-
ation that you are exposed to every year. Sup-
pose that the world’s inventory of plutonium-239
were ground up into an extremely fine dust and
then dispersed over the world’s oceans, thereby
becoming mixed uniformly into the world’s wa-
ter supplies over time. Estimate the resulting
concentration of plutonium, and compare with
the government standard.

?
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2 Kinematics in one dimension

This is not a textbook. It’s a book of problems
meant to be used along with a textbook. Although
each chapter of this book starts with a brief sum-
mary of the relevant physics, that summary is
not meant to be enough to allow the reader to
actually learn the subject from scratch. The pur-
pose of the summary is to show what material is
needed in order to do the problems, and to show
what terminology and notation are being used.

2.1 Velocity

The motion of a particle in one dimension can
be described using the function x(t) that gives
its position at any time. Its velocity is defined
by the derivative

v =
dx

dt
. (2.1)

From the definition, we see that the SI units of
velocity are meters per second, m/s. Positive
and negative signs indicate the direction of mo-
tion, relative to the direction that is arbitrarily
called positive when we pick our coordinate sys-
tem. In the case of constant velocity, we have

v =
∆x

∆t
, (2.2)

where the notation ∆ (Greek uppercase “delta,”
like Latin “D”) means “change in,” or “final
minus initial.” When the velocity is not con-
stant, this equation is false, although the quan-
tity ∆x/∆t can be interpreted as a kind of aver-
age velocity.

Velocity can only be defined if we choose some
arbitrary reference point that we consider to be
at rest. Therefore velocity is relative, not abso-
lute. A person aboard a cruising passenger jet
might consider the cabin to be at rest, but some-
one on the ground might say that the plane was
moving very fast — relative to the dirt.

To convert velocities from one frame of ref-
erence to another, we add a constant. If, for

example, vAB is the velocity of A relative to B,
then

vAC = vAB + vBC . (2.3)

The principle of inertia states that if an object
is not acted on by a force, its velocity remains
constant. For example, if a rolling soccer ball
slows down, the change in its velocity is not be-
cause the ball naturally “wants” to slow down
but because of a frictional force that the grass
exerts on it.

A frame of reference in which the principle of
inertia holds is called an inertial frame of refer-
ence. The earth’s surface defines a very nearly
inertial frame of reference, but so does the cabin
of a cruising passenger jet. Any frame of refer-
ence moving at constant velocity, in a straight
line, relative to an inertial frame is also an in-
ertial frame. An example of a noninertial frame
of reference is a car in an amusement park ride
that maneuvers violently.

2.2 Acceleration

The acceleration of a particle is defined as the
time derivative of the velocity, or the second
derivative of the position with respect to time:

a =
dv

dt
=

d2 x

dt2
. (2.4)

It measures the rate at which the velocity is
changing. Its units are m/s/s, more commonly
written as m/s2.

Unlike velocity, acceleration is not just a mat-
ter of opinion. Observers in different inertial
frames of reference agree on accelerations. An
acceleration is caused by the force that one ob-
ject exerts on another.

In the case of constant acceleration, simple al-

15
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gebra and calculus give the following relations:

a =
∆v

∆t
(2.5)

x = x0 + v0t+
1

2
at2 (2.6)

v2
f = v2

0 + 2a∆x, (2.7)

where the subscript 0 (read “nought”) means ini-
tial, or t = 0, and f means final.

Free fall

Galileo showed by experiment that when the
only force acting on an object is gravity, the ob-
ject’s acceleration has a value that is indepen-
dent of the object’s mass. This is because the
greater force of gravity on a heavier object is
exactly compensated for by the object’s greater
inertia, meaning its tendency to resist a change
in its motion. For example, if you stand up now
and drop a coin side by side with your shoe, you
should see them hit the ground at almost the
same time, despite the huge disparity in mass.
The magnitude of the acceleration of falling ob-
jects is notated g, and near the earth’s surface
g is approximately 9.8 m/s2. This number is a
measure of the strength of the earth’s gravita-
tional field.

The inclined plane

If an object slides frictionlessly on a ramp that
forms an angle θ with the horizontal, then its
acceleration equals g sin θ. This can be shown
based on a looser, generalized statement of the
principle of inertia, which leads to the conclusion
that the gain in speed on a slope depends only
on the vertical drop.1 For θ = 90◦, we recover
the case of free fall.

1For details of this argument, see Crowell, Mechanics,
lightandmatter.com, section 3.6.

Graphs of position, velocity, and acceler-
ation

The motion of an object can be represented vi-
sually by a stack of graphs of x versus t, v versus
t, and a versus t. Figure ?? shows two examples.
The slope of the tangent line at a given point on
one graph equals the value of the function at the
same time in the graph below.
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Figure 2.1: 1. Graphs representing the motion of an object moving with a constant acceleration of
1 m/s2. 2. Graphs for a parachute jumper who initially accelerates at g, but later accelerates more
slowly due to air resistance.
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Problems

2-a1 You’re standing in a freight train, and
have no way to see out. If you have to lean to
stay on your feet, what, if anything, does that
tell you about the train’s velocity? Explain.

2-a2 Interpret the general rule vAB = −vBA
in words.

2-a3 Wa-Chuen slips away from her father
at the mall and walks up the down escalator, so
that she stays in one place. Write this in terms of
symbols, using the notation with two subscripts
introduced in section 2.1.

2-a4 Driving along in your car, you take your
foot off the gas, and your speedometer shows a
reduction in speed. Describe an inertial frame
of reference in which your car was speeding up
during that same period of time.

?

2-b1 (a) Translate the following information
into symbols, using the notation with two sub-
scripts introduced in section 2.1. Eowyn is riding
on her horse at a velocity of 11 m/s. She twists
around in her saddle and fires an arrow back-
ward. Her bow fires arrows at 25 m/s. (b) Find
the velocity of the arrow relative to the ground.

2-b2 An airport has a moving walkway to
help people move across and/or between termi-
nals quickly. Suppose that you’re walking north
on such a walkway, where the walkway has speed
3.0 m/s relative to the airport, and you walk at
a speed of 2.0 m/s. You pass by your friend, who
is off the walkway, traveling south at 1.5 m/s.
(a) What is the magnitude of your velocity with
respect to the moving walkway?

√

(b) What is the magnitude of your velocity with
respect to the airport?

√

(c) What is the magnitude of your velocity with
respect to your friend?

√

(d) If it takes you 45 seconds to get across the air-
port terminal, how long does it take your friend?√

2-b3 On a 20 km bike ride, you ride the first
10 km at an average speed of 8 km/hour. What
average speed must you have over the next 10
km if your average speed for the whole ride is to
be 12 km/hour? √

2-b4 (a) In a race, you run the first half of
the distance at speed u, and the second half at
speed v. Find the over-all speed, i.e., the total
distance divided by the total time.

√

(b) Check the units of your equation .
(c) Check that your answer makes sense in the
case where u = v.
(d) Show that the dependence of your result
on u and v makes sense. That is, first check
whether making u bigger makes the result big-
ger, or smaller. Then compare this with what
you expect physically.

2-b5 An object starts moving at t = 0, and
its position is given by x = At5 − Bt2, where t
is in seconds and x is in meters. A is a non-zero
constant. (a) Infer the units of A and B.
(b) Find the velocity as a function of t.

√

(c) What is the average velocity from 0 to t as a
function of time?

√

(d) At what time t (t > 0) is the velocity at t
equal to the average velocity from 0 to t? √

2-b6 (a) Let R be the radius of the Earth
and T the time (one day) that it takes for one
rotation. Find the speed at which a point on
the equator moves due to the rotation of the
earth.

√

(b) Check the units of your equation .
(c) Check that your answer to part a makes
sense in the case where the Earth stops rotating
completely, so that T is infinitely long.
(d) Nairobi, Kenya, is very close to the equator.
Plugging in numbers to your answer from part
a, find Nairobi’s speed in meters per second.
See the table in the back of the book for the
relevant data. For comparison, the speed of
sound is about 340 m/s.

√
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2-c1 In running races at distances of 800
meters and longer, runners do not have their
own lanes, so in order to pass, they have to go
around their opponents. Suppose we adopt the
simplified geometrical model suggested by the
figure, in which the two runners take equal times
to trace out the sides of an isoceles triangle,
deviating from parallelism by the angle θ. The
runner going straight runs at speed v, while the
one who is passing must run at a greater speed.
Let the difference in speeds be ∆v.
(a) Find ∆v in terms of v and θ.

√

(b) Check the units of your equation .
(c) Check that your answer makes sense in
the special case where θ = 0, i.e., in the case
where the runners are on an extremely long
straightaway.
(d) Suppose that θ = 1.0 degrees, which is about
the smallest value that will allow a runner to
pass in the distance available on the straight-
away of a track, and let v = 7.06 m/s, which is
the women’s world record pace at 800 meters.
Plug numbers into your equation from part a
to determine ∆v, and comment on the result.

√

?

2-c2 In 1849, Fizeau carried out the first
terrestrial measurement of the speed of light;
previous measurements by Roemer and Bradley
had involved astronomical observation. The fig-
ure shows a simplified conceptual representation
of Fizeau’s experiment. A ray of light from a
bright source was directed through the teeth at
the edge of a spinning cogwheel. After traveling
a distance L, it was reflected from a mirror and
returned along the same path. The figure shows
the case in which the ray passes between two
teeth, but when it returns, the wheel has rotated
by half the spacing of the teeth, so that the ray
is blocked. When this condition is achieved, the
observer looking through the teeth toward the
far-off mirror sees it go completely dark. Fizeau
adjusted the speed of the wheel to achieve this
condition and recorded the rate of rotation to
be f rotations per second. Let the number of
teeth on the wheel be n.

Problem 2-c1.

(a) Find the speed of light c in terms of L, n,
and f .

√

(b) Check the units of your equation . (Here f ’s
units of rotations per second should be taken
as inverse seconds, s−1, since the number of
rotations in a second is a unitless count.)
(c) Imagine that you are Fizeau trying to design
this experiment. The speed of light is a huge
number in ordinary units. Use your equation
from part a to determine whether increasing c
requires an increase in L, or a decrease. Do the
same for n and f . Based on this, decide for each
of these variables whether you want a value that
is as big as possible, or as small as possible.
(d) Fizeau used L = 8633 m, f = 12.6 s−1, and
n = 720. Plug in to your equation from part
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a and extract the speed of light from his data.
√

?

Problem 2-c2.

2-e1 What is the acceleration of a car that
moves at a steady velocity of 100 km/h for 100
seconds? Explain your answer. [Based on a
problem by Hewitt.]

2-e2 Alice drops a rock off a cliff. Bubba
shoots a gun straight down from the edge of the
same cliff. Compare the accelerations of the rock
and the bullet while they are in the air on the
way down. [Based on a problem by Serway and
Faughn.]

2-e3 A toy car is released on one side of a
piece of track that is bent into an upright U
shape. The car goes back and forth. When the
car reaches the limit of its motion on one side,
its velocity is zero. Is its acceleration also zero?
Explain using a v−t graph. [Based on a problem
by Serway and Faughn.]

2-e4 If an object starts accelerating from rest,
we have v2 = 2a∆x for its speed after it has
traveled a distance ∆x. Explain in words why
it makes sense that the equation has velocity
squared, but distance only to the first power.
Don’t recapitulate the derivation in the book,
or give a justification based on units. The point

is to explain what this feature of the equation
tells us about the way speed increases as more
distance is covered.

2-f1 On New Year’s Eve, a stupid person fires
a pistol straight up. The bullet leaves the gun
at a speed of 100 m/s. How long does it take
before the bullet hits the ground?

2-f2 A physics homework question asks, “If
you start from rest and accelerate at 1.54 m/s2

for 3.29 s, how far do you travel by the end of
that time?” A student answers as follows:

1.54× 3.29 = 5.07 m

His Aunt Wanda is good with numbers, but has
never taken physics. She doesn’t know the for-
mula for the distance traveled under constant ac-
celeration over a given amount of time, but she
tells her nephew his answer cannot be right. How
does she know?

2-f3 You are looking into a deep well. It is
dark, and you cannot see the bottom. You want
to find out how deep it is, so you drop a rock
in, and you hear a splash 3.0 seconds later. How
deep is the well? √

2-f4 Consider the following passage from
Alice in Wonderland, in which Alice has been
falling for a long time down a rabbit hole:

Down, down, down. Would the fall never
come to an end? “I wonder how many miles
I’ve fallen by this time?” she said aloud. “I
must be getting somewhere near the center of
the earth. Let me see: that would be four thou-
sand miles down, I think” (for, you see, Alice had
learned several things of this sort in her lessons in
the schoolroom, and though this was not a very
good opportunity for showing off her knowledge,
as there was no one to listen to her, still it was
good practice to say it over)...

Alice doesn’t know much physics, but let’s try
to calculate the amount of time it would take to
fall four thousand miles, starting from rest with
an acceleration of 10 m/s2. This is really only a
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lower limit; if there really was a hole that deep,
the fall would actually take a longer time than
the one you calculate, both because there is air
friction and because gravity gets weaker as you
get deeper (at the center of the earth, g is zero,
because the earth is pulling you equally in every
direction at once). √

2-f5 You shove a box with initial velocity
2.0 m/s, and it stops after sliding 1.3 m. What
is the magnitude of the deceleration, assuming it
is constant? √

2-f6 You’re an astronaut, and you’ve arrived
on planet X, which is airless. You drop a hammer
from a height of 1.00 m and find that it takes 350
ms to fall to the ground. What is the acceleration
due to gravity on planet X? √

2-i1 Mr. Whiskers the cat can jump 2.0 me-
ters vertically (undergoing free-fall while in the
air). (a) What initial velocity must he have in
order to jump this high?

√

(b) How long does it take him to reach his max-
imum height from the moment he leaves the
ground?

√

(c) From the start of the jump to the time when
he lands on the ground again, how long is he in
the air? √

2-i2 A baseball pitcher throws a fastball. Her
hand accelerates the ball from rest to 45.0 m/s
over a distance 1.5 meters. For the purposes of
this problem, we will make the simplifying as-
sumption that this acceleration is constant. (a)
What is the ball’s acceleration?

√

(b) How much time does it take for the pitcher
to accelerate the ball?

√

(c) If home plate is 18.0 meters away from where
the pitcher releases the baseball, how much total
time does the baseball take to get there, assum-
ing it moves with constant velocity as soon as it
leaves the pitcher’s hand? Include both the time
required for acceleration and the time the ball
spends on the fly. √

2-i3 The photo shows Apollo 16 astronaut
John Young jumping on the moon and saluting
at the top of his jump. The video footage of the
jump shows him staying aloft for 1.45 seconds.
Gravity on the moon is 1/6 as strong as on the
earth. Compute the height of the jump. √

Problem 2-i3.

2-i4 Find the error in the following calcula-
tion. A student wants to find the distance trav-
eled by a car that accelerates from rest for 5.0 s
with an acceleration of 2.0 m/s2. First he solves
a = ∆v/∆t for ∆v = 10 m/s. Then he multiplies
to find (10 m/s)(5.0 s) = 50 m. Do not just re-
calculate the result by a different method; if that
was all you did, you’d have no way of knowing
which calculation was correct, yours or his.

2-i5 A naughty child drops a golf ball from
the roof of your apartment building, and you see
it drop past your window. It takes the ball time
T to traverse the window’s height H. Find the
initial speed of the ball when it first came into
view. √

2-i6 Objects A and B, with v(t) graphs shown
in the figure, both leave the origin at time t = 0 s.
When do they cross paths again? √
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Problem 2-i6.

2-i7 An elevator is moving upward at con-
stant speed of 2.50 m/s. A bolt in the elevator’s
ceiling, 3.00 m above the floor, works loose and
falls. (a) How long does it take for the bolt to
fall to the floor?

√

(b) What is the speed of the bolt just as it
hits the floor, according to an observer in the
elevator?

√

(c) What is the speed of the bolt just as it hits
the elevator’s floor, according to an observer
standing on one of the floor landings of the
building?

√

2-i8 You’re in your Honda, cruising on the
freeway at velocity u, when, up ahead at dis-
tance L, a Ford pickup truck cuts in front of you
while moving at constant velocity u/2. Like half
the speed that any reasonable person would go!
Let positive x be the direction of motion, and let
your position be x = 0 at t = 0. To avoid a col-
lision, you immediately slam on the brakes and
start decelerating with acceleration −a, where a
is a positive constant.
(a) Write an equation for xF(t), the position of
the Ford as a function of time, as they trundle
onward obliviously.

√

(b) Write an equation for xH(t), the position of
your Honda as a function of time.

√

(c) By subtracting one from the other, find an
expression for the distance between the two ve-
hicles as a function of time, d(t).

√

(d) Find the minimum value of a that avoids a

collision.
√

(e) Show that your answer to part e has units
that make sense.
(f) Show that the dependence of your answer on
the variables makes sense physically.

2-i9 You’re in your Honda on the freeway
traveling behind a Ford pickup truck. The truck
is moving at a steady speed of 30.0 m/s, you’re
speeding at 40.0 m/s, and you’re cruising 45 me-
ters behind the Ford. At t = 0, the Ford slams
on his/her brakes, and decelerates at a rate of
5.0 m/s2. You don’t notice this until t = 1.0 s,
where you begin decelerating at 10.0 m/s2. Let
positive x be the direction of motion, and let
your position be x = 0 at t = 0. The goal is
to find the motion of each vehicle and determine
whether there is a collision.
(a) Doing this entire calculation purely numer-
ically would be very cumbersome, and it would
be difficult to tell whether you had made mis-
takes. Translate the given information into alge-
bra symbols, and find an equation for xF(t), the
position of the Ford as a function of time.

√

(b) Write a similar symbolic equation for xH(t)
(for t > 1 s), the position of the Honda as a
function of time. Why isn’t this formula valid
for t < 1 s?

√

(c) By subtracting one from the other, find an
expression for the distance between the two ve-
hicles as a function of time, d(t) (valid for t >
1 s until the truck stops). Does the equation
d(t) = 0 have any solutions? What does this tell
you?

√

(d) Because this is a fairly complicated calcula-
tion, we will find the result in two different ways
and check them against each other. Plug num-
bers back in to the results of parts a and b, re-
placing the symbols in the constant coefficients,
and graph the two functions using a graphing cal-
culator or an online utility such as desmos.com.
(e) As you should have discovered in parts c and
d, the two vehicles do not collide. At what time
does the minimum distance occur, and what is
that distance? √
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2-i10 You’re standing on the roof of your sci-
ence building, which is 10.0 meters above the
ground. You have a rock in your hand, which you
can throw with a maximum speed of 10.0 m/s.
(a) How long would it take for the rock to hit the
ground if you released the rock from rest?

√

(b) How long would it take for the rock to hit the
ground if you threw the rock straight downward?√

(c) How long would it take for the rock to hit the
ground if you threw the rock straight upward?√

(d) If you threw the rock straight upward, how
high would it get above the ground? √

2-i11 You’re standing on the roof of your sci-
ence building. You drop a rock from rest and
notice that it takes an amount of time T to hit
the ground. Express your answers to the follow-
ing questions in terms of T and the acceleration
due to gravity, g.
(a) How high is the building?

√

(b) How fast must you throw the rock straight up
if the rock is to take 2T to hit the ground?

√

(c) For the situation described in part b, how
long does it take from the time you let the rock go
to when the rock reaches maximum height?

√

(d) For the same situation, what is the maximum
height that the rock gets to above the ground?√

2-i12 You take a trip in your spaceship to an-
other star. Setting off, you increase your speed
at a constant acceleration. Once you get half-
way there, you start decelerating, at the same
rate, so that by the time you get there, you have
slowed down to zero speed. You see the tourist
attractions, and then head home by the same
method.
(a) Find a formula for the time, T , required for
the round trip, in terms of d, the distance from
our sun to the star, and a, the magnitude of the
acceleration. Note that the acceleration is not
constant over the whole trip, but the trip can be
broken up into constant-acceleration parts.
(b) The nearest star to the Earth (other than our
own sun) is Proxima Centauri, at a distance of

d = 4×1016 m. Suppose you use an acceleration
of a = 10 m/s2, just enough to compensate for
the lack of true gravity and make you feel com-
fortable. How long does the round trip take, in
years?
(c) Using the same numbers for d and a, find your
maximum speed. Compare this to the speed of
light, which is 3.0 × 108 m/s. (Later in this
course, you will learn that there are some new
things going on in physics when one gets close
to the speed of light, and that it is impossible to
exceed the speed of light. For now, though, just
use the simpler ideas you’ve learned so far.)√

2-k1 If the acceleration of gravity on Mars is
1/3 that on Earth, how many times longer does
it take for a rock to drop the same distance on
Mars? Ignore air resistance.

. Solution, p. 234

2-k2 Starting from rest, a ball rolls down a
ramp, traveling a distance L and picking up a
final speed v. How much of the distance did the
ball have to cover before achieving a speed of
v/2? [Based on a problem by Arnold Arons.]

?

2-k3 Suppose you can hit a tennis ball ver-
tically upward with a certain initial speed, inde-
pendent of what planet you’re on.
(a) If the height the ball reaches on Earth is H,
what is the height the ball will reach on Pluto,
where the acceleration due to gravity is about
1/15th the value on Earth?

√

(b) If the amount of time the ball spends in the
air on Earth is 3.0 seconds, how long would it
spend in the air on Pluto? √

2-k4 You climb half-way up a tree, and drop
a rock. Then you climb to the top, and drop
another rock. How many times greater is the
velocity of the second rock on impact? Explain.
(The answer is not two times greater.)

2-k5 Most people don’t know that
Spinosaurus aegyptiacus, not Tyrannosaurus
rex, was the biggest theropod dinosaur. We
can’t put a dinosaur on a track and time it
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in the 100 meter dash, so we can only infer
from physical models how fast it could have
run. When an animal walks at a normal
pace, typically its legs swing more or less like
pendulums of the same length `. As a further
simplification of this model, let’s imagine that
the leg simply moves at a fixed acceleration as it
falls to the ground. That is, we model the time
for a quarter of a stride cycle as being the same
as the time required for free fall from a height `.
S. aegyptiacus had legs about four times longer
than those of a human. (a) Compare the time
required for a human’s stride cycle to that for
S. aegyptiacus.

√

(b) Compare their running speeds. √

2-k6 Engineering professor Qingming Li used
sensors and video cameras to study punches de-
livered in the lab by British former welterweight
boxing champion Ricky “the Hitman” Hatton.
For comparison, Li also let a TV sports reporter
put on the gloves and throw punches. The time
it took for Hatton’s best punch to arrive, i.e., the
time his opponent would have had to react, was
about 0.47 of that for the reporter. Let’s assume
that the fist starts from rest and moves with con-
stant acceleration all the way up until impact,
at some fixed distance (arm’s length). Compare
Hatton’s acceleration to the reporter’s. √

2-k7 Aircraft carriers originated in World
War I, and the first landing on a carrier was per-
formed by E.H. Dunning in a Sopwith Pup bi-
plane, landing on HMS Furious. (Dunning was
killed the second time he attempted the feat.)
In such a landing, the pilot slows down to just
above the plane’s stall speed, which is the min-
imum speed at which the plane can fly without
stalling. The plane then lands and is caught by
cables and decelerated as it travels the length of
the flight deck. Comparing a modern US F-14
fighter jet landing on an Enterprise-class carrier
to Dunning’s original exploit, the stall speed is
greater by a factor of 4.8, and to accomodate
this, the length of the flight deck is greater by a

factor of 1.9. Which deceleration is greater, and
by what factor? √

2-k8 In college-level women’s softball in the
U.S., typically a pitcher is expected to be at
least 1.75 m tall, but Virginia Tech pitcher Jas-
min Harrell is 1.62 m. Although a pitcher ac-
tually throws by stepping forward and swing-
ing her arm in a circle, let’s make a simplified
physical model to estimate how much of a disad-
vantage Harrell has had to overcome due to her
height. We’ll pretend that the pitcher gives the
ball a constant acceleration in a straight line, and
that the length of this line is proportional to the
pitcher’s height. Compare the acceleration Har-
rell would have to supply with the acceleration
that would suffice for a pitcher of the nominal
minimum height, if both were to throw a pitch
at the same speed. √

2-k9 When the police engage in a high-speed
chase on city streets, it can be extremely danger-
ous both to the police and to other motorists and
pedestrians. Suppose that the police car must
travel at a speed that is limited by the need to
be able to stop before hitting a baby carriage,
and that the distance at which the driver first
sees the baby carriage is fixed. Tests show that
in a panic stop from high speed, a police car
based on a Chevy Impala has a deceleration 9%
greater than that of a Dodge Intrepid. Compare
the maximum safe speeds for the two cars. √

2-n1 The figure shows a practical, simple
experiment for determining g to high precision.
Two steel balls are suspended from electromag-
nets, and are released simultaneously when the
electric current is shut off. They fall through un-
equal heights ∆x1 and ∆x2. A computer records
the sounds through a microphone as first one
ball and then the other strikes the floor. From
this recording, we can accurately determine the
quantity T defined as T = ∆t2 − ∆t1, i.e., the
time lag between the first and second impacts.
Note that since the balls do not make any sound
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Problem 2-n2.

Problem 2-k5.

when they are released, we have no way of mea-
suring the individual times ∆t2 and ∆t1.
(a) Find an equation for g in terms of the mea-
sured quantities T , ∆x1 and ∆x2.

√

(b) Check the units of your equation.
(c) Check that your equation gives the correct re-
sult in the case where ∆x1 is very close to zero.
However, is this case realistic?
(d) What happens when ∆x1 = ∆x2? Discuss
this both mathematically and physically.

?

Problem 2-n1.

2-n2 Some fleas can jump as high as 30 cm.
The flea only has a short time to build up speed
— the time during which its center of mass is ac-
celerating upward but its feet are still in contact
with the ground. Make an order-of-magnitude
estimate of the acceleration the flea needs to have
while straightening its legs, and state your an-
swer in units of g, i.e., how many “g’s it pulls.”
(For comparison, fighter pilots black out or die
if they exceed about 5 or 10 g’s.)

?

2-n3 The speed required for a low-earth or-
bit is 7.9× 103 m/s. When a rocket is launched
into orbit, it goes up a little at first to get above
almost all of the atmosphere, but then tips over
horizontally to build up to orbital speed. Sup-
pose the horizontal acceleration is limited to 3g
to keep from damaging the cargo (or hurting the
crew, for a crewed flight). (a) What is the mini-
mum distance the rocket must travel downrange
before it reaches orbital speed? How much does
it matter whether you take into account the ini-
tial eastward velocity due to the rotation of the
earth? (b) Rather than a rocket ship, it might
be advantageous to use a railgun design, in which
the craft would be accelerated to orbital speeds
along a railroad track. This has the advantage
that it isn’t necessary to lift a large mass of fuel,
since the energy source is external. Based on
your answer to part a, comment on the feasibil-
ity of this design for crewed launches from the
earth’s surface.

?
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2-n4 When an object slides frictionlessly
down a plane inclined at an angle θ, its accelera-
tion equals g sin θ (p. 16). Suppose that a person
on a bike is to coast down a ramp, starting from
rest, and then coast back up an identical ramp,
tracing a “V.” The horizontal distance is fixed
to be 2w, and we want to set the depth of the
“V” so as to achieve the minimal possible value
t∗ for the total time.
(a) Based only on units, infer the form of the
expression for t∗ in terms of w, up to a unitless
multiplicative constant.
(b) Find the angle that minimizes the time.
(c) Complete the determination of t∗ by finding
the unitless constant.

. Solution, p. 234 ?

2-n5 The figure shows a circle in a vertical
plane, with two wires positioned along chords of
the circle. The top of each wire coincides with
the top of the circle. Beads slide frictionlessly on
the wires. If the beads are released simultane-
ously at the top, which one wins the race? You
will need the fact that the acceleration equals
g sin θ (p. 16).

?

Problem 2-n5.

2-o1 The graph represents the motion of a
ball that rolls up a hill and then back down.
When does the ball return to the location it had
at t = 0?

Problem 2-o1.

2-o2 The top part of the figure shows the
position-versus-time graph for an object moving
in one dimension. On the bottom part of the fig-
ure, sketch the corresponding v-versus-t graph.

Problem 2-o2.

2-o3 For each of the two graphs, find the
change in position ∆x from beginning to end.√

2-o4 The graph represents the velocity of a
bee along a straight line. At t = 0, the bee is at
the hive. (a) When is the bee farthest from the
hive? (b) How far is the bee at its farthest point
from the hive? (c) At t = 13 s, how far is the
bee from the hive? √

2-o5 Decide whether the following statements
about one-dimensional motion are true or false:
(a) The area under a v(t) curve gives the accel-
eration of the object.
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Problem 2-o3.

(b) The area under a a(t) curve gives the change
in velocity of the object.
(c) The slope of a a(t) curve at time T is the
value v(T ).
(d) The slope of the v(t) curve at time T is the
value a(T ).
(e) The displacement ∆x from t1 to t2 is equal
to the area under the a(t) curve from t1 to t2.

2-o6 (a) The ball is released at the top of the
ramp shown in the figure. Friction is negligible.
Use physical reasoning to draw v − t and a − t
graphs. Assume that the ball doesn’t bounce at
the point where the ramp changes slope. (b) Do
the same for the case where the ball is rolled up

Problem 2-o4.

the slope from the right side, but doesn’t quite
have enough speed to make it over the top.

Problem 2-o6.

2-o7 You throw a rubber ball up, and it falls
and bounces several times. Draw graphs of po-
sition, velocity, and acceleration as functions of
time.

2-p1 (a) Express the chain rule in Leibniz
(“d”) notation, and show that it always results
in an answer whose units make sense.
(b) An object has a position as a function of
time given by x = A cos(bt), where A and b
are constants. Infer the units of A and b, and
interpret their physical meanings.
(c) Find the velocity of this object, and check
that the chain rule has indeed given an answer
with the right units.

2-p2 In July 1999, Popular Mechanics carried
out tests to find which car sold by a major auto
maker could cover a quarter mile (402 meters)
in the shortest time, starting from rest. Because
the distance is so short, this type of test is de-
signed mainly to favor the car with the greatest
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acceleration, not the greatest maximum speed
(which is irrelevant to the average person). The
winner was the Dodge Viper, with a time of 12.08
s. The car’s top (and presumably final) speed
was 118.51 miles per hour (52.98 m/s). (a) If
a car, starting from rest and moving with con-
stant acceleration, covers a quarter mile in this
time interval, what is its acceleration? (b) What
would be the final speed of a car that covered a
quarter mile with the constant acceleration you
found in part a? (c) Based on the discrepancy
between your answer in part b and the actual
final speed of the Viper, what do you conclude
about how its acceleration changed over time?

. Solution, p. 234 ?

2-p3 A honeybee’s position as a function of
time is given by x = 10t−t3, where t is in seconds
and x in meters. What is its velocity at t = 3.0
s? √

2-p4 Objects A and B move along the x axis.
The acceleration of both objects as functions of
time is given by a(t) = (3.00 m/s3)t. Object
A starts (at t = 0) from rest at the origin, and
object B starts at x = 5.00 m, initially moving
in the negative x direction with speed 9.00 m/s.
(a) What is A’s velocity at time t = 2.00 s?

√

(b) What is A’s position at the same time?
√

(c) What is B’s velocity at the same time?
√

(d) What is B’s position at the same time?
√

(e) Consider a frame of reference in which A is
at rest, such as the frame that would naturally
be adopted by an observer moving along with A.
Describe B’s motion in this frame.
(f) After they start, is there any time at which
A and B collide?

2-p5 The position of a particle moving on the
x-axis is described by the equation x(t) = t3−4t2

(with x in meters and t in seconds). Consider the
times t = −1, 0, 1, 2, and 3 seconds. For which
of these times is the particle slowing down?

2-p6 Freddi Fish(TM) has a position as a func-
tion of time given by x = a/(b + t2). (a) Infer
the units of the constants a and b. (b) Find her

maximum speed. (c) Check that your answer has
the right units. √

2-p7 Let t be the time that has elapsed since
the Big Bang. In that time, one would imagine
that light, traveling at speed c, has been able to
travel a maximum distance ct. (In fact the dis-
tance is several times more than this, because
according to Einstein’s theory of general rela-
tivity, space itself has been expanding while the
ray of light was in transit.) The portion of the
universe that we can observe would then be a
sphere of radius ct, with volume v = (4/3)πr3 =
(4/3)π(ct)3. Compute the rate dv/dt at which
the volume of the observable universe is increas-
ing, and check that your answer has the right
units. √

2-p8 Sometimes doors are built with mech-
anisms that automatically close them after they
have been opened. The designer can set both the
strength of the spring and the amount of friction.
If there is too much friction in relation to the
strength of the spring, the door takes too long
to close, but if there is too little, the door will
oscillate. For an optimal design, we get motion
of the form x = cte−bt, where x is the position of
some point on the door, and c and b are positive
constants. (Similar systems are used for other
mechanical devices, such as stereo speakers and
the recoil mechanisms of guns.) In this exam-
ple, the door moves in the positive direction up
until a certain time, then stops and settles back
in the negative direction, eventually approach-
ing x = 0. This would be the type of motion we
would get if someone flung a door open and the
door closer then brought it back closed again.
(a) Infer the units of the constants b and c.
(b) Find the door’s maximum speed (i.e., the
greatest absolute value of its velocity) as it comes
back to the closed position.

√

(c) Show that your answer has units that make
sense.

?

2-p9 A person is parachute jumping. During
the time between when she leaps out of the plane
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and when she opens her chute, her altitude is
given by an equation of the form

y = b− c
(
t+ ke−t/k

)
,

where e is the base of natural logarithms, and b,
c, and k are constants. Because of air resistance,
her velocity does not increase at a steady rate as
it would for an object falling in vacuum.
(a) What units would b, c, and k have to have
for the equation to make sense?
(b) Find the person’s velocity, v, as a function of
time. [You will need to use the chain rule, and
the fact that d(ex)/ dx = ex.]

√

(c) Use your answer from part (b) to get an in-
terpretation of the constant c. [Hint: e−x ap-
proaches zero for large values of x.]
(d) Find the person’s acceleration, a, as a func-
tion of time.

√

(e) Use your answer from part (d) to show that
if she waits long enough to open her chute, her
acceleration will become very small.

?
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3 Kinematics in three dimensions

This is not a textbook. It’s a book of problems
meant to be used along with a textbook. Although
each chapter of this book starts with a brief sum-
mary of the relevant physics, that summary is
not meant to be enough to allow the reader to
actually learn the subject from scratch. The pur-
pose of the summary is to show what material is
needed in order to do the problems, and to show
what terminology and notation are being used.

3.1 Vectors

Most of the things we want to measure in
physics fall into two categories, called vectors
and scalars. A scalar is something that doesn’t
change when you turn it around, while a vector
does change when you rotate it, and the way in
which it changes is the same as the way in which
a pointer such as a pencil or an arrow would
change. For example, temperature is a scalar:
a hot cup of coffee doesn’t change its tempera-
ture when we turn it around. Force is a vector.
When I play tug-of-war with my dog, her force
and mine are the same in strength, but they’re
in opposite directions. If we swap positions, our
forces reverse their directions, just as a pair of
arrows would.

Figure 3.1: Temperature is a scalar. Force is a
vector.

To distinguish vectors from scalars, we write
them differently, e.g., p for a scalar and bold-
face p for a vector. In handwriting, a vector is
written with an arrow over it, −→p .

Not everything is a scalar or a vector. For
example, playing cards are designed in a sym-
metric way, so that they look the same after a

180-degree rotation. The orientation of the card
is not a scalar, because it changes under a rota-
tion, but it’s not a vector, because it doesn’t be-
have the way an arrow would under a 180-degree
rotation.

In kinematics, the simplest example of a vector
is a motion from one place to another, called a
displacement vector.

A vector A has a magnitude |A|, which means
its size, length, or amount. Rotating a vector
can change the vector, but will never change its
magnitude.

Scalars are just numbers, and we do arithmetic
on them in the usual way. Vectors are differ-
ent. Vectors can be added graphically by placing
them tip to tail, and then drawing a vector from
the tail of the first vector to the tip of the second
vector. A vector can be multiplied by a scalar to
give a new vector. For instance, if A is a vector,
then 2A is a vector that has the same direction
but twice the magnitude. Multiplying by −1 is
the same as flipping the vector, −A = (−1)A.
Vector subtraction can be accomplished by flip-
ping and adding.

Figure 3.2: Graphical addition of vectors.

Suppose that a sailboat undergoes a displace-
ment h while moving near a pier. We can de-
fine a number called the component of h parallel
to the pier, which is the distance the boat has
moved along the pier, ignoring an motion toward
or away from the pier. If we arbitrarily define
one direction along the pier as positive, then the
component has a sign.

Often it is convenient to work with compo-

31
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nents of a vector along the coordinate axes. If
we pick a Cartesian coordinate system with x, y,
and z axes, then any vector can be specified ac-
cording to its x, y, and z components. We have
previously given a graphical definition for vector
addition. This is equivalent to adding compo-
nents.

Unit vector notation

Suppose we want to tell someone that a cer-
tain vector A in two dimensions has components
Ax = 3 and Ay = 7. A more compact way of no-
tating this is A = 3x̂ + 7ŷ, where x̂ and ŷ, read
“x-hat” and “y-hat,” are the vectors with mag-
nitude one that point in the positive x and y
directions. Some authors notate the unit vectors
as î, ĵ, and k̂ rather than x̂, ŷ, and ẑ.

Rotational invariance

Certain vector operations are useful and others
are not. Consider the operation of multiplying
two vectors component by component to produce
a third vector:

Rx = PxQx

Ry = PyQy

Rz = PzQz.

This operation will never be useful in physics be-
cause it can give different results depending on
our choice of coordinates. That is, if we change
our coordinate system by rotating the axes, then
the resulting vector R will of course have differ-
ent components, but these will not (except in ex-
ceptional cases) be the components of the same
vector expressed in the new coordinates. We say
that this operation is not rotationally invariant.

The universe doesn’t come equipped with co-
ordinates, so if any vector operation is to be use-
ful in physics, it must be rotationally invariant.
Vector addition, for example, is rotationally in-
variant, since we can define it using tip-to-tail
graphical addition, and this definition doesn’t
even refer to any coordinate system. This rota-
tional invariance would still have held, but might

not have been so obvious, if we had defined ad-
dition in terms of addition of components.

Dot and cross product

The vector dot product A · B is defined as the
(signed) component of A parallel to B. It is a
scalar. If we know the magnitudes of the vectors
and the angle θAB between them, we can com-
pute the dot product as |A||B| cos θAB . If we
know the components of the vectors in a partic-
ular coordinate system, we can express the dot
product as AxBx +AyBy +AzBz.

The dot product is useful simply as a geomet-
rical tool, but later in this course we will also
see that it has physical applications that include
mechanical work, as well as many examples in
electricity and magnetism, such as electric flux.

There is also a way of multiplying two vectors
to obtain a vector result. This is called the vector
cross product , C = A×B. The magnitude of the
cross product is the area of the parallelogram il-
lustrated in figure 3.3. The direction of the cross
product is perpendicular to the plane in which
A and B lie. There are two such directions, and
of these two, we choose the one defined by the
right-hand rule illustrated in figure 3.4.

Figure 3.3: The magnitude of the cross product
is the area of the shaded parallelogram.

Important physical applications of the cross
product include torque, angular momentum, and
magnetic forces.

Unlike ordinary multiplication of real num-
bers, the cross product is anticommutative, A×
B = −B×A. The magnitude of the cross prod-
uct can be expressed as |A||B| sin θAB . In terms
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Figure 3.4: The right-hand rule for the direction
of the vector cross product.

of the components, we have

Cx = AyBz −ByAz
Cy = AzBx −BzAx
Cz = AxBy −BxAy.

3.2 Motion

Velocity and acceleration

If an object undergoes an infinitesimal displace-
ment dr in an infinitesimal time interval dt, then
its velocity vector is the derivative v = dr/ dt.
This type of derivative of a vector can be com-
puted by differentiating each component sepa-
rately. The acceleration is the second derivative
d2 r/ dt2.

The velocity vector has a magnitude that in-
dicates the speed of motion, and a direction that
gives the direction of the motion. We saw in sec-
tion 2.1 that velocities add in relative motion.
To generalize this to more than one dimension,
we use vector addition.

The acceleration vector does not necessarily

Figure 3.5: The racing greyhound’s velocity vec-
tor is in the direction of its motion, i.e., tangent
to its curved path.

point in the direction of motion. It points in the
direction that an accelerometer would point, as
in figure 3.6.

Figure 3.6: The car has just swerved to the right.
The air freshener hanging from the rear-view
mirror acts as an accelerometer, showing that
the acceleration vector is to the right.

Projectiles and the inclined plane

Forces cause accelerations, not velocities. In par-
ticular, the downward force of gravity causes a
downward acceleration vector. After a projec-
tile is launched, the only force on it is gravity,
so its acceleration vector points straight down.
Therefore the horizontal part of its motion has



34 CHAPTER 3. KINEMATICS IN THREE DIMENSIONS

constant velocity. The vertical and horizontal
motions of a projectile are independent. Neither
affects the other.
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Problems

3-a1 The figure shows vectors A and B.
Graphically calculate the following.
A + B, A−B, B−A, −2B, A− 2B

No numbers are involved.

Problem 3-a1.

3-a2 Phnom Penh is 470 km east and 250
km south of Bangkok. Hanoi is 60 km east and
1030 km north of Phnom Penh.
(a) Choose a coordinate system, and translate
these data into ∆x and ∆y values with the
proper plus and minus signs.
(b) Find the components of the ∆r vector
pointing from Bangkok to Hanoi.

√

3-a3 If you walk 35 km at an angle 25◦

counterclockwise from east, and then 22 km
at 230◦ counterclockwise from east, find the
distance and direction from your starting point
to your destination.

√

3-a4 A machinist is drilling holes in a piece
of aluminum according to the plan shown in
the figure. She starts with the top hole, then
moves to the one on the left, and then to the
one on the right. Since this is a high-precision
job, she finishes by moving in the direction and
at the angle that should take her back to the
top hole, and checks that she ends up in the

same place. What are the distance and direc-
tion from the right-hand hole to the top one?

√

Problem 3-a4.

3-a5 Suppose someone proposes a new op-
eration in which a vector A and a scalar B are
added together to make a new vector C like this:

Cx = Ax +B

Cy = Ay +B

Cz = Az +B

Prove that this operation won’t be useful in
physics, because it’s not rotationally invariant.

3-d1 Find the angle between the following
two vectors:

x̂ + 2ŷ + 3ẑ

4x̂ + 5ŷ + 6ẑ

√

3-d2 Let a and b be any two numbers (not
both zero), and let u = ax̂ + bŷ. Suppose we
want to find a (nonzero) second vector v in the
x-y plane that is perpendicular to u. Use the
vector dot product to write down a condition for
v to satisfy, find a suitable v, and check using
the dot product that it is indeed a solution.
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3-g1 Find a vector that is perpendicular to
both of the following two vectors:

x̂ + 2ŷ + 3ẑ

4x̂ + 5ŷ + 6ẑ

√

3-g2 Which of the following expressions make
sense, and which are nonsense? For those that
make sense, indicate whether the result is a vec-
tor or a scalar.
(a) (A×B)×C
(b) (A×B) ·C
(c) (A ·B)×C

3-g3 Vector A = (3.0x̂ − 4.0ŷ) meters, and
vector B = (5.0x̂ + 12.0ŷ) meters. Find the fol-
lowing: (a) The magnitude of vector A−2B.

√

(b) The dot product A ·B.
√

(c) The cross product A×B (expressing the re-
sult in terms of its components).

√

(d) The value of (A + B) · (A−B).
√

(e) The angle between the two vectors. √

3-g4 Prove the anticommutative property of
the vector cross product, A×B = −B×A, using
the expressions for the components of the cross
product. Note that giving an example does not
constitute a proof of a general rule.

3-g5 Label the following statements about
vectors as true or false.
(a) The angle between ax̂ + bŷ and bx̂ + aŷ is
zero.
(b) The three vectors A, B, and A + B form a
triangle.
(c) The three vectors A, B, and A − B form a
triangle.
(d) The cross product between two vectors is al-
ways perpendicular to each of the two vectors.
(e) If the angle between two vectors is greater
than 90◦, then the dot product between the two
vectors is negative.
(f) A unit vector has magnitude 1 (and no units).

3-g6 Find three vectors with which you can
demonstrate that the vector cross product need
not be associative, i.e., that A × (B × C) need
not be the same as (A×B)×C.

3-g7 Can the vector cross product be gen-
eralized to four dimensions? The generalization
should, like the three-dimensional version, take
two vectors as inputs, give a vector as an out-
put, and be rotationally invariant. (This is of
real-world interest because Einstein’s theory of
relativity can be interpreted as describing time
as a kind of fourth dimension.)

?

3-g8 A certain function f takes two vectors
as inputs and gives an output that is also a vec-
tor. The function can be defined in such a way
that it is rotationally invariant, and it is also well
defined regardless of the units of the vectors. It
takes on the following values for the following
inputs:

f(x̂, ŷ) = −ẑ
f(2x̂, ŷ) = −8ẑ

f(x̂, 2ŷ) = −2ẑ

Prove that the given information uniquely deter-
mines f , and give an explicit expression for it.

?

3-j1 Annie Oakley, riding north on horseback
at 30 mi/hr, shoots her rifle, aiming horizon-
tally and to the northeast. The muzzle speed
of the rifle is 140 mi/hr. When the bullet hits
a defenseless fuzzy animal, what is its speed of
impact? Neglect air resistance, and ignore the
vertical motion of the bullet.

3-j2 As shown in the figure, you wish to
cross a river and arrive at a dock that is directly
across from you, but the river’s current will tend
to carry you downstream. To compensate, you
must steer the boat at an angle. Find the an-
gle θ, given the magnitude, |vWL|, of the water’s
velocity relative to the land, and the maximum
speed, |vBW |, of which the boat is capable rela-
tive to the water.
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Problem 3-j7.

Problem 3-j2.

. Solution, p. 234
3-j3 It’s a calm day in Los Angeles with no
wind. You’re in your car on the Ventura Free-
way going 105 km/hour when it starts to rain.
You notice out the driver’s side window that the
raindrops make an angle of 70◦ with respect to
the vertical.
(a) What is the speed of the raindrops as mea-
sured by someone at rest relative to the freeway?√

(b) What is the speed of the raindrops as mea-
sured by you?

√

3-j4 A border collie and a rottweiler, both
initially at the same location, start chasing two
different objects. The border collie starts chas-
ing a stick thrown in the x̂+ ŷ direction, and the
rottweiler starts chasing your neighbor in the −ŷ
direction. Both dogs move at speed v. For both
parts of this problem, give your results as exact
expressions, not decimal approximations.
(a) What is the velocity of the rottweiler as mea-
sured by the border collie?

√

(b) How long does it take for the distance be-
tween the two dogs to be D? √

3-j5 A plane can fly at u = 150 m/s with re-
spect to the air, and the wind is from the south-
west at v = 50 m/s.
(a) In what direction should the plane head in
order to fly directly north (with respect to the
ground)? Give the angle in degrees west of north.√

(b) What is the plane’s speed as measured by an
observer on the ground? √

3-j6 A plane flies toward a city directly north
and a distance D away. The wind speed is u,
and the plane’s speed with respect to the wind
is v.
(a) If the wind is blowing from the west (towards
the east), what direction should the plane head
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(what angle west of north)?
√

(b) How long does it take the plane to get to the
city?

√

(c) Check that your answer to part b has units
that make sense.
(d) Comment on the behavior of your answer in
the case where u = v.

3-j7 As shown in the diagram, a dinosaur
fossil is slowly moving down the slope of a glacier
under the influence of wind, rain and gravity.
At the same time, the glacier is moving relative
to the continent underneath. The dashed lines
represent the directions but not the magnitudes
of the velocities. Pick a scale, and use graphical
addition of vectors to find the magnitude and the
direction of the fossil’s velocity relative to the
continent. You will need a ruler and protractor.√

3-j8 Andrés and Brenda are going to race to
see who can first get to a town across a river of
width 20.0 m. The water in the river is moving
at a constant 0.60 m/s, each person can swim
with speed 1.00 m/s with respect to the water,
and each person can run 4.00 m/s on land.

Andrés is going to row in such a way that he
moves straight towards the town across the river.
Brenda, however, decides to get to the other side
of the river as quickly as she can, and run.
(a) How long does it take Andrés to swim to the
other side of the river? Call this TA

√

(b) How long does it take Brenda to get to the
other side of the river (not at the town, since the
river carries her downstream)? Call this t1.

√

(c) How long does it take Brenda to run to the
town on the other side of the river? Call this
t2.

√

(d) How long (TB = t1 + t2) does the total trip
take Brenda? Who wins the race? √

3-j9 César is on one bank of a river in which
the water flows at speed w. He can swim at speed
u and run at speed v. On the other side, directly
across from him, is a town that he wants to reach
in the minimum possible time. Depending on the
direction in which he chooses to swim, he may

need to run some distance along the far bank in
order to get to the town. Show that, surprisingly,
the optimal angle depends on the variables v and
w only through their sum v + w.

?

3-m1 Is it possible for a helicopter to have an
acceleration due east and a velocity due west? If
so, what would be going on? If not, why not?

3-m2 The figure shows the path followed by
Hurricane Irene in 2005 as it moved north. The
dots show the location of the center of the storm
at six-hour intervals, with lighter dots at the time
when the storm reached its greatest intensity.
Find the time when the storm’s center had a ve-
locity vector to the northeast and an acceleration
vector to the southeast. Explain.

3-m3 A bird is initially flying horizontally
east at 21.1 m/s, but one second later it has
changed direction so that it is flying horizontally
and 7◦ north of east, at the same speed. What
are the magnitude and direction of its accelera-
tion vector during that one second time interval?
(Assume its acceleration was roughly constant.)√

3-m4 Two cars go over the same speed bump
in a parking lot, Maria’s Maserati at 25 miles
per hour and Park’s Porsche at 37. How many
times greater is the vertical acceleration of the
Porsche? Hint: Remember that acceleration de-
pends both on how much the velocity changes
and on how much time it takes to change. √

3-p1 Two daredevils, Wendy and Bill, go over
Niagara Falls. Wendy sits in an inner tube, and
lets the 30 km/hr velocity of the river throw her
out horizontally over the falls. Bill paddles a
kayak, adding an extra 10 km/hr to his velocity.
They go over the edge of the falls at the same
moment, side by side. Ignore air friction. Ex-
plain your reasoning.
(a) Who hits the bottom first?
(b) What is the horizontal component of
Wendy’s velocity on impact?
(c) What is the horizontal component of Bill’s
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Problem 3-s2.

Problem 3-m2.

velocity on impact?
(d) Who is going faster on impact?

3-p2 At the 2010 Salinas Lettuce Festival Pa-
rade, the Lettuce Queen drops her bouquet while
riding on a float moving toward the right. Sketch
the shape of its trajectory in her frame of refer-
ence, and compare with the shape seen by one of
her admirers standing on the sidewalk.

3-s1 A gun is aimed horizontally to the west.
The gun is fired, and the bullet leaves the muz-
zle at t = 0. The bullet’s position vector as a
function of time is r = bx̂ + ctŷ + dt2ẑ, where b,
c, and d are positive constants.
(a) What units would b, c, and d need to have
for the equation to make sense?
(b) Find the bullet’s velocity and acceleration as

functions of time.
(c) Give physical interpretations of b, c, d, x̂, ŷ,
and ẑ.

3-s2 A baseball pitcher throws a pitch clocked
at vx = 73.3 miles/hour. He throws horizontally.
By what amount, d, does the ball drop by the
time it reaches home plate, L = 60.0 feet away?
(a) First find a symbolic answer in terms of L,
vx, and g.

√

(b) Plug in and find a numerical answer. Express
your answer in units of ft. (Note: 1 foot=12
inches, 1 mile=5280 feet, and 1 inch=2.54 cm)√

3-s3 You’re running off a cliff into a pond.
The cliff is h = 5.0 m above the water, but the
cliff is not strictly vertical; it slopes down to the
pond at an angle of θ = 20◦ with respect to the
vertical. You want to find the minimum speed
you need to jump off the cliff in order to land in
the water.
(a) Find a symbolic answer in terms of h, θ, and
g.

√

(b) Check that the units of your answer to part
a make sense.
(c) Check that the dependence on the variables
g, h, and θ makes sense, and check the special
cases θ = 0 and θ = 90◦.
(d) Plug in numbers to find the numerical
result.

√
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Problem 3-s12.

Problem 3-s3.

3-s4 A batter hits a baseball at speed v, at
an angle θ above horizontal.
(a) Find an equation for the range (horizontal
distance to where the ball falls), R, in terms of
the relevant variables. Neglect air friction and
the height of the ball above the ground when it
is hit.
(b) Interpret your equation in the cases of θ=0
and θ = 90◦.
(c) Find the angle that gives the maximum
range.

3-s5 A tennis ball is thrown from the ground
with speed 15 m/s at an angle of 45◦ above the
horizontal.
(a) How long is the ball in the air (from the throw
to when it lands on the ground)?

√

(b) What is the maximum height that the ball

reaches?
√

(c) What is the range of the ball (the horizon-
tal distance the ball has traveled by the time it
lands)? √

3-s6 (a) A ball is thrown straight up with
velocity v. Find an equation for the height to
which it rises.

√

(b) Generalize your equation for a ball thrown
at an angle θ above horizontal, in which case its
initial velocity components are vx = v cos θ and
vy = v sin θ.

√

3-s7 The first time he played golf, now-
deceased North Korean leader Kim Jong-Il is
said to have gotten 11 holes in one. Suppose
that his son, Kim Jong-Un, wants to top his fa-
ther’s feat by hitting a golf ball all the way from
Pyongyang to Seoul, a distance of 195 km. Ignor-
ing air resistance and the curvature of the earth,
how fast does he need to hit the ball? Note that
the maximum range (assuming no air resistance)
is achieved for a launch angle of 45◦.

3-s8 Two footballs, one white and one green,
are on the ground and kicked by two differ-
ent footballers. The white ball, which is kicked
straight upward with initial speed v0, rises to
height H. The green ball is hit with twice the
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initial speed but reaches the same height.
(a) What is the y-component of the green ball’s
initial velocity vector? Give your answer in
terms of v0 alone.

√

(b) Which ball is in the air for a longer amount
of time?
(c) What is the range of the green ball? Your
answer should only depend on H. √

3-s9 You throw a rock horizontally from the
edge of the roof of a building of height 10.0 m.
The rock hits the ground at exactly twice its ini-
tial speed. How fast was the rock thrown off the
roof? Express your answer to three significant
figures. √

3-s10 You throw a rock horizontally from the
edge of the roof of a building of height h with
speed v0. What is the (positive) angle between
the final velocity vector and the horizontal when
the rock hits the ground? √

3-s11 Standing on the edge of the roof of a
building of height h, you throw a rock with speed
v0 at 30◦ above the horizontal.
(a) How high above the ground does the rock
get?

√

(b) How far away from the building does the rock
land? √

3-s12 The figure shows an arcade game
called skee ball that is similar to bowling. The
player rolls the ball down a horizontal alley.
The ball then rides up a curved lip and is
launched at an initial speed u, at an angle α
above horizontal. Suppose we want the ball to
go into a hole that is at horizontal distance `
and height h, as shown in the figure.
(a) Find the initial speed u that is required, in
terms of the other variables and g.

√

(b) Check that your answer to part a has units
that make sense.
(c) Check that your answer to part a depends
on g in a way that makes sense. This means
that you should first determine on physical
grounds whether increasing g should increase u,

or decrease it. Then see whether your answer to
part a has this mathematical behavior.
(d) Do the same for the dependence on h.
(e) Interpret your equation in the case where
α = 90◦.
(f) Interpret your equation in the case where
tanα = h/`.
(g) Find u numerically if h = 70 cm, ` = 60 cm,
and α = 65◦.

√

3-s13 A particle leaves point P at time t = 0 s
with initial velocity (−2.0x̂ + 4.0ŷ) m/s. Point
P is located on the x axis at position (x, y) =
(10.0 m, 0). If the particle experiences constant
acceleration a = (−5.0ŷ) m/s2, then which axis
does it cross first, x or y, and at what location?

3-s14 A Hot Wheels car is rolling along a
horizontal track at speed v0 = 6.0 m/s. It then
comes to a ramp inclined at an angle θ = 30◦

above the horizontal, and the car undergoes a
deceleration of g sin θ = 4.9 m/s2 when moving
along the ramp. The track ends at the top of
the ramp, so the car is launched into the air. By
the time the car reaches the top of the ramp, its
speed has gone down to 3.0 m/s.
(a) How high is the top of the ramp (vertical
height, not distance along the ramp)?

√

(b) After the car is achieves lift-off, how long
does it spend in the air before hitting the
ground? √

3-s15 A Hot Wheels car is rolling along a
horizontal track at speed v0. It then comes to a
ramp inclined at an angle θ above the horizon-
tal. The car undergoes a deceleration of g sin θ
while rolling up the ramp. The track ends after
a distance L, so the car is launched into the air.
(a) What is the speed of the car when it leaves
the ramp?

√

(b) How high does the car get above the ground?√

3-s16 The figure shows a vertical cross-
section of a cylinder. A gun at the top shoots a
bullet horizontally. What is the minimum speed
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at which the bullet must be shot in order to com-
pletely clear the cylinder?

?

Problem 3-s16.

3-s17 A battleship has a gun that fires shells
with muzzle velocity u, and the gunner wants
to hit an enemy ship at range L. The gun is
to be fired at some angle θ above the horizon-
tal. Find the two possible values of θ that are
possible under normal conditions. Under what
conditions are there one solution or no solutions
at all? To what extent is the form of the solution
determined by units?



4 Newton’s laws, part 1

This is not a textbook. It’s a book of problems
meant to be used along with a textbook. Although
each chapter of this book starts with a brief sum-
mary of the relevant physics, that summary is
not meant to be enough to allow the reader to
actually learn the subject from scratch. The pur-
pose of the summary is to show what material is
needed in order to do the problems, and to show
what terminology and notation are being used.

4.1 Newton’s first law

Isaac Newton (1643-1727) originated the idea
of explaining all events, both on earth and in
the heavens, using a set of simple and universal
mathematical laws. His three laws talk about
forces, so what is a force?

In figure 4.1, the legendary Baron von Mun-
chausen lifts himself and his horse out of a
swamp by pulling up on his own pigtail. This
is not actually possible, because an object can’t
accelerate by exerting a force on itself. A force
is always an interaction between two objects.

Figure 4.1: Escaping from a swamp.

The left side of figure 4.2 shows a hand making
a force on a rope. Two objects: hand and rope.

A force refers to a direct cause, not an indirect
one. A pool player makes a force on the cue stick,
but not on the cue ball.

To finish defining what we mean by a force, we
need to say how we would measure a force nu-
merically. In the right-hand side, the stretching
of a spring is a measure of the hand’s force. The
SI unit of force is the newton (N), which we will
see later is actually defined in a convenient way
in terms of the base units of the SI. Force is a
vector.

Figure 4.2: Forces.

Suppose that we can prevent any forces at all
from acting on an object, perhaps by moving it
far away from all other objects, or surrounding
it with shielding. (For example, there is a nickel-
iron alloy marketed as “mu-metal” which blocks
magnetic forces very effectively.) Newton’s first
law states that in this situation, the object has a
zero acceleration vector, i.e., its velocity vector
is constant. If the object is already at rest, it
remains at rest. If it is already in motion, it
remains in motion at constant speed in the same
direction.

Newton’s first law is a more detailed and quan-
titative statement of the law of inertia. The first
law holds in an inertial frame of reference; in
fact, this is just a restatement of what we mean
by an inertial frame.

The first law may not seem very useful for ap-
plications near the earth’s surface, since an ob-
ject there will always be subject at least to the

43
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Figure 4.3: The four forces on the sailboat cancel
out.

force of gravity. But the first law can also be ex-
tended to apply to cases in which forces do act
on an object, but they cancel out. An example
is the sailboat in figure 4.3.

An object can rotate or change its shape. A
cat does both of these things when it falls and
brings its feet under itself before it hits the
ground. In such a situation, it is not immedi-
ately obvious what is meant by “the” velocity
of the object. We will see later that Newton’s
first law can still be made to hold in such cases
if we measure its motion by using a special point
called its center of mass, which is the point on
which it would balance. In the example of Baron
von Munchausen, it is certainly possible for one
part of his body to accelerate another part of
his body by making a force on it; however, this
will have no effect on the motion of his center of
mass.

4.2 Newton’s second law

Newton’s second law tells us what happens when
the forces acting on an object do not cancel out.
The object’s acceleration is then given by

a =
Ftotal

m
, (4.1)

where Ftotal is the vector sum of all the forces,
and m is the object’s mass. Mass is a perma-
nent property of an object that measures its in-
ertia, i.e., how much it resists a change in its

motion. Since the SI unit of mass is the kilo-
gram, it follows from Newton’s second law that
the newton is related to the base units of the SI
as 1 N = 1 kg·m/s2.

The force that the earth’s gravity exerts on
an object is called its weight , which is not the
same thing as its mass. An object of mass m has
weight mg (problem 4-a1, p. 46).

4.3 Newton’s third law

We have seen that a force is always an interaction
between two objects. Newton’s third law states
that these forces come in pairs. If object A exerts
a force on object B, then B also exerts a force on
A. The two forces have equal magnitudes but are
in opposite directions. In symbols,

FA on B = −FB on A. (4.2)

Newton’s third law holds regardless of whether
everything is in a state of equilibrium. It might
seem as though the two forces would cancel out,
but they can’t cancel out because it doesn’t even
make sense to add them in the first place. They
act on different objects, and it only makes sense
to add forces if they act on the same object.

Figure 4.4: Newton’s third law does not mean
that forces always cancel out so that nothing
can ever move. If these two ice skaters, initially
at rest, push against each other, they will both
move.
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The pair of forces related by Newton’s third
law are always of the same type. For example,
the hand in the left side of figure 4.2 makes a fric-
tional force to the right on the rope. Newton’s
third law tells us that the rope exerts a force
on the hand that is to the left and of the same
strength. Since one of these forces is frictional,
the other is as well.
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Problems

4-a1 (a) Why would it not make sense to
say that the force of gravity acting on an object
equals g?
(b) Why would it not make sense to say that the
force of gravity acting on an object of mass m
equals m?
(c) Use Newton’s second law to prove that the
magnitude of the gravitational force acting on an
object of mass m equals mg.

. Solution, p. 234

4-a2 You are given a large sealed box, and
are not allowed to open it. Which of the follow-
ing experiments measure its mass, and which
measure its weight? [Hint: Which experiments
would give different results on the moon?]
(a) Put it on a frozen lake, throw a rock at it,
and see how fast it scoots away after being hit.
(b) Drop it from a third-floor balcony, and
measure how loud the sound is when it hits the
ground.
(c) As shown in the figure, connect it with a
spring to the wall, and watch it vibrate.

. Solution, p. 235

Problem 4-a2.

4-a3 (a) Compare the mass of a one-liter wa-
ter bottle on earth, on the moon, and in inter-
stellar space.
(b) Do the same for its weight.

4-a4 In the figure, the rock climber has fin-
ished the climb, and his partner is lowering him
back down to the ground at approximately con-
stant speed. The following is a student’s analysis
of the forces acting on the climber. The arrows
give the directions of the forces.

force of the earth’s gravity, ↓
force from the partner’s hands, ↑
force from the rope, ↑

The student says that since the climber is mov-
ing down, the sum of the two upward forces must
be slightly less than the downward force of grav-
ity.

Correct all mistakes in the above analysis.

Problem 4-a4.

4-a5 A car is accelerating forward along a
straight road. If the force of the road on the
car’s wheels, pushing it forward, is a constant
3.0 kN, and the car’s mass is 1000 kg, then how
long will the car take to go from 20 m/s to 50
m/s?

. Solution, p. 235

4-a6 An object is observed to be moving at
constant speed in a certain direction. Can you
conclude that no forces are acting on it? Explain.
[Based on a problem by Serway and Faughn.]

4-a7 A book is pushed along a frictionless
table with a constant horizontal force. The book
starts from rest and travels 2.0 m in 1.0 s. If
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the same force continues, how far will the book
travel in the next 1.0 s? √

4-d1 A blimp is initially at rest, hovering,
when at t = 0 the pilot turns on the engine driv-
ing the propeller. The engine cannot instantly
get the propeller going, but the propeller speeds
up steadily. The steadily increasing force be-
tween the air and the propeller is given by the
equation F = kt, where k is a constant. If the
mass of the blimp ism, find its position as a func-
tion of time. (Assume that during the period of
time you’re dealing with, the blimp is not yet
moving fast enough to cause a significant back-
ward force due to air resistance.) √

Problem 4-d1.

4-g1 The acceleration of a 1.0 kg object is
given in the graph.
(a) What is the maximum force that acts on the
object over the time interval [0.0, 4.0] s?

√

(b) What is the average force over the same in-
terval? √

Problem 4-g1.

4-g2 Flaca has brought a bathroom scale with
her in an elevator and is standing on it. Just
before the elevator arrives at the top floor, as the

car is slowing down, she notices that according
to the scale, her weight appears to be off by 3%
from its normal value W .
(a) Does the scale read 0.97W , or 1.03W?

√

(b) What is the magnitude of the acceleration of
the elevator? √

4-g3 A person who normally weighs 890 N is
standing on a scale inside an elevator. The eleva-
tor is moving upward with a speed of 10 m/s, and
then begins to decelerate at a rate of 5.0 m/s2.
(a) Before the elevator begins to decelerate, what
is the reading on the scale?

√

(b) What about while the elevator is slowing
down? √

4-g4 A bullet of mass m is fired from a pistol,
accelerating from rest to a speed v in the barrel’s
length L.
(a) What is the force on the bullet? (Assume
this force is constant.)

√

(b) Check that the units of your answer to part
a make sense.
(c) Check that the dependence of your answer on
each of the three variables makes sense.

4-g5 You push a cup of mass M across a ta-
ble, using a force of magnitude F . Because of
a second, frictional force, the cup’s acceleration
only has magnitude F/3M . What is the magni-
tude of this frictional force? √

4-g6 In an experiment, a force is applied to
two different unknown masses. This force causes
the first object, with mass m1, to have accel-
eration a1, and gives an object of mass m2 an
acceleration a2, where a1 > a2.
(a) Which mass is heavier: m1 or m2?
(b) Based on the experimental data (a1 and a2),
what acceleration would the force give to an ob-
ject of mass m1 +m2? √

4-j1 At low speeds, every car’s acceleration
is limited by traction, not by the engine’s power.
Suppose that at low speeds, a certain car is nor-
mally capable of an acceleration of 3 m/s2. If
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it is towing a trailer with half as much mass as
the car itself, what acceleration can it achieve?
[Based on a problem from PSSC Physics.]

4-j2 The tires used in Formula 1 race cars can
generate traction (i.e., force from the road) that
is as much as 1.9 times greater than with the
tires typically used in a passenger car. Suppose
that we’re trying to see how fast a car can cover a
fixed distance starting from rest, and traction is
the limiting factor. By what factor is this time
reduced when switching from ordinary tires to
Formula 1 tires? √

4-j3 At the turn of the 20th century, Samuel
Langley engaged in a bitter rivalry with the
Wright brothers to develop human flight. Lan-
gley’s design used a catapult for launching. For
safety, the catapult was built on the roof of a
houseboat, so that any crash would be into the
water. This design required reaching cruising
speed within a fixed, short distance, so large
accelerations were required, and the forces fre-
quently damaged the craft, causing dangerous
and embarrassing accidents. Langley achieved
several uncrewed, unguided flights, but never
succeeded with a human pilot. If the force of
the catapult is fixed by the structural strength
of the plane, and the distance for acceleration by
the size of the houseboat, by what factor is the
launch velocity reduced when the plane’s 340 kg
is augmented by the 60 kg mass of a small man?√

4-j4 In the 1964 Olympics in Tokyo, the best
men’s high jump was 2.18 m. Four years later in
Mexico City, the gold medal in the same event
was for a jump of 2.24 m. Because of Mex-
ico City’s altitude (2400 m), the acceleration
of gravity there is lower than that in Tokyo by
about 0.01 m/s2. Suppose a high-jumper has a
mass of 72 kg.
(a) Compare his mass and weight in the two lo-
cations.
(b) Assume that he is able to jump with the
same initial vertical velocity in both locations,

Problem 4-j3.

and that all other conditions are the same ex-
cept for gravity. How much higher should he be
able to jump in Mexico City?

√

(Actually, the reason for the big change between
’64 and ’68 was the introduction of the “Fosbury
flop.”)

4-j5 Your friend, who’s kind of an idiot,
jumps out of a third-story window. After falling
7.0 m, he lands on his stomach so that as his
body compresses on impact, his center of mass
only moves 0.020 m. What is the average force of
the ground on your friend as he smacks the floor?
Express your answer in terms of his weight W .√

4-j6 A book is pushed along a frictionless ta-
ble with a constant horizontal force. The book
starts from rest and travels 2.0 m in 1.0 s. If the
same experiment is carried out again, but with
a book having twice the mass, how far will this
heavier book travel? √

4-m1 In each case, identify the force that
causes the acceleration, and give its Newton’s-
third-law partner. Describe the effect of the
partner force. (a) A swimmer speeds up. (b) A
golfer hits the ball off of the tee. (c) An archer
fires an arrow. (d) A locomotive slows down.

. Solution, p. 235

4-m2 A little old lady and a pro football
player collide head-on. Compare their forces on
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each other, and compare their accelerations. Ex-
plain.

Problem 4-m2.

4-m3 The earth is attracted to an object with
a force equal and opposite to the force of the
earth on the object. If this is true, why is it that
when you drop an object, the earth does not have
an acceleration equal and opposite to that of the
object?

4-m4 When you stand still, there are two
forces acting on you, the force of gravity (your
weight) and the normal force of the floor push-
ing up on your feet. Are these forces equal and
opposite? Does Newton’s third law relate them
to each other? Explain.

4-m5 Some garden shears are like a pair of
scissors: one sharp blade slices past another. In
the “anvil” type, however, a sharp blade presses
against a flat one rather than going past it. A
gardening book says that for people who are not
very physically strong, the anvil type can make
it easier to cut tough branches, because it con-
centrates the force on one side. Evaluate this
claim based on Newton’s laws. [Hint: Consider
the forces acting on the branch, and the motion
of the branch.]

?

4-m6 Pick up a heavy object such as a back-
pack or a chair, and stand on a bathroom scale.

Shake the object up and down. What do you
observe? Interpret your observations in terms of
Newton’s third law.

?

4-p1 (a) Let T be the maximum tension that
an elevator’s cable can withstand without break-
ing, i.e., the maximum force it can exert. If the
motor is programmed to give the car an acceler-
ation a (a > 0 is upward), what is the maximum
mass that the car can have, including passengers,
if the cable is not to break?

√

(b) Interpret the equation you derived in the spe-
cial cases of a = 0 and of a downward accelera-
tion of magnitude g.

4-p2 While escaping from the palace of the
evil Martian emperor, Sally Spacehound jumps
from a tower of height h down to the ground.
Ordinarily the fall would be fatal, but she fires
her blaster rifle straight down, producing an
upward force of magnitude FB . This force is
insufficient to levitate her, but it does cancel
out some of the force of gravity. During the
time t that she is falling, Sally is unfortunately
exposed to fire from the emperor’s minions, and
can’t dodge their shots. Let m be her mass, and
g the strength of gravity on Mars.
(a) Find the time t in terms of the other
variables.
(b) Check the units of your answer to part a.
(c) For sufficiently large values of FB , your
answer to part a becomes nonsense — explain
what’s going on.

√

4-p3 A helicopter of mass m is taking off
vertically. The only forces acting on it are the
earth’s gravitational force and the force, Fair, of
the air pushing up on the propeller blades.
(a) If the helicopter lifts off at t = 0, what is its
vertical speed at time t?
(b) Check that the units of your answer to part
a make sense.
(c) Discuss how your answer to part a depends
on all three variables, and show that it makes
sense. That is, for each variable, discuss what
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would happen to the result if you changed it
while keeping the other two variables constant.
Would a bigger value give a smaller result, or a
bigger result? Once you’ve figured out this math-
ematical relationship, show that it makes sense
physically.
(d) Plug numbers into your equation from part
a, using m = 2300 kg, Fair = 27000 N, and
t = 4.0 s. √

4-p4 A uranium atom deep in the earth spits
out an alpha particle. An alpha particle is a
fragment of an atom. This alpha particle has
initial speed v, and travels a distance d before
stopping in the earth.
(a) Find the force, F , from the dirt that stopped
the particle, in terms of v, d, and its mass, m.
Don’t plug in any numbers yet. Assume that
the force was constant.

√

(b) Show that your answer has the right units.
(c) Discuss how your answer to part a depends
on all three variables, and show that it makes
sense. That is, for each variable, discuss what
would happen to the result if you changed it
while keeping the other two variables constant.
Would a bigger value give a smaller result, or
a bigger result? Once you’ve figured out this
mathematical relationship, show that it makes
sense physically.
(d) Evaluate your result for m = 6.7× 10−27 kg,
v = 2.0× 104 km/s, and d = 0.71 mm.

√

4-p5 A car is pushing a truck from behind.
The car has mass M , and the truck has mass
3M . If the maximum force that the ground can
provide to the cars’ tires is F , what is the max-
imum force between the two vehicles? Assume
no other horizontal forces act on the truck.√

4-p6 Blocks of mass M1, M2, and M3 are
stacked on a table as shown in the figure. Let
the upward direction be positive.
(a) What is the force on block 2 from block 3?

√

(b) What is the force on block 2 from block 1?√

Problem 4-p6.

4-s1 When I cook rice, some of the dry grains
always stick to the measuring cup. To get them
out, I turn the measuring cup upside-down and
hit the “roof” with my hand so that the grains
come off of the “ceiling.” (a) Explain why static
friction is irrelevant here. (b) Explain why grav-
ity is negligible. (c) Explain why hitting the cup
works, and why its success depends on hitting
the cup hard enough.

?

4-s2 The following reasoning leads to an ap-
parent paradox; explain what’s wrong with the
logic. A baseball player hits a ball. The ball
and the bat spend a fraction of a second in con-
tact. During that time they’re moving together,
so their accelerations must be equal. Newton’s
third law says that their forces on each other are
also equal. But a = F/m, so how can this be,
since their masses are unequal? (Note that the
paradox isn’t resolved by considering the force of
the batter’s hands on the bat. Not only is this
force very small compared to the ball-bat force,
but the batter could have just thrown the bat at
the ball.)

?



5 Newton’s laws, part 2

This is not a textbook. It’s a book of problems
meant to be used along with a textbook. Although
each chapter of this book starts with a brief sum-
mary of the relevant physics, that summary is
not meant to be enough to allow the reader to
actually learn the subject from scratch. The pur-
pose of the summary is to show what material is
needed in order to do the problems, and to show
what terminology and notation are being used.

5.1 Classification of forces

A fundamental and still unsolved problem in
physics is the classification of the forces of na-
ture. Ordinary experience suggests to us that
forces come in different types, which behave dif-
ferently. Frictional forces seem clearly different
from magnetic forces.

But some forces that appear distinct are ac-
tually the same. For instance, the friction that
holds a nail into the wall seems different from
the kind of friction that we observe when flu-
ids are involved — you can’t drive a nail into a
waterfall and make it stick. But at the atomic
level, both of these types of friction arise from
atoms bumping into each other. The force that
holds a magnet on your fridge also seems differ-
ent from the force that makes your socks cling
together when they come out of the dryer, but
it was gradually realized, starting around 1800
and culminating with Einstein’s theory of rela-
tivity in 1905, that electricity and magnetism are
actually closely related things, and observers in
different states of motion do not even agree on
what is an electric force and what is a magnetic
one. The tendency has been for more and more
superficially disparate forces to become unified
in this way.

Today we have whittled the list down to only
three types of interactions at the subatomic level
(called the gravitational, electroweak, and strong
forces). It is possible that some future theory of
physics will reduce the list to only one — which

Star Wars fans would then probably want to call
“The Force.”

Nevertheless, there is a practical classification
of forces that works pretty well for objects on
the human scale, and that is usually more con-
venient. Figure ?? on p. ?? shows this scheme
in the form of a tree.

5.2 Friction

If you push a refrigerator across a kitchen floor,
you will find that as you make more and more
force, at first the fridge doesn’t move, but that
eventually when you push hard enough, it un-
sticks and starts to slide. At the moment of un-
sticking, static friction turns into kinetic friction.
Experiments support the following approximate
model of friction when the objects are solid, dry,
and rigid. We have two unitless coefficients µs
and µk, which depend only on the types of sur-
faces. The maximum force of static friction is
limited to

Fs ≤ µsFN , (5.1)

where FN is the normal force between the sur-
faces, i.e., the amount of force with which they
are being pressed together. Kinetic friction is
given by

Fk = µkFN . (5.2)

5.3 Elasticity

When a force is applied to a solid object, it will
change its shape, undergoing some type of de-
formation such as flexing, compression, or ex-
pansion. If the force is small enough, then this
change is proportional to the force, and when the
force is removed the object will resume its orig-
inal shape. A simple example is a spring being
stretched or compressed. If the spring’s relaxed
length is x0, then its length x is related to the

51
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Figure 5.1: A practical classification scheme for forces.
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force applied to it by Hooke’s law,

F ≈ k(x− x0). (5.3)

Figure 5.2: Hooke’s law.

5.4 Ropes, pulleys, tension,
and simple machines

If you look carefully at a piece of rope or yarn
while tightening it, you will see a physical change
in the fibers. This is a manifestation of the fact
that there is tension in the rope. Tension is a
scalar with units of newtons. For a rope of neg-
ligible mass, the tension is constant throughout
the rope, and it equals the magnitudes of the
forces at its ends. This is still true if the rope
goes around a frictionless post, or a massless pul-
ley with a frictionless axle. You can’t push with
a rope, you can only pull. A rigid object such
as a pencil can, however, sustain compression,
which is equivalent to negative tension.

A pulley is an example of a simple machine,
which is a device that can amplify a force by
some factor, while reducing the amount of mo-
tion by the inverse of that factor. Another ex-
ample of a simple machine is the gear system on
a bicycle.

We can put more than one simple machine to-
gether in order to give greater amplification of
forces or to redirect forces in different directions.

For an idealized system,1 the fundamental prin-
ciples are:

1. The total force acting on any pulley is zero.2

2. The tension in any given piece of rope is
constant throughout its length.

3. The length of every piece of rope remains
the same.

Figure 5.3: A complicated pulley system. The
bar is massless.

As an example, let us find the mechanical ad-
vantage T5/F of the pulley system shown in fig-
ure 5.3. By rule 2, T1 = T2, and by rule 1,
F = T1 + T2, so T1 = T2 = F/2. Similarly,
T3 = T4 = F/4. Since the bar is massless, the
same reasoning that led to rule 1 applies to the
bar as well, and T5 = T1 + T3. The mechanical
advantage is T5/F = 3/4, i.e., this pulley system
reduces the input force.

5.5 Analysis of forces

Newton’s second law refers to the total force act-
ing on a particular object. Therefore whenever
we want to apply the second law, a necessary pre-
liminary step is to pick an object and list all the
forces acting on it. In addition, it may be help-
ful to determine the types and directions of the
forces and also to identify the Newton’s-third-
law partners of those forces, i.e., all the forces
that our object exerts back on other things.

1In such a system: (1) The ropes and pulleys have
negligible mass. (2) Friction in the pulleys’ bearings is
negligible. (3) The ropes don’t stretch.

2F = ma, and m = 0 since the pulley’s mass is as-
sumed to be negligible.
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force acting on Fifi force related to it by Newton’s third
law

planet earth’s gravitational force
FW = mg on Fifi, ↓

Fifi’s gravitational force on earth,
↑

belt’s kinetic frictional force Fk on
Fifi, →

Fifi’s kinetic frictional force on
belt, ←

belt’s normal force FN on Fifi, ↑ Fifi’s normal force on belt, ↓

Table 5.1: Analysis of the forces on the dog.

Figure 5.4: The spy dog lands on the moving
conveyor belt.

As an example, consider figure 5.4. Fifi is an
industrial espionage dog who loves doing her job
and looks great doing it. She leaps through a
window and lands at initial horizontal speed vo

on a conveyor belt which is itself moving at the
greater speed vb. Unfortunately the coefficient
of kinetic friction µk between her foot-pads and
the belt is fairly low, so she skids, and the effect
on her coiffure is un désastre. Table 5.1 shows
the resulting analysis of the forces in which she
participates.
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Problems

In problems 5-a1-5-a5, analyze the forces using a
table in the format shown in section 5.5 on p. 53.
Analyze the forces in which the italicized object
participates.
5-a1 Some people put a spare car key in a lit-
tle magnetic box that they stick under the chassis
of their car. Let’s say that the box is stuck di-
rectly underneath a horizontal surface, and the
car is parked. (See instructions above.)

5-a2 Analyze two examples of objects at rest
relative to the earth that are being kept from
falling by forces other than the normal force. Do
not use objects in outer space, and do not du-
plicate problem 5-a1 or 5-a5. (See instructions
above.)

5-a3 A person is rowing a boat, with her feet
braced. She is doing the part of the stroke that
propels the boat, with the ends of the oars in the
water (not the part where the oars are out of the
water). (See instructions above.)

5-a4 A farmer is in a stall with a cow when
the cow decides to press him against the wall,
pinning him with his feet off the ground. Analyze
the forces in which the farmer participates. (See
instructions above.)

5-a5 A propeller plane is cruising east at
constant speed and altitude. (See instructions
above.)

5-a6 Someone tells you she knows of a certain
type of Central American earthworm whose skin,
when rubbed on polished diamond, has µk > µs.
Why is this not just empirically unlikely but log-
ically suspect?

?

5-d1 The figure shows a boy hanging in three
positions: (1) with his arms straight up, (2) with
his arms at 45 degrees, and (3) with his arms at
60 degrees with respect to the vertical. Compare
the tension in his arms in the three cases.

5-d2 For safety, mountain climbers often
wear a climbing harness and tie in to other
climbers on a rope team or to anchors such as
pitons or snow anchors. When using anchors,
the climber usually wants to tie in to more than
one, both for extra strength and for redundancy
in case one fails. The figure shows such an
arrangement, with the climber hanging from a
pair of anchors forming a symmetric “Y” at an
angle θ. The metal piece at the center is called a
carabiner. The usual advice is to make θ < 90◦;
for large values of θ, the stress placed on the
anchors can be many times greater than the
actual load L, so that two anchors are actually
less safe than one.
(a) Find the force S at each anchor in terms of
L and θ.

√

(b) Verify that your answer makes sense in the
case of θ = 0.
(c) Interpret your answer in the case of θ = 180◦.
(d) What is the smallest value of θ for which S
equals or exceeds L, so that for larger angles a
failure of at least one anchor is more likely than
it would have been with a single anchor?

√

5-d3 Problem 5-d2 discussed a possible
correct way of setting up a redundant anchor
for mountaineering. The figure for this problem
shows an incorrect way of doing it, by arranging
the rope in a triangle (which we’ll take to be
isoceles). One of the bad things about the
triangular arrangement is that it requires more
force from the anchors, making them more
likely to fail. (a) Using the same notation as in
problem 5-d2, find S in terms of L and θ.

√

(b) Verify that your answer makes sense in the
case of θ = 0, and compare with the correct
setup.

5-d4 A person of mass M stands in the mid-
dle of a tightrope, which is fixed at the ends to
two buildings separated by a horizontal distance
L. The rope sags in the middle, stretching and
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Problem 5-d4.

Problem 5-a3.

lengthening the rope slightly.
(a) If the tightrope walker wants the rope to sag
vertically by no more than a height h, find the
minimum tension, T , that the rope must be able
to withstand without breaking, in terms of h, g,
M , and L.

√

(b) Based on your equation, explain why it is
not possible to get h = 0, and give a physical
interpretation.

5-d5 The angle of repose is the maximum
slope on which an object will not slide. On air-
less, geologically inert bodies like the moon or an
asteroid, the only thing that determines whether
dust or rubble will stay on a slope is whether the
slope is less steep than the angle of repose.
(a) Find an equation for the angle of repose,
deciding for yourself what are the relevant vari-
ables.

Problem 5-a4.

Problem 5-a5.

(b) On an asteroid, where g can be thousands of
times lower than on Earth, would rubble be able
to lie at a steeper angle of repose?

5-d6 Your hand presses a block of mass m
against a wall with a force FH acting at an angle
θ, as shown in the figure. Find the minimum and
maximum possible values of |FH | that can keep
the block stationary, in terms of m, g, θ, and
µs, the coefficient of static friction between the
block and the wall. Check both your answers in
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Problem 5-d1.

Problem 5-d2.

the case of θ = 90◦, and interpret the case where
the maximum force is infinite. √

?

5-d7 A telephone wire of mass m is strung
between two poles, making an angle θ with the
horizontal at each end. (a) Find the tension at
the center.

√

(b) Which is greater, the tension at the center or
at the ends?

?

5-d8 The photo shows a coil of rope wound
around a smooth metal post. A large amount of
tension is applied at the bottom of the coil, but
only a tiny force, supplied by a piece of sticky
tape, is needed at the top to keep the rope from
slipping. Show that the ratio of these two forces

Problem 5-d3.

Problem 5-d6.

increases exponentially with the number of turns
of rope, and find an expression for that ratio.√

??

5-d9 The figure shows a mountaineer doing
a vertical rappel. Her anchor is a big boulder.
The American Mountain Guides Association
suggests as a rule of thumb that in this situa-
tion, the boulder should be at least as big as a
refrigerator, and should be sitting on a surface
that is horizontal rather than sloping. The goal
of this problem is to estimate what coefficient
of static friction µs between the boulder and
the ledge is required if this setup is to hold the
person’s body weight. For comparison, reference
books meant for civil engineers building walls
out of granite blocks state that granite on
granite typically has a µs ≈ 0.6. We expect
the result of our calculation to be much less
than this, both because a large margin of safety
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Problem 5-d7.

Problem 5-d8.

is desired and because the coefficient could be
much lower if, for example, the surface was
sandy rather than clean. We will assume that
there is no friction where the rope goes over the
lip of the cliff, although in reality this friction
significantly reduces the load on the boulder.
(a) Let m be the mass of the climber, V the
volume of the boulder, ρ its density, and g the
strength of the gravitational field. Find the
minimum value of µs.

√

(b) Show that the units of your answer make
sense.
(c) Check that its dependence on the variables
makes sense.
(d) Evaluate your result numerically. The
volume of my refrigerator is about 0.7 m3,
the density of granite is about 2.7 g/cm3, and
standards bodies use a body mass of 80 kg for
testing climbing equipment.

√

5-d10 The figure shows a rock climber
wedged into a dihedral or “open book” consisting
of two vertical walls of rock at an angle θ relative

Problem 5-d9.

to one another. This position can be maintained
without any ledges or holds, simply by pressing
the feet against the walls. The left hand is be-
ing used just for a little bit of balance. (a) Find
the minimum coefficient of friction between the
rubber climbing shoes and the rock. (b) Inter-
pret the behavior of your expression at extreme
values of θ. (c) Steven Won has done tabletop
experiments using climbing shoes on the rough
back side of a granite slab from a kitchen coun-
tertop, and has estimated µs = 1.17. Find the
corresponding maximum value of θ.

. Solution, p. 235

5-g1 The figure shows two different ways of
combining a pair of identical springs, each with
spring constant k. We refer to the top setup as
parallel, and the bottom one as a series arrange-
ment.
(a) For the parallel arrangement, analyze the
forces acting on the connector piece on the left,
and then use this analysis to determine the
equivalent spring constant of the whole setup.
Explain whether the combined spring constant
should be interpreted as being stiffer or less stiff.
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Problem 5-d10.

(b) For the series arrangement, analyze the forces
acting on each spring and figure out the same
things.

Problem 5-g1.

5-g2 Generalize the results of problem 5-g1
to the case where the two spring constants are
unequal.

?

5-g3 (a) Using the solution of problem 5-g1,
which is given in the back of the book, predict
how the spring constant of a fiber will depend on
its length and cross-sectional area.
(b) The constant of proportionality is called the
Young’s modulus, E, and typical values of the

Young’s modulus are about 1010 to 1011. What
units would the Young’s modulus have in the SI
(meter-kilogram-second) system?

5-g4 This problem depends on the results of
problems 5-g1 and 5-g3, whose solutions are in
the back of the book. When atoms form chemi-
cal bonds, it makes sense to talk about the spring
constant of the bond as a measure of how “stiff”
it is. Of course, there aren’t really little springs
— this is just a mechanical model. The purpose
of this problem is to estimate the spring con-
stant, k, for a single bond in a typical piece of
solid matter. Suppose we have a fiber, like a hair
or a piece of fishing line, and imagine for simplic-
ity that it is made of atoms of a single element
stacked in a cubical manner, as shown in the fig-
ure, with a center-to-center spacing b. A typical
value for b would be about 10−10 m.
(a) Find an equation for k in terms of b, and
in terms of the Young’s modulus, E, defined in
problem 16 and its solution.
(b) Estimate k using the numerical data given in
problem 5-g3.
(c) Suppose you could grab one of the atoms in
a diatomic molecule like H2 or O2, and let the
other atom hang vertically below it. Does the
bond stretch by any appreciable fraction due to
gravity?

?

Problem 5-g4.
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5-j1 A cargo plane has taken off from a tiny
airstrip in the Andes, and is climbing at con-
stant speed, at an angle of θ = 17◦ with re-
spect to horizontal. Its engines supply a thrust
of Fthrust = 200 kN, and the lift from its wings is
Flift = 654 kN. Assume that air resistance (drag)
is negligible, so the only forces acting are thrust,
lift, and weight. What is its mass, in kg?

Problem 5-j1.

5-j2 A toy manufacturer is playtesting teflon
booties that slip on over your shoes. In the park-
ing lot, giggling engineers find that when they
start with an initial speed of 1.2 m/s, they glide
for 2.0 m before coming to a stop. What is the
coefficient of friction between the asphalt and the
booties? √

5-j3 A small piece of styrofoam packing ma-
terial is dropped from rest at a height 2.00 m
above the ground at time t = 0. The magnitude
of its acceleration is given by a = g−bv, where v
is the speed of the styrofoam, g = 9.8 m/s2, and
b is a positive constant. After falling 0.500 m,
the styrofoam effectively reaches terminal speed
and then takes 5.00 s more to reach the ground.
(a) What is the acceleration (magnitude and di-
rection) when t = 0? What about when the
styrofoam is halfway to the ground?
(b) Find the terminal speed of the styrofoam.√

(c) What is the value of the constant b, with
units?

√

(d) What is the acceleration when the speed is
0.150 m/s?

√

(e) Write a = dv/dt and solve the differential

equation for v(t) (without plugging in numbers),
and plot the result. √

5-m1 Ice skaters with masses m1 and m2

push off from each other with a constant force
F , which lasts until they lose contact. The
distance between their centers of mass is `0
initially and `f when they lose contact.
(a) Find the amount of time T for which they
remain in contact.
(b) Show that your answer in part a has units
that make sense.
(c) Show that your answer has the right depen-
dence on F .
(d) Interpret the case where one of the masses
is very small.

. Solution, p. 235

5-m2 A wagon is being pulled at constant
speed up a slope θ by a rope that makes an angle
φ with the vertical.
(a) Assuming negligible friction, show that the
tension in the rope is given by the equation

FT =
sin θ

sin(θ + φ)
FW ,

where FW is the weight force acting on the
wagon.
(b) Interpret this equation in the special cases of
φ = 0 and φ = 180◦ − θ.

Problem 5-m2.
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5-m3 Today’s tallest buildings are really not
that much taller than the tallest buildings of the
1940’s. One big problem with making an even
taller skyscraper is that every elevator needs its
own shaft running the whole height of the build-
ing. So many elevators are needed to serve the
building’s thousands of occupants that the el-
evator shafts start taking up too much of the
space within the building. An alternative is to
have elevators that can move both horizontally
and vertically: with such a design, many eleva-
tor cars can share a few shafts, and they don’t
get in each other’s way too much because they
can detour around each other. In this design, it
becomes impossible to hang the cars from cables,
so they would instead have to ride on rails which
they grab onto with wheels. Friction would keep
them from slipping. The figure shows such a fric-
tional elevator in its vertical travel mode. (The
wheels on the bottom are for when it needs to
switch to horizontal motion.)
(a) If the coefficient of static friction between
rubber and steel is µs, and the maximum mass
of the car plus its passengers is M , how much
force must there be pressing each wheel against
the rail in order to keep the car from slipping?
(Assume the car is not accelerating.)

√

(b) Show that your result has physically reason-
able behavior with respect to µs. In other words,
if there was less friction, would the wheels need
to be pressed more firmly or less firmly? Does
your equation behave that way?

5-m4 A skier of mass m is coasting down
a slope inclined at an angle θ compared to
horizontal. Assume for simplicity that the
treatment of kinetic friction given in chapter
5 is appropriate here, although a soft and wet
surface actually behaves a little differently. The
coefficient of kinetic friction acting between the
skis and the snow is µk, and in addition the skier
experiences an air friction force of magnitude
bv2, where b is a constant.
(a) Find the maximum speed that the skier will
attain, in terms of the variables m, g, θ, µk, and

Problem 5-m3.

b.
√

(b) For angles below a certain minimum angle
θmin, the equation gives a result that is not
mathematically meaningful. Find an equation
for θmin, and give a physical explanation of
what is happening for θ < θmin.

√

5-m5 Driving down a hill inclined at an an-
gle θ with respect to horizontal, you slam on the
brakes to keep from hitting a deer. Your antilock
brakes kick in, and you don’t skid.
(a) Analyze the forces. (Ignore rolling resistance
and air friction.)
(b) Find the car’s maximum possible decelera-
tion, a (expressed as a positive number), in terms
of g, θ, and the relevant coefficient of friction.

√

(c) Explain physically why the car’s mass has no
effect on your answer.
(d) Discuss the mathematical behavior and phys-
ical interpretation of your result for negative val-
ues of θ.
(e) Do the same for very large positive values of
θ.
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5-m6 An ice skater builds up some speed,
and then coasts across the ice passively in a
straight line. (a) Analyze the forces, using a
table in the format shown in section 5.5.
(b) If his initial speed is v, and the coefficient
of kinetic friction is µk, find the maximum
theoretical distance he can glide before coming
to a stop. Ignore air resistance.

√

(c) Show that your answer to part b has the
right units.
(d) Show that your answer to part b depends
on the variables in a way that makes sense
physically.
(e) Evaluate your answer numerically for
µk = 0.0046, and a world-record speed of 14.58
m/s. (The coefficient of friction was measured
by De Koning et al., using special skates worn
by real speed skaters.)

√

(f) Comment on whether your answer in part
e seems realistic. If it doesn’t, suggest possible
reasons why.

5-m7 A cop investigating the scene of an acci-
dent measures the length L of a car’s skid marks
in order to find out its speed v at the beginning
of the skid. Express v in terms of L and any
other relevant variables. √

5-m8 A force F is applied to a box of mass M
at an angle θ below the horizontal (see figure).
The coefficient of static friction between the box
and the floor is µs, and the coefficient of kinetic
friction between the two surfaces is µk.
(a) What is the magnitude of the normal force
on the box from the floor?

√

(b) What is the minimum value of F to get the
box to start moving from rest?

√

(c) What is the value of F so that the box will
move with constant velocity (assuming it is al-
ready moving)?

√

(d) If θ is greater than some critical angle θcrit,
it is impossible to have the scenario described in
part c. What is θcrit? √

Problem 5-m8.

5-m9 A ramp of length L is inclined at angle
θ to the horizontal. You would like to push your
backpack, which has mass m, to the top of the
ramp. The coefficient of kinetic friction between
the backpack and the ramp is µk, and you will
push the backpack with a force of magnitude F .
(a) How long will it take the backpack to reach
the top of the ramp if you apply your push par-
allel to the ramp’s surface?

√

(b) How long will it take the backpack to reach
the top of the ramp if you apply your push par-
allel to the the ground? √

5-m10 Blocks M1 and M2 are stacked as
shown, with M2 on top. M2 is connected by a
string to the wall, and M1 is pulled to the right
with a force F big enough to get M1 to move.
The coefficient of kinetic friction has the same
value µk among all surfaces (i.e., the block-block
and ground-block interfaces).
(a) Analyze the forces in which each block par-
ticipates, as in section 5.5.
(b) Determine the tension in the string.

√

(c) Find the acceleration of the block of mass
M1. √

Problem 5-m10.
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5-m11 (a) A mass M is at rest on a fixed,
frictionless ramp inclined at angle θ with respect
to the horizontal. The mass is connected to the
force probe, as shown. What is the reading on
the force probe?

√

(b) Check that your answer to part a makes sense
in the special cases θ = 0 and θ = 90◦.

Problem 5-m11.

5-m12 You are pushing a box up a ramp that
is at an angle θ with respect to the horizontal.
Friction acts between the box and the ramp, with
coefficient µ. Suppose that your force is fixed in
magnitude, but can be applied at any desired
angle ϕ above the horizontal. Find the optimal
value of ϕ. √

?

Problem 5-m12.

5-m13 Two wheels of radius r rotate in the
same vertical plane with angular velocities +Ω
and −Ω (rates of rotation in radians per sec-
ond) about axes that are parallel and at the same
height. The wheels touch one another at a point
on their circumferences, so that their rotations

mesh like gears in a gear train. A board is laid
on top of the wheels, so that two friction forces
act upon it, one from each wheel. Characterize
the three qualitatively different types of motion
that the board can exhibit, depending on the ini-
tial conditions.

??

Problem 5-m13.

5-p1 A tugboat of mass m pulls a ship of mass
M , accelerating it. The speeds are low enough
that you can ignore fluid friction acting on their
hulls, although there will of course need to be
fluid friction acting on the tug’s propellers.
(a) Analyze the forces in which the tugboat par-
ticipates, using a table in the format shown in
section 5.5. Don’t worry about vertical forces.
(b) Do the same for the ship.
(c) If the force acting on the tug’s propeller is F ,
what is the tension, T , in the cable connecting
the two ships? [Hint: Write down two equations,
one for Newton’s second law applied to each ob-
ject. Solve these for the two unknowns T and
a.]

√

(d) Interpret your answer in the special cases of
M = 0 and M =∞.

5-p2 Unequal masses M and m are sus-
pended from a pulley as shown in the figure.
(a) Analyze the forces in which mass m par-
ticipates, using a table in the format shown in
section 5.5. [The forces in which the other mass
participates will of course be similar, but not
numerically the same.]
(b) Find the magnitude of the accelerations of
the two masses. [Hints: (1) Pick a coordinate
system, and use positive and negative signs con-
sistently to indicate the directions of the forces
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and accelerations. (2) The two accelerations of
the two masses have to be equal in magnitude
but of opposite signs, since one side eats up rope
at the same rate at which the other side pays it
out. (3) You need to apply Newton’s second law
twice, once to each mass, and then solve the two
equations for the unknowns: the acceleration, a,
and the tension in the rope, T .]

√

(c) Many people expect that in the special
case of M = m, the two masses will naturally
settle down to an equilibrium position side by
side. Based on your answer from part b, is this
correct?
(d) Find the tension in the rope, T .

√

(e) Interpret your equation from part d in the
special case where one of the masses is zero.
Here “interpret” means to figure out what
happens mathematically, figure out what should
happen physically, and connect the two.

Problem 5-p2.

5-p3 Mountain climbers with masses m and
M are roped together while crossing a horizon-
tal glacier when a vertical crevasse opens up un-
der the climber with mass M . The climber with
mass m drops down on the snow and tries to stop
by digging into the snow with the pick of an ice
ax. Alas, this story does not have a happy end-
ing, because this doesn’t provide enough friction

to stop. Both m and M continue accelerating,
with M dropping down into the crevasse and m
being dragged across the snow, slowed only by
the kinetic friction with coefficient µk acting be-
tween the ax and the snow. There is no signifi-
cant friction between the rope and the lip of the
crevasse.
(a) Find the acceleration a.

√

(b) Check the units of your result.
(c) Check the dependence of your equation on
the variables. That means that for each variable,
you should determine what its effect on a should
be physically, and then what your answer from
part a says its effect would be mathematically.

Problem 5-p3.

5-p4 Consider the system shown in the figure.
Block A has mass MA and block B has mass MB .
There is friction between the table and block A.
Once block B is set into downward motion, it de-
scends at a constant speed.
(a) Analyze the forces in which each block par-
ticipates as described in section 5.5
(b) Calculate the coefficient of kinetic friction
between block A and the tabletop.

√

(c) A sloth, also of mass MA, falls asleep on top
of block A. If block B is now set into downward
motion, what is its acceleration (magnitude and
direction)? √
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Problem 5-p4.

5-p5 Ginny has a plan. She is going to ride
her sled while her dog Foo pulls her, and she
holds on to his leash. However, Ginny hasn’t
taken physics, so there may be a problem: she
may slide right off the sled when Foo starts
pulling.
(a) Analyze all the forces in which Ginny partic-
ipates, making a table as in section 5.5.
(b) Analyze all the forces in which the sled par-
ticipates.
(c) The sled has mass m, and Ginny has mass
M . The coefficient of static friction between the
sled and the snow is µ1, and µ2 is the corre-
sponding quantity for static friction between the
sled and her snow pants. Ginny must have a cer-
tain minimum mass so that she will not slip off
the sled. Find this in terms of the other three
variables.

√

(d) Interpreting your equation from part c, under
what conditions will there be no physically real-
istic solution for M? Discuss what this means
physically.

5-p6 The figure shows a stack of two blocks,
sitting on top of a table that is bolted to the
floor. All three objects are made from identi-
cal wood, with their surfaces finished identically
using the same sandpaper. We tap the middle
block, giving it an initial velocity v to the right.
The tap is executed so rapidly that almost no
initial velocity is imparted to the top block.
(a) Find the time that will elapse until the slip-
ping between the top and middle blocks stops.
Express your answer in terms of v, m, M , g, and

Problem 5-p5.

the relevant coefficient of friction.
√

(b) Show that your answer makes sense in terms
of units.
(c) Check that your result has the correct behav-
ior when you make m bigger or smaller. Explain.
This means that you should discuss the mathe-
matical behavior of the result, and then explain
how this corresponds to what would really hap-
pen physically.
(d) Similarly, discuss what happens when you
make M bigger or smaller.
(e) Similarly, discuss what happens when you
make g bigger or smaller.

?

Problem 5-p6.

5-p7 (a) A block is sitting on a wedge in-
clined at an angle θ with respect to horizontal.
Someone grabs the wedge and moves it horizon-
tally with acceleration a. The motion is in the
direction shown by the arrow in the figure. Find
the maximum acceleration that can be applied
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without causing the block to slide downhill.
√

(b) Show that your answer to part a has the right
units.
(c) Show that it also has the right dependence on
θ, by comparing its mathematical behavior to its
physically expected behavior.

?

Problem 5-p7.

5-p8 The two blocks shown in the figure have
equal mass, m, and the surface is frictionless. (a)
What is the tension in the massless rope?

√

(b) Show that the units of your answer make
sense.
(c) Check the physical behavior of your answer
in the special cases of φ ≤ θ and θ = 0, φ = 90◦.

?

Problem 5-p8.

5-p9 (a) The person with mass m hangs from
the rope, hauling the box of mass M up a slope
inclined at an angle θ. There is friction between
the box and the slope, described by the usual
coefficients of friction. The pulley, however, is
frictionless. Find the magnitude of the box’s
acceleration.

√

(b) Show that the units of your answer make

sense.
(c) Check the physical behavior of your answer
in the special cases of M = 0 and θ = −90◦.

Problems 5-p9 and 5-p10.

5-p10 The physical situation is the same as in
problem 5-p9, except that we make different as-
sumptions about friction. (a) Suppose that there
is no friction between the block and the ramp.
Find the value of m/M so that the system is in
equilibrium.

√

(b) If there is instead a coefficient of static fric-
tion µs between the block and the ramp, find
the minimum and maximum values that m/M
can have so that the blocks remain at rest. √

5-p11 The figure shows a block acted on by
two external forces, each of magnitude F . One
of the forces is horizontal, but the other is ap-
plied at a downward angle θ. Gravity is negligi-
ble compared to these forces. The block rests on
a surface with friction described by a coefficient
of friction µs. (a) Find the minimum value of
µs that is required if the block is to remain at
rest.

√

(b) Show that this expression has the correct
limit as θ approaches zero.

Problem 5-p11.

5-s1 A person can pull with a maximum force
F . What is the maximum mass that the person
can lift with the pulley setup shown in the figure?√
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Problem 5-s1.

5-s2 In the system shown in the figure, the
pulleys on the left and right are fixed, but the
pulley in the center can move to the left or right.
The two masses are identical. Find the upward
acceleration of the mass on the left, in terms of
g only. Assume all the ropes and pulleys are
massless and frictionless.

Problem 5-s2.

5-s3 The two masses are identical. Find the
upward acceleration of the mass on the right,
in terms of g only. Assume all the ropes and
pulleys, as well as the cross-bar, are massless,
and the pulleys are frictionless. The right-hand
mass has been positioned away from the bar’s
center, so that the bar will not twist.

5-s4 Find the upward acceleration of mass
m1 in the figure. √

Problem 5-s3.

Problem 5-s4.



68 CHAPTER 5. NEWTON’S LAWS, PART 2



6 Circular motion

This is not a textbook. It’s a book of problems
meant to be used along with a textbook. Although
each chapter of this book starts with a brief sum-
mary of the relevant physics, that summary is
not meant to be enough to allow the reader to
actually learn the subject from scratch. The pur-
pose of the summary is to show what material is
needed in order to do the problems, and to show
what terminology and notation are being used.

6.1 Uniform circular motion

Figure 6.1 shows an overhead view of a person
swinging a rock on a rope. A force from the
string is required to make the rock’s velocity vec-
tor keep changing direction. If the string breaks,
the rock will follow Newton’s first law and go
straight instead of continuing around the circle.
Circular motion requires a force with a compo-
nent toward the center of the circle.

Figure 6.1: Overhead view of a person swinging
a rock on a rope.

Uniform circular motion is the special case in
which the speed is constant. In uniform circular
motion, the acceleration vector is toward the cen-
ter, and therefore total force acting on the object
must point directly toward the center. We can

define the angular velocity ω, which is the num-
ber of radians per second by which the object’s
angle changes, ω = dθ/dt. For uniform circular
motion, ω is constant, and the magnitude of the
acceleration is

a = ω2r =
v2

r
, (6.1)

where r is the radius of the circle (see problem 6-
d1, p. 72). These expressions can also be related
to the period of the rotation T , which is the time
for one revolution. We have ω = 2π/T .

6.2 Rotating frames

When you’re in the back seat of a car going
around a curve, not looking out the window,
there is a strong tendency to adopt a frame of
reference in which the car is at rest. This is a
noninertial frame of reference, because the car is
accelerating. In a noninertial frame, Newton’s
laws are violated. For example, the air freshener
hanging from the mirror in figure 3.6 on p. 33 will
swing as the car enters the curve, but this motion
is not caused by a force made by any identifiable
object. In the inertial frame of someone standing
by the side of the road, the air freshener simply
continued straight while the car accelerated.

6.3 Nonuniform motion

In nonuniform circular motion, we have not just
the acceleration ar = ω2r in the radial direction
(toward the center of the circle) but also a com-
ponent at = dv/dt in the tangential direction.

6.4 Rotational kinematics

Angular velocity and acceleration

If a rigid body such as a top rotates about a
fixed axis, then every particle in that body per-

69
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Figure 6.2: Different atoms in the top have dif-
ferent velocity vectors, 1, but sweep out the same
angle in a given time, 2.

forms circular motion about a point on that axis.
Every atom has a different velocity vector, figure
6.2. Since all the velocities are different, we can’t
measure the top’s speed of rotation of the top by
giving a single velocity. But every particle covers
the same angle in the same amount of time, so
we can specify the speed of rotation consistently
in terms of angle per unit time. Let the position
of some reference point on the top be denoted by
its angle θ, measured in a circle around the axis.
We measure all our angles in radians. We define
the angular velocity as

ω =
dθ

dt
.

The relationship between ω and t is exactly anal-
ogous to that between x and t for the motion of a
particle through space. The angular velocity has
units of radians per second, s−1. We also define
an angular acceleration,

α =
dω

dt
.

with units s−2.

The mathematical relationship between ω and
θ is the same as the one between v and x, and
similarly for α and a. We can thus make a
system of analogies, and recycle all the famil-
iar kinematic equations for constant-acceleration
motion.

Angular and linear quantities related

We often want to relate the angular quantities to
the motion of a particular point on the rotating

Figure 6.3: Analogies between rotational and lin-
ear quantities.

object. The velocity vector has tangential and
radial components

vt = ωr

and
vr = 0.

For the acceleration vector,

at = αr

and
ar = ω2r.
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Problems

6-a1 Show that the expression |v|2/r has the
units of acceleration.

6-a2 A plane is flown in a loop-the-loop of ra-
dius 1.00 km. The plane starts out flying upside-
down, straight and level, then begins curving up
along the circular loop, and is right-side up when
it reaches the top. (The plane may slow down
somewhat on the way up.) How fast must the
plane be going at the top if the pilot is to ex-
perience no force from the seat or the seatbelt
while at the top of the loop? √

6-a3 The bright star Sirius has a mass of
4.02×1030 kg and lies at a distance of 8.1×1016 m
from our solar system. Suppose you’re standing
on a merry-go-round carousel rotating with a pe-
riod of 10 seconds, and Sirius is on the horizon.
You adopt a rotating, noninertial frame of ref-
erence, in which the carousel is at rest, and the
universe is spinning around it. If you drop a
corndog, you see it accelerate horizontally away
from the axis, and you interpret this as the result
of some horizontal force. This force does not ac-
tually exist; it only seems to exist because you’re
insisting on using a noninertial frame. Similarly,
calculate the force that seems to act on Sirius in
this frame of reference. Comment on the physi-
cal plausibility of this force, and on what object
could be exerting it. √

6-a4 Lionel brand toy trains come with sec-
tions of track in standard lengths and shapes.
For circular arcs, the most commonly used sec-
tions have diameters of 662 and 1067 mm at the
inside of the outer rail. The maximum speed at
which a train can take the broader curve without
flying off the tracks is 0.95 m/s. At what speed
must the train be operated to avoid derailing on
the tighter curve? √

6-a5 Debbie is in Los Angeles, at a distance
r = 5280 km from the Earth’s axis of rotation.
(a) What is Debbie’s speed (as measured by an

observer not moving relative to the center of the
Earth)?

√

(b) What is Debbie’s acceleration? Your answer
indicates to what extent the apparent accelera-
tion due to gravity is modified when not at one
of the poles. For reference, g = 9.81 m/s2 at the
poles, but appears slightly less near the equator.√

6-a6 Some kids are playing around on a
merry-go-round at the park. You notice that lit-
tle Timmy can’t seem to hold on to the edge of
the merry-go-round (of radius 1.5 m) when the
period of the merry-go-round (the time for one
full revolution) is less than 2.0 s.
(a) What is the maximum acceleration that
Timmy can handle?

√

(b) If Timmy were on a merry-go-round of ra-
dius 6.0 m, what wold be the minimum period
of revolution that would allow him to stay on?√

6-a7 A particle is undergoing uniform circular
motion in the xy-plane such that its distance to
the origin does not change. At one instant, the
particle is moving with velocity v = (10.0 m/s)x̂
and with acceleration a = (2.0 m/s2)ŷ.
(a) What is the radius of the circle?

√

(b) How long does it take for the particle to travel
once around the circle (i.e., what is the period of
motion)?

√

(c) In what direction will the particle be moving
after a quarter of a period? Give your answer
as an angle θ (0 ≤ θ < 360◦) that the velocity
vector makes with respect to the +x̂ direction,
measured counterclockwise from the +x̂ direc-
tion. √

6-a8 A car is approaching the top of a hill of
radius of curvature R.
(a) If the normal force that the driver feels at
the top of the hill is 1/3 of their weight, how
fast is the car going?

√

(b) Check that the units of your answer to part
a make sense.
(c) Check that the dependence of your answer
on the variables makes sense.
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6-a9 An airplane is in a nosedive. In order not
to crash, the pilot pulls up as much as she can.
At the lowest point of the plane’s trajectory, the
plane is in a circular arc of radius 300 m, and the
pilot experiences an acceleration of 5.0g (so that
her weight feels like six times normal). What is
the plane’s speed at this point? √

6-d1 In this problem, you’ll derive the equa-
tion |a| = |v|2/r using calculus. Instead of
comparing velocities at two points in the par-
ticle’s motion and then taking a limit where
the points are close together, you’ll just take
derivatives. The particle’s position vector is
r = (r cos θ)x̂ + (r sin θ)ŷ, where x̂ and ŷ are
the unit vectors along the x and y axes. By the
definition of radians, the distance traveled since
t = 0 is rθ, so if the particle is traveling at con-
stant speed v = |v|, we have v = rθ/t.
(a) Eliminate θ to get the particle’s position vec-
tor as a function of time.
(b) Find the particle’s acceleration vector.
(c) Show that the magnitude of the acceleration
vector equals v2/r.

6-g1 The amusement park ride shown in the
figure consists of a cylindrical room that rotates
about its vertical axis. When the rotation is fast
enough, a person against the wall can pick his or
her feet up off the floor and remain “stuck” to
the wall without falling.
(a) Suppose the rotation results in the person
having a speed v. The radius of the cylinder is
r, the person’s mass is m, the downward acceler-
ation of gravity is g, and the coefficient of static
friction between the person and the wall is µs.
Find an equation for the speed, v, required, in
terms of the other variables. (You will find that
one of the variables cancels out.)
(b) Now suppose two people are riding the ride.
Huy is wearing denim, and Gina is wearing
polyester, so Huy’s coefficient of static friction
is three times greater. The ride starts from rest,
and as it begins rotating faster and faster, Gina
must wait longer before being able to lift her feet

without sliding to the floor. Based on your equa-
tion from part a, how many times greater must
the speed be before Gina can lift her feet without
sliding down?

Problem 6-g1.

6-g2 Tommy the playground bully is whirling
a brick tied to the end of a rope. The rope
makes an angle θ with respect to the horizontal,
and the brick undergoes circular motion with
radius R.
(a) What is the speed of the brick?

√

(b) Check that the units of your answer to part
a make sense.
(c) Check that the dependence of your answer
on the variables makes sense, and comment on
the limit θ → 0.

Problem 6-g2.

6-g3 The figure shows a ball on the end of
a string of length L attached to a vertical rod
which is spun about its vertical axis by a motor.
The period (time for one rotation) is P .
(a) Analyze the forces in which the ball partici-
pates.
(b) Find how the angle θ depends on P, g, and
L. [Hints: (1) Write down Newton’s second law
for the vertical and horizontal components of
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force and acceleration. This gives two equations,
which can be solved for the two unknowns, θ and
the tension in the string. (2) If you introduce
variables like v and r, relate them to the vari-
ables your solution is supposed to contain, and
eliminate them.]

√

(c) What happens mathematically to your solu-
tion if the motor is run very slowly (very large
values of P )? Physically, what do you think
would actually happen in this case?

Problem 6-g3.

6-g4 The figure shows two blocks of masses
m1 and m2 sliding in circles on a frictionless ta-
ble. Find the tension in the strings if the period
of rotation (time required for one rotation) is P .√

Problem 6-g4.

6-g5 In a well known stunt from circuses
and carnivals, a motorcyclist rides around inside
a big bowl, gradually speeding up and rising
higher. Eventually the cyclist can get up to
where the walls of the bowl are vertical. Let’s
estimate the conditions under which a running
human could do the same thing.
(a) If the runner can run at speed v, and her
shoes have a coefficient of static friction µs,

what is the maximum radius of the circle?
√

(b) Show that the units of your answer make
sense.
(c) Check that its dependence on the variables
makes sense.
(d) Evaluate your result numerically for
v = 10 m/s (the speed of an olympic sprinter)
and µs = 5. (This is roughly the highest
coefficient of static friction ever achieved for
surfaces that are not sticky. The surface has an
array of microscopic fibers like a hair brush, and
is inspired by the hairs on the feet of a gecko.
These assumptions are not necessarily realistic,
since the person would have to run at an angle,
which would be physically awkward.)

√

Problem 6-g5.

6-g6 A child places a toy on the outer rim of
a merry-go-round that has radius R and period
T . What is the lowest value of the coefficient of
static friction between the toy and the merry-go-
round that allows the toy to stay on the carousel?√

6-g7 The 1961-66 US Gemini program
launched pairs of astronauts into earth orbit
in tiny capsules, on missions lasting up to 14
days. The figure shows the two seats, in a cross-
sectional view from the front, as if looking into a
car through the windshield. During the Gemini
8 mission, a malfunctioning thruster in the Or-
bit Attitude and Maneuvering System (OAMS)
caused the capsule to roll, i.e., to rotate in the
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plane of the page. The rate of rotation got
faster and faster, reaching 296 degrees per sec-
ond before pilot Neil Armstrong shut down the
OAMS system by hand and succeeded in cancel-
ing the rotation using a separate set of re-entry
thrusters. At the peak rate of rotation, the as-
tronauts were approaching the physiological lim-
its under which their hearts would no longer be
able to circulate blood, potentially causing them
to black out or go blind. Superimposing the ap-
proximate location of a human heart on the orig-
inal NASA diagram, it looks like Armstrong’s
heart was about 45 cm away from the axis of ro-
tation. Find the acceleration experienced by his
heart, in units of g. √

Problem 6-g7.

6-j1 When you’re done using an electric
mixer, you can get most of the batter off of the
beaters by lifting them out of the batter with
the motor running at a high enough speed. Let’s
imagine, to make things easier to visualize, that
we instead have a piece of tape stuck to one of
the beaters.
(a) Explain why static friction has no effect on
whether or not the tape flies off.
(b) Analyze the forces in which the tape par-
ticipates, using a table in the format shown in
section 5.5.
(c) Suppose you find that the tape doesn’t fly

off when the motor is on a low speed, but at
a greater speed, the tape won’t stay on. Why
would the greater speed change things? [Hint: If
you don’t invoke any law of physics, you haven’t
explained it.]

?

Problem 6-j1.

6-j2 The acceleration of an object in uni-
form circular motion can be given either by
|a| = |v|2/r or, equivalently, by |a| = 4π2r/T 2,
where T is the time required for one cycle. Per-
son A says based on the first equation that the
acceleration in circular motion is greater when
the circle is smaller. Person B, arguing from
the second equation, says that the acceleration
is smaller when the circle is smaller. Rewrite the
two statements so that they are less misleading,
eliminating the supposed paradox. [Based on a
problem by Arnold Arons.]

?

6-j3 Psychology professor R.O. Dent requests
funding for an experiment on compulsive thrill-
seeking behavior in guinea pigs, in which the
subject is to be attached to the end of a spring
and whirled around in a horizontal circle. The
spring has relaxed length b, and obeys Hooke’s
law with spring constant k. It is stiff enough to
keep from bending significantly under the guinea
pig’s weight.
(a) Calculate the length of the spring when it is
undergoing steady circular motion in which one
rotation takes a time T . Express your result in
terms of k, b, T , and the guinea pig’s mass m.

√

(b) The ethics committee somehow fails to veto
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the experiment, but the safety committee ex-
presses concern. Why? Does your equation do
anything unusual, or even spectacular, for any
particular value of T? What do you think is the
physical significance of this mathematical behav-
ior?

?

Problem 6-j3.

6-j4 The figure shows an old-fashioned device
called a flyball governor, used for keeping an en-
gine running at the correct speed. The whole
thing rotates about the vertical shaft, and the
mass M is free to slide up and down. This mass
would have a connection (not shown) to a valve
that controlled the engine. If, for instance, the
engine ran too fast, the mass would rise, causing
the engine to slow back down.
(a) Show that in the special case of a = 0, the
angle θ is given by

θ = cos−1

(
g(m+M)P 2

4π2mL

)
,

where P is the period of rotation (time required
for one complete rotation).
(b) There is no closed-form solution for θ in
the general case where a is not zero. However,
explain how the undesirable low-speed behavior
of the a = 0 device would be improved by
making a nonzero.

?
6-j5 A car exits the freeway via a circular
off-ramp. The road is level (i.e., the curve is not
banked at all), and the radius of curvature of the
circular ramp is 1.00× 102 m. The coefficient of
friction between the tires and the road is µ = 0.8.
(a) What is the maximum possible speed the car
can travel on the offramp without slipping?

√

For parts (b) through (d), the car is traveling at

Problem 6-j4.

20.0 m/s and decelerating at a rate of 3.0 m/s2.
The car is turning to the right.
(b) What is the absolute value of the radial com-
ponent of the acceleration? What is the magni-
tude of the acceleration vector?

√

(c) There is a pine-scented tree hanging from the
rear view mirror. During the curve, the tree does
not hang vertically. Describe in words which way
the tree swings. Does it appear to lean left, or
right? Forward, or backward? An analysis of the
forces might help in your explanation.
(d) What angle does the tree make with respect
to the vertical? √

?

6-j6 The vertical post rotates at frequency ω.
The bead slides freely along the string, reaching
an equilibrium in which its distance from the axis
is r and the angles θ and φ have some particular
values. Find φ in terms of θ, g, ω, and r. √

?

6-j7 A bead slides down along a piece of wire
that is in the shape of a helix. The helix lies on
the surface of a vertical cylinder of radius r, and
the vertical distance between turns is d.
(a) Ordinarily when an object slides downhill un-
der the influence of kinetic friction, the velocity-
independence of kinetic friction implies that the
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Problem 6-j6.

acceleration is constant, and therefore there is no
limit to the object’s velocity. Explain the physi-
cal reason why this argument fails here, so that
the bead will in fact have some limiting velocity.
(b) Find the limiting velocity.
(c) Show that your result has the correct behav-
ior in the limit of r → ∞. [Problem by B. Kor-
sunsky.] √

??

Problem 6-j7.

6-m1 A disk, initially rotating at 120 radi-
ans per second, is slowed down with a constant
angular acceleration of magnitude 4.0 s−2. How

many revolutions does the disk make before it
comes to rest? √

6-m2 A bell rings at the Tilden Park merry go
round in Berkeley, California, and the carousel
begins to move with an angular acceleration of
1.0 × 10−2 s−2. How much time does it take to
perform its first revolution? √

6-m3 Neutron stars are the collapsed rem-
nants of dead stars. They rotate quickly, and
their rotation can be measured extremely accu-
rately by radio astronomers. Some of them ro-
tate at such a predictable rate that they can be
used to count time about as accurately as the
best atomic clocks. They do decelerate slowly,
but this deceleration can be taken into account.
One of the best-studied stars of this type1 was
observed continuously over a 10-year period. As
of the benchmark date April 5, 2001, it was found
to have

ω = 1.091313551502333× 103 s−1

and

α = −1.085991× 10−14 s−2,

where the error bars in the final digit of each
number are about ±1. Astronomers often use
the Julian year as their unit of time, where one
Julian year is defined to be exactly 3.15576 ×
107 s. Find the number of revolutions that this
pulsar made over a period of 10 Julian years,
starting from the benchmark date. √

6-m4 A gasoline-powered car has a heavy
wheel called a flywheel, whose main function is
to add inertia to the motion of the engine so
that it keeps spinning smoothly between power
strokes of the cylinders. Suppose that a certain
car’s flywheel is spinning with angular velocity
ω0, but the car is then turned off, so that the en-
gine and flywheel start to slow down as a result
of friction. Assume that the angular acceleration

1Verbiest et al., Astrophysical Journal 679 (675) 2008
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is constant. After the flywheel has made N revo-
lutions, it comes to rest. What is the magnitude
of the angular acceleration? √

6-m5 A rigid body rotates about a line ac-
cording to θ = At3−Bt (valid for both negative
and positive t).
(a) What is the angular velocity as a function of
time?

√

(b) What is the angular acceleration as a func-
tion of time?

√

(c) There are two times when the angular veloc-
ity is zero. What is the positive time for which
this is true? Call this t+.

√

(d) What is the average angular velocity over the
time interval from 0 to t+? √

6-m6 The angular acceleration of a wheel is
α = 12t−24t3, where α is in s−2 and t is the time
in seconds. The wheel starts from rest at t = 0.
How many revolutions has it turned between t =
0 and when it is again at rest? √

6-p1 (a) Find the angular velocities of the
earth’s rotation and of the earth’s motion around
the sun.

√

(b) Which motion involves the greater accelera-
tion?

6-p2 A bug stands on a horizontal turntable
at distance r from the center. The coefficient of
static friction between the bug and the turntable
is µs. The turntable spins at constant angular
frequency ω.
(a) Is the bug more likely to slip at small values
of r, or large values?
(b) If the bug walks along a radius, what is the
value of r at which it looses its footing? √

Problems 6-p2, 6-p3, and 6-p4.

6-p3 A bug stands on a horizontal turntable
at distance r from the center. The coefficient of
static friction between the bug and the turntable
is µs. Starting from rest, the turntable begins
rotating with angular acceleration α. What is
the magnitude of the angular frequency at which
the bug starts to slide? √

6-p4 A 20.0 g cockroach is lounging at a dis-
tance r = 5.00 cm from the axis of the carousel
of a microwave oven. Except for the species,
the situation is similar to the one shown in the
figure. The cockroach’s angular coordinate is
θ(t) = 12t2 − 4.0t3, where t is in seconds and
θ is in radians.
(a) Find the angular velocity and acceleration.√

(b) At what time t2 > 0 is the cockroach at rest?
At what time t1, where 0 < t1 < t2, is the cock-
roach moving the fastest?

√

(c) Find the tangential and radial components
of the linear acceleration of the cockroach at t1.
What is the direction of the acceleration vector
at this time?

√

(d) How many revolutions does the cockroach
make from t = 0 to t = t2?

√

(e) Suppose that the carousel, instead of deceler-
ating, had kept spinning at constant speed after
t1. Find the period and the frequency (in revo-
lutions per minute). √

6-p5 A CD is initially moving counterclock-
wise with angular speed ω0 and then starts de-
celerating with an angular acceleration of mag-
nitude α.
(a) How long does it take for the CD to come to
rest?

√

(b) Suppose that, after a time equal to half
that found in part a, point on the CD satisfies
|ar| = |at|. If the initial angular velocity of the
CD was 40 s−1, what is the total time it takes
for the CD to come to rest (i.e., the numerical
value of your answer in part a)? √

6-s1 The figure shows a microscopic view of
the innermost tracks of a music CD. The pits
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represent the pattern of ones and zeroes that en-
code the musical waveform. Because the laser
that reads the data has to sweep over a fixed
amount of data per unit time, the disc spins at a
decreasing angular velocity as the music is played
from the inside out. The linear velocity v, not
the angular velocity, is constant. Each track is
separated from its neighbors on either side by
a fixed distance p, called the pitch. Although
the tracks are actually concentric circles, we will
idealize them in this problem as a type of spiral,
called an Archimedean spiral, whose turns have
constant spacing, p, along any radial line. Our
goal is to find the angular acceleration of this
idealized CD, in terms of the constants v and p,
and the radius r at which the laser is positioned.
(a) Use geometrical reasoning to constrain the
dependence of the result on p.
(b) Use units to further constrain the result up
to a unitless multiplicative constant.
(c) Find the full result. [Hint: Find a differ-
ential equation involving r and its time deriva-
tive, and then solve this equation by separating
variables.]

√

(d) Consider the signs of the variables in your
answer to part c, and show that your equation
still makes sense when the direction of rotation
is reversed.
(e) Similarly, check that your result makes sense
regardless of whether we view the CD player
from the front or the back. (Clockwise seen from
one side is counterclockwise from the other.)

?

Problem 6-s1.

6-s2 Find the motion of a bead that slides
with coefficient of kinetic friction µ on a circular
wire of radius r. Neglect gravity. [This requires a
couple of standard techniques for solving a differ-
ential equation, but not obscure or tricky ones.]

?

Problem 6-s2.



7 Conservation of energy

This is not a textbook. It’s a book of problems
meant to be used along with a textbook. Although
each chapter of this book starts with a brief sum-
mary of the relevant physics, that summary is
not meant to be enough to allow the reader to
actually learn the subject from scratch. The pur-
pose of the summary is to show what material is
needed in order to do the problems, and to show
what terminology and notation are being used.

7.1 Conservation laws

Newton presented his laws of motion as universal
ones that would apply to all phenomena. We now
know that this is not true. For example, a ray
of light has zero mass, so a = F/m gives non-
sense when applied to light. Today, physicists
formulate the most fundamental laws of physics
as conservation laws, which arise from symmetry
principles.

An object has a symmetry if it remains un-
changed under some sort of transformation such
as a reflection, rotation, rotation, or translation
in time or space. A sphere is symmetric under ro-
tation. An object that doesn’t change over time
has symmetry with respect to time-translation.

Figure 7.1: In this scene from Swan Lake, the
choreography has a symmetry with respect to
left and right.

The fundamentally important symmetries in
physics are not symmetries of objects but sym-

metries of the laws of physics themselves. One
such symmetry is that laws of physics do not
seem to change over time. That is, they have
time-translation symmetry. The gravitational
forces that you see near the surface of the earth
are determined by Newton’s law of gravity, which
we will state later in quantitative detail.

Suppose that Newton’s law of gravity did
change over time. (Such a change would have
to be small, because precise experiments haven’t
shown objects to get heavier or lighter from one
time to another.) If you knew of such a change,
then you could exploit it to make money. On a
day when gravity was weak, you could pay the
electric company what it cost you to run an elec-
tric motor, and lift a giant weight to the top of
a tower. Then, on a high-gravity day, you could
lower the weight back down and use it to crank
a generator, selling electric power back on the
open market. You would have a kind of perpet-
ual motion machine.

What you are buying from the electric com-
pany is a thing called energy, a term that has a
specific technical meaning in physics. The fact
that the law of gravity does does not seem to
change over time tells us that we can’t use a
scheme like the one described above as a way
to create energy out of nothing. In fact, experi-
ments seem to show that no physical process can
create or destroy energy, they can only transfer
or transform it from one form into another. In
other words, the total amount of energy in the
universe can never change. A statement of this
form is called a conservation law. Today, New-
ton’s laws have been replaced by a set of conser-
vation laws, including conservation of energy.

Writing conservation of energy symbolically,
we have E1 + E2 + . . . = E′1 + E′2 + . . ., where
the sum is over all the types of energy that are
present, and the primed and unprimed letters
distinguish the energies at some initial and final
times. For more compact writing, we can use the

79
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Figure 7.2: Work.

notation ∑
k

Ek =
∑
k

E′k, (7.1)

where Σ, Greek uppercase sigma, stands for
“sum,” and k is an index taking on the values
1, 2, . . . .

Another conservation law is conservation of
mass. Experiments by Lavoisier (1743-1794)
showed that, for example, when wood was
burned, the total mass of the smoke, hot gases,
and charred wood was the same as the mass of
the original wood. This view was modified in
1905 by Einstein’s famous E = mc2, which says
that we can actually convert energy to mass and
mass to energy. Therefore the separate laws of
conservation of energy and mass are only ap-
proximations to a deeper, underlying conserva-
tion law that includes both quantities.

7.2 Work

Energy exists in various forms, such a the energy
of sunlight, gravitational energy, and the energy
of a moving object, called kinetic energy. Be-
cause it exists in so many forms, it is a tricky
concept to define. By analogy, an amount of
money can be expressed in terms of dollars, eu-
ros, or various other currencies, but modern gov-
ernments no longer even attempt to define the
value of their currencies in absolute terms such
as ounces of gold. If we make radio contact with

aliens someday, they will presumably not agree
with us on how many units of energy there are
in a liter of gasoline. We could, however, pick
something arbitrary like a liter of gas as a stan-
dard of comparison.

Figure ?? shows a train of thought leading to
a standard that turns out to be more convenient.
In panel 1, the tractor raises the weight over
the pulley. Gravitational energy is stored in the
weight, and this energy could be released later by
dropping or lowering the weight. In 2, the trac-
tor accelerates the trailer, increasing its kinetic
energy. In 3, the tractor pulls a plow. Energy
is expended in frictional heating of the plow and
the dirt, and in breaking dirt clods and lifting
dirt up to the sides of the furrow. In all three
examples, the energy of the gas in the tractor’s
tank is converted into some other form, and in all
three examples there is a force F involved, and
the tractor travels some distance d as it applies
the force.

Now imagine a black box, panel 4, containing
a gasoline-powered engine, which is designed to
reel in a steel cable, exerting a force F . The
box only communicates with the outside world
via the hole through which its cable passes, and
therefore the amount of energy transferred out
through the cable can only depend on F and d.
Since force and energy are both additive, this en-
ergy must be proportional to F , and since the en-
ergy transfer is additive as we reel in one section
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of cable and then a further section, the energy
must also be proportional to d. As an arbitrary
standard, we pick the constant of proportionality
to be 1, so that the energy transferred, notated
W for work, is given by

W = Fd. (7.2)

This equation implicitly defines the SI unit of
energy to be kg ·m2/s2, and we abbreviate this
as one joule, 1 J = 1 kg·m2/s2.

In general, we define work as the transfer of
energy by a macroscopic force, with a plus sign
if energy is flowing from the object exerting the
force to the object on which the force is exerted.
(In examples such as heat conduction, the forces
are forces that occur in the collisions between
atoms, which are not measurable by macroscopic
devices such as spring scales and force probes.)
Equation (7.2) is a correct rule for computing
work in the special case when the force is ex-
erted at a single well-defined point of contact,
that point moves along a line, the force and the
motion are parallel, and the force is constant.
The distance d is a signed quantity.

When the force and the motion are not paral-
lel, we have the generalization

W = F ·∆x, (7.3)

in which · is the vector dot product. When force
and motion are along the same line, but the force
is not constant,

W =

∫
F dx. (7.4)

Applying both of these generalizations at once
gives

W =

∫
F · dx, (7.5)

which is an example of the line integral from vec-
tor calculus.

The rate at which energy is transferred or
transformed is the power,

P =
dE

dt
. (7.6)

The units of power can be abbreviated as watts,
1 W = 1 J/s. For the conditions under which
W =

∫
F dx is valid, we can use the funda-

mental theorem of calculus to find F = dW/dx,
and since dW/dt = (dK/ dx)(dx/ dt), the power
transmitted by the force is

P = Fv. (7.7)

7.3 Kinetic energy

Having chosen mechanical work as an arbitrary
standard for defining transfers of energy, we are
led by Newton’s laws to an expression for the
energy that an object has because of its mo-
tion, called kinetic energy, K. One form of this
work-kinetic energy theorem is as follows. Let
a force act on a particle of mass m in one di-
mension. By the chain rule, we have dK/ dx =
(dK/dv)(dv/dt)(dt/dx) = (dK/dv)a/v. Ap-
plying a = F/m and dK/dx = F (work) gives
dK/dv = mv. Integration of both sides with
respect to v results in

K =
1

2
mv2, (7.8)

where the constant of integration can be taken to
be zero. The factor of 1/2 is ultimately a matter
of convention; if we had wanted to avoid the 1/2
in this equation, we could have, but we would
have had to define work as 2Fd.

When we heat an object, we are increasing
the kinetic energy of the random motion of its
molecules. The amount of energy required to
heat one kilogram a substance by one degree is
called its specific heat capacity. A useful figure is
that the specific heat of water is 4.2×103 J/kg·◦C.

7.4 Potential energy

Figure 7.3 shows someone lifting a heavy text-
book at constant speed while a bug hitches a
ride on top. The person’s body has burned some
calories, and although some of that energy went
into body heat, an amount equal to Fd must
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Figure 7.3: The book gains potential energy as
it is raised.

have flowed into the book. But the bug may be
excused for being skeptical about this. No mea-
surement that the bug can do within its own im-
mediate environment shows any changes in the
properties of the book: there is no change in tem-
perature, no vibration, nothing. Even if the bug
looks at the walls of the room and is able to tell
that it is rising, it finds that it is rising at con-
stant speed, so there is no change in the book’s
kinetic energy. But if the person then takes her
hand away and lets the book drop, the bug will
have to admit that there is a spectacular and
scary release of kinetic energy, which will later
be transformed into sound and vibration when
the book hits the floor.

If we are to salvage the law of conservation of
energy, we are forced to invent a new type of en-
ergy, which depends on the height of the book in
the earth’s gravitational field. This is an energy
of position, which is usually notated as PE or U .
Any time two objects interact through a force
exerted at a distance (gravity, magnetism, etc.),
there is a corresponding position-energy, which
is referred to as potential energy. The hand was
giving gravitational potential energy to the book.

Since the work done by the hand equals Fd, it
follows that the potential energy must be given
by

PEgrav = mgy, (7.9)

where an arbitary additive constant is implied
because we have to choose a reference level at
which to define y = 0. In the more general case
where the external force such as gravity is not
constant and can point in any direction, we have

∆PE = −
∫ 2

1

F · dx, (7.10)

where 1 and 2 stand for the inital and final po-
sitions. This is a line integral, which is general
may depend on the path the object takes. But
for a certain class of forces, which includes, to
a good approximation, the earth’s gravitational
force on an object, the result is not dependent
on the path, and therefore the potential energy
is well defined.

A common example is an elastic restoring force
F = −kx (Hooke’s law), such as the force of a
spring. Calculating ∆PE = −

∫
F dx, we find

PE =
1

2
kx2, (7.11)

where the constant of integration is arbitrarily
chosen to be zero. This is in fact a type of elec-
trical potential energy, which varies as the lattice
of atoms within the spring is distorted.
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Problems

7-a1 “Big wall” climbing is a specialized type
of rock climbing that involves going up tall cliffs
such as the ones in Yosemite, usually with the
climbers spending at least one night sleeping on
a natural ledge or an artificial “portaledge.” In
this style of climbing, each pitch of the climb in-
volves strenuously hauling up several heavy bags
of gear — a fact that has caused these climbs to
be referred to as “vertical ditch digging.” (a) If
an 80 kg haul bag has to be pulled up the full
length of a 60 m rope, how much work is done?
(b) Since it can be difficult to lift 80 kg, a 2:1
pulley is often used. The hauler then lifts the
equivalent of 40 kg, but has to pull in 120 m of
rope. How much work is done in this case? √

7-a2 An airplane flies in the positive direction
along the x axis, through crosswinds that exert
a force F = (a + bx)x̂ + (c + dx)ŷ. Find the
work done by the wind on the plane, and by the
plane on the wind, in traveling from the origin
to position x. √

7-a3 In the power stroke of a car’s gasoline en-
gine, the fuel-air mixture is ignited by the spark
plug, explodes, and pushes the piston out. The
exploding mixture’s force on the piston head is
greatest at the beginning of the explosion, and
decreases as the mixture expands. It can be
approximated by F = a/x, where x is the dis-
tance from the cylinder to the piston head, and
a is a constant with units of N ·m. (Actually
a/x1.4 would be more accurate, but the problem
works out more nicely with a/x!) The piston be-
gins its stroke at x = x1, and ends at x = x2.
The 1965 Rambler had six cylinders, each with
a = 220 N·m, x1 = 1.2 cm, and x2 = 10.2 cm.
(a) Draw a neat, accurate graph of F vs x, on
graph paper.
(b) From the area under the curve, derive the
amount of work done in one stroke by one
cylinder.

√

(c) Assume the engine is running at 4800 r.p.m.,
so that during one minute, each of the six

cylinders performs 2400 power strokes. (Power
strokes only happen every other revolution.)
Find the engine’s power, in units of horsepower
(1 hp=746 W).

√

(d) The compression ratio of an engine is defined
as x2/x1. Explain in words why the car’s power
would be exactly the same if x1 and x2 were, say,
halved or tripled, maintaining the same compres-
sion ratio of 8.5. Explain why this would not
quite be true with the more realistic force equa-
tion F = a/x1.4.

Problem 7-a3.

7-a4 (a) The crew of an 18th century warship
is raising the anchor. The anchor has a mass of
5000 kg. The water is 30 m deep. The chain
to which the anchor is attached has a mass per
unit length of 150 kg/m. Before they start rais-
ing the anchor, what is the total weight of the
anchor plus the portion of the chain hanging out
of the ship? (Assume that the buoyancy of the
anchor is negligible.)
(b) After they have raised the anchor by 1 m,
what is the weight they are raising?
(c) Define y = 0 when the anchor is resting on
the bottom, and y = +30 m when it has been
raised up to the ship. Draw a graph of the force
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the crew has to exert to raise the anchor and
chain, as a function of y. (Assume that they are
raising it slowly, so water resistance is negligi-
ble.) It will not be a constant! Now find the
area under the graph, and determine the work
done by the crew in raising the anchor, in joules.
(d) Convert your answer from (c) into units of
kcal. √

7-a5 The figure, redrawn from Gray’s
Anatomy, shows the tension of which a muscle
is capable. The variable x is defined as the
contraction of the muscle from its maximum
length L, so that at x = 0 the muscle has length
L, and at x = L the muscle would theoretically
have zero length. In reality, the muscle can
only contract to x = cL, where c is less than 1.
When the muscle is extended to its maximum
length, at x = 0, it is capable of the greatest
tension, To. As the muscle contracts, however, it
becomes weaker. Gray suggests approximating
this function as a linear decrease, which would
theoretically extrapolate to zero at x = L. (a)
Find the maximum work the muscle can do in
one contraction, in terms of c, L, and To.

√

(b) Show that your answer to part a has the
right units.
(c) Show that your answer to part a has the
right behavior when c = 0 and when c = 1.
(d) Gray also states that the absolute maximum
tension To has been found to be approximately
proportional to the muscle’s cross-sectional area
A (which is presumably measured at x = 0),
with proportionality constant k. Approximating
the muscle as a cylinder, show that your answer
from part a can be reexpressed in terms of the
volume, V , eliminating L and A.

√

(e) Evaluate your result numerically for a biceps
muscle with a volume of 200 cm3, with c = 0.8
and k = 100 N/cm2 as estimated by Gray.

√

7-d1 Can kinetic energy ever be less than
zero? Explain. [Based on a problem by Serway
and Faughn.]

Problem 7-a5.

7-d2 A bullet flies through the air, passes
through a paperback book, and then continues
to fly through the air beyond the book. When is
there a force? When is there energy?

7-d3 A 7.00 kg bowling ball moves at
3.00 m/s. How fast must a 2.45 g ping-pong ball
move so that the two balls have the same kinetic
energy? √

7-d4 You throw a ball straight up, and it
lands with 2/3 the speed with which you threw
it. What fraction of the initial kinetic energy was
lost during the time the ball was in the air?√

7-d5 The multiflash photograph shows a col-
lision between two pool balls. The ball that
was initially at rest shows up as a dark image
in its initial position, because its image was ex-
posed several times before it was struck and be-
gan moving. By making measurements on the
figure, determine numerically whether or not en-
ergy appears to have been conserved in the colli-
sion. What systematic effects would limit the ac-
curacy of your test? [From an example in PSSC
Physics.]
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Problem 7-d5.

hw-colliding-balls
7-d6 You are driving your car, and you hit a
brick wall head on, at full speed. The car has a
mass of 1500 kg. The kinetic energy released is
a measure of how much destruction will be done
to the car and to your body. Calculate the en-
ergy released if you are traveling at (a) 40 mi/hr,
and again (b) if you’re going 80 mi/hr. What is
counterintuitive about this, and what implica-
tion does this have for driving at high speeds?√

7-d7 Object A has a kinetic energy of 13.4 J.
Object B has a mass that is greater by a factor
of 3.77, but is moving more slowly by a factor of
2.34. What is object B’s kinetic energy? [Based
on a problem by Arnold Arons.]

7-d8 One theory about the destruction of the
space shuttle Columbia in 2003 is that one of its
wings had been damaged on liftoff by a chunk of
foam insulation that fell off of one of its exter-
nal fuel tanks. The New York Times reported on
June 5, 2003, that NASA engineers had recreated
the impact to see if it would damage a mock-
up of the shuttle’s wing. “Before last week’s
test, many engineers at NASA said they thought
lightweight foam could not harm the seemingly
tough composite panels, and privately predicted
that the foam would bounce off harmlessly, like
a Nerf ball.” In fact, the 0.80 kg piece of foam,

moving at 240 m/s, did serious damage. A mem-
ber of the board investigating the disaster said
this demonstrated that “people’s intuitive sense
of physics is sometimes way off.” (a) Compute
the kinetic energy of the foam, and (b) compare
with the energy of an 80 kg boulder moving at
2.4 m/s (the speed it would have if you dropped
it from about knee-level).

√

(c) The boulder is a hundred times more mas-
sive, but its speed is a hundred times smaller, so
what’s counterintuitive about your results?

7-d9 A closed system can be a bad thing —
for an astronaut sealed inside a space suit, get-
ting rid of body heat can be difficult. Suppose a
60-kg astronaut is performing vigorous physical
activity, expending 200 W of power. If none of
the heat can escape from her space suit, how long
will it take before her body temperature rises by
6◦C (11◦F), an amount sufficient to kill her? As-
sume that the amount of heat required to raise
her body temperature by 1◦C is the same as it
would be for an equal mass of water. Express
your answer in units of minutes. √

7-d10 Experiments show that the power con-
sumed by a boat’s engine is approximately pro-
portional to the third power of its speed. (We
assume that it is moving at constant speed.) (a)
When a boat is crusing at constant speed, what
type of energy transformation do you think is
being performed? (b) If you upgrade to a mo-
tor with double the power, by what factor is
your boat’s crusing speed increased? [Based on
a problem by Arnold Arons.]

7-g1 Estimate the kinetic energy of an
Olympic sprinter.

7-g2 Estimate the kinetic energy of a buzzing
fly’s wing. (You may wish to review section 1.4
on order-of-magnitude estimates.)

7-g3 A blade of grass moves upward as it
grows. Estimate its kinetic energy. (You may
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wish to review section 1.4 on order-of-magnitude
estimates.)

7-g4 All stars, including our sun, show varia-
tions in their light output to some degree. Some
stars vary their brightness by a factor of two
or even more, but our sun has remained rela-
tively steady during the hundred years or so that
accurate data have been collected. Neverthe-
less, it is possible that climate variations such
as ice ages are related to long-term irregulari-
ties in the sun’s light output. If the sun was
to increase its light output even slightly, it could
melt enough Antarctic ice to flood all the world’s
coastal cities. The total sunlight that falls on
Antarctica amounts to about 1× 1016 watts. In
the absence of natural or human-caused climate
change, this heat input to the poles is balanced
by the loss of heat via winds, ocean currents, and
emission of infrared light, so that there is no net
melting or freezing of ice at the poles from year
to year. Suppose that the sun changes its light
output by some small percentage, but there is no
change in the rate of heat loss by the polar caps.
Estimate the percentage by which the sun’s light
output would have to increase in order to melt
enough ice to raise the level of the oceans by 10
meters over a period of 10 years. (This would be
enough to flood New York, London, and many
other cities.) Melting 1 kg of ice requires 3×103

J.

7-j1 A ball rolls up a ramp, turns around,
and comes back down. When does it have the
greatest gravitational energy? The greatest ki-
netic energy? [Based on a problem by Serway
and Faughn.]

7-j2 Can gravitational potential energy ever
be negative? Note that the question refers to
PE, not ∆PE, so that you must think about
how the choice of a reference level comes into
play. [Based on a problem by Serway and
Faughn.]

7-j3 In each of the following situations, is the
work being done positive, negative, or zero? (a)
a bull paws the ground; (b) a fishing boat pulls
a net through the water behind it; (c) the water
resists the motion of the net through it; (d) you
stand behind a pickup truck and lower a bale of
hay from the truck’s bed to the ground. Explain.
[Based on a problem by Serway and Faughn.]

7-j4 (a) Suppose work is done in one-
dimensional motion. What happens to the work
if you reverse the direction of the positive coor-
dinate axis? Base your answer directly on the
definition of work as a transfer of mechanical en-
ergy. (b) Now answer the question based on the
W = Fd rule.

7-j5 Does it make sense to say that work is
conserved?

7-j6 (a) You release a magnet on a tabletop
near a big piece of iron, and the magnet leaps
across the table to the iron. Does the magnetic
energy increase, or decrease? Explain. (b) Sup-
pose instead that you have two repelling mag-
nets. You give them an initial push towards each
other, so they decelerate while approaching each
other. Does the magnetic energy increase, or de-
crease? Explain.

7-j7 Students are often tempted to think of
potential energy and kinetic energy as if they
were always related to each other, like yin and
yang. To show this is incorrect, give examples of
physical situations in which (a) PE is converted
to another form of PE, and (b) KE is converted
to another form of KE.

7-j8 Anya and Ivan lean over a balcony side
by side. Anya throws a penny downward with
an initial speed of 5 m/s. Ivan throws a penny
upward with the same speed. Both pennies end
up on the ground below. Compare their kinetic
energies and velocities on impact.
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7-j9 Decide whether the following statements
regarding work and energy are true or false.
(a) The work done by a frictional force depends
only on the initial and final points of the path of
a particle.
(b) If a force is perpendicular to the direction
of motion of an object, the force is not changing
the kinetic energy of the object.
(c) The work done by a conservative force is zero.
(d) Doubling the amount of time a force is ap-
plied will double the work done on an object by
the force.
(e) Since KE is always positive, the net work on
a particle must be positive.

7-j10 When you buy a helium-filled balloon,
the seller has to inflate it from a large metal
cylinder of the compressed gas. The helium in-
side the cylinder has energy, as can be demon-
strated for example by releasing a little of it into
the air: you hear a hissing sound, and that sound
energy must have come from somewhere. The to-
tal amount of energy in the cylinder is very large,
and if the valve is inadvertently damaged or bro-
ken off, the cylinder can behave like a bomb or
a rocket.

Suppose the company that puts the gas in the
cylinders prepares cylinder A with half the nor-
mal amount of pure helium, and cylinder B with
the normal amount. Cylinder B has twice as
much energy, and yet the temperatures of both
cylinders are the same. Explain, at the atomic
level, what form of energy is involved, and why
cylinder B has twice as much.

7-j11 Explain in terms of conservation of en-
ergy why sweating cools your body, even though
the sweat is at the same temperature as your
body. Describe the forms of energy involved in
this energy transformation. Why don’t you get
the same cooling effect if you wipe the sweat off
with a towel? Hint: The sweat is evaporating.

7-j12 A microwave oven works by twisting
molecules one way and then the other, counter-
clockwise and then clockwise about their own

centers, millions of times a second. If you put
an ice cube or a stick of butter in a microwave,
you’ll observe that the solid doesn’t heat very
quickly, although eventually melting begins in
one small spot. Once this spot forms, it grows
rapidly, while the rest of the solid remains solid;
it appears that a microwave oven heats a liquid
much more rapidly than a solid. Explain why
this should happen, based on the atomic-level
description of heat, solids, and liquids.

Don’t repeat the following common mistakes:
In a solid, the atoms are packed more tightly and
have less space between them. Not true. Ice
floats because it’s less dense than water.
In a liquid, the atoms are moving much faster.
No, the difference in average speed between ice
at −1◦C and water at 1◦C is only 0.4%.

7-j13 The figure above is from a classic 1920
physics textbook by Millikan and Gale. It rep-
resents a method for raising the water from the
pond up to the water tower, at a higher level,
without using a pump. Water is allowed into the
drive pipe, and once it is flowing fast enough, it
forces the valve at the bottom closed. Explain
how this works in terms of conservation of mass
and energy.

7-m1 A grasshopper with a mass of 110 mg
falls from rest from a height of 310 cm. On the
way down, it dissipates 1.1 mJ of heat due to air
resistance. At what speed, in m/s, does it hit
the ground?

. Solution, p. 236

7-m2 Suppose that the cost of energy in your
city is 15 cents per kilowatt-hour. A cost-efficient
light bulb uses energy at a rate of 25 W. How
much does it cost to leave the light on for the
entire month of January? √

7-m3 Lisa times herself running up the stairs
of her science building and finds that it takes her
23 s to reach the top floor. Her mass is 44 kg.
If the vertical height reached is 11.0 m, what is
minimum average power she would have to have
produced during the climb (i.e., only taking into
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Problem 7-j13.

account the energy required to overcome grav-
ity)? √

7-m4 How long will it take a 3.92 kW motor,
operating at full power, to lift a 1150 kg car to
a height of 25.0 m? Assume frictional forces are
negligible. (To make this more vivid for people
in the US, 3.92 kW is 5.26 horsepower.) √

7-m5 A roller coaster starts from rest and de-
scends 35 meters in its initial drop and then rises
23 meters before going over a hill. A passenger
at the top of the hill feels an apparent weight
which is 2/3 of her normal weight. By using the
fact that the energy loss due to friction must be
greater than zero, find a bound on the radius of
curvature of the first hill. Is this an upper bound,
or a lower bound? √

7-m6 A piece of paper of mass 4.5 g is
dropped from a height 1.0 m above the ground.
The paper dissipates 37 mJ of energy through
frictional heating on its way down.
(a) How much kinetic energy does the paper have
when it reaches the ground?

√

(b) What is the speed of the paper when it hits
the ground? √

7-m7 Let Eb be the energy required to boil
one kg of water. (a) Find an equation for the
minimum height from which a bucket of water

must be dropped if the energy released on im-
pact is to vaporize it. Assume that all the heat
goes into the water, not into the dirt it strikes,
and ignore the relatively small amount of energy
required to heat the water from room tempera-
ture to 100◦C. [Numerical check, not for credit:
Plugging in Eb = 2.3 MJ/kg should give a result
of 230 km.]

√

(b) Show that the units of your answer in part a
come out right based on the units given for Eb.

7-m8 Most modern bow hunters in the U.S.
use a fancy mechanical bow called a compound
bow, which looks nothing like what most people
imagine when they think of a bow and arrow. It
has a system of pulleys designed to produce the
force curve shown in the figure, where F is the
force required to pull the string back, and x is
the distance between the string and the center
of the bow’s body. It is not a linear Hooke’s-
law graph, as it would be for an old-fashioned
bow. The big advantage of the design is that
relatively little force is required to hold the bow
stretched to point B on the graph. This is the
force required from the hunter in order to hold
the bow ready while waiting for a shot. Since it
may be necessary to wait a long time, this force
can’t be too big. An old-fashioned bow, designed
to require the same amount of force when fully
drawn, would shoot arrows at much lower speeds,
since its graph would be a straight line from A
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to B. For the graph shown in the figure (taken
from realistic data), find the speed at which a
26 g arrow is released, assuming that 70% of the
mechanical work done by the hand is actually
transmitted to the arrow. (The other 30% is lost
to frictional heating inside the bow and kinetic
energy of the recoiling and vibrating bow.) √

Problem 7-m8.

7-m9 The following table gives the amount
of energy required in order to heat, melt, or boil
a gram of water.

heat 1 g of ice by 1◦C 2.05 J
melt 1 g of ice 333 J
heat 1 g of water by 1◦C 4.19 J
boil 1 g of water 2500 J
heat 1 g of steam by 1◦C 2.01 J

(a) How much energy is required in order to con-
vert 1.00 g of ice at -20 ◦C into steam at 137 ◦C?√

(b) What is the minimum amount of hot water
that could melt 1.00 g of ice? √

7-m10 Lord Kelvin, a physicist, told the story
of how he encountered James Joule when Joule
was on his honeymoon. As he traveled, Joule
would stop with his wife at various waterfalls,
and measure the difference in temperature be-
tween the top of the waterfall and the still water
at the bottom. (a) It would surprise most people
to learn that the temperature increased. Why
should there be any such effect, and why would
Joule care? How would this relate to the energy
concept, of which he was the principal inventor?

(b) How much of a gain in temperature should
there be between the top and bottom of a 50-
meter waterfall? (c) What assumptions did you
have to make in order to calculate your answer to
part b? In reality, would the temperature change
be more than or less than what you calculated?
[Based on a problem by Arnold Arons.] √

7-m11 Weiping lifts a rock with a weight of
1.0 N through a height of 1.0 m, and then lowers
it back down to the starting point. Bubba pushes
a table 1.0 m across the floor at constant speed,
requiring a force of 1.0 N, and then pushes it
back to where it started. (a) Compare the total
work done by Weiping and Bubba. (b) Check
that your answers to part a make sense, using
the definition of work: work is the transfer of
energy. In your answer, you’ll need to discuss
what specific type of energy is involved in each
case.

7-p1 At a given temperature, the average ki-
netic energy per molecule is a fixed value, so
for instance in air, the more massive oxygen
molecules are moving more slowly on the aver-
age than the nitrogen molecules. The ratio of
the masses of oxygen and nitrogen molecules is
16.00 to 14.01. Now suppose a vessel contain-
ing some air is surrounded by a vacuum, and the
vessel has a tiny hole in it, which allows the air
to slowly leak out. The molecules are bouncing
around randomly, so a given molecule will have
to “try” many times before it gets lucky enough
to head out through the hole. Find the rate at
which oxygen leaks divided by the rate at which
nitrogen leaks. (Define this rate according to the
fraction of the gas that leaks out in a given time,
not the mass or number of molecules leaked per
unit time.) √

7-p2 In the earth’s atmosphere, the molecules
are constantly moving around. Because tem-
perature is a measure of kinetic energy per
molecule, the average kinetic energy of each type
of molecule is the same, e.g., the average KE of
the O2 molecules is the same as the average KE
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of the N2 molecules. (a) If the mass of an O2

molecule is eight times greater than that of a He
atom, what is the ratio of their average speeds?
Which way is the ratio, i.e., which is typically
moving faster? (b) Use your result from part a
to explain why any helium occurring naturally in
the atmosphere has long since escaped into outer
space, never to return. (Helium is obtained com-
mercially by extracting it from rocks.) You may
want to do problem 11-s1 first, for insight. √

7-p3 Two speedboats are identical, but one
has more people aboard than the other. Al-
though the total masses of the two boats are
unequal, suppose that they happen to have the
same kinetic energy. In a boat, as in a car, it’s
important to be able to stop in time to avoid
hitting things. (a) If the frictional force from
the water is the same in both cases, how will
the boats’ stopping distances compare? Explain.
(b) Compare the times required for the boats to
stop.

7-p4 A car starts from rest at t = 0, and
starts speeding up with constant acceleration.
(a) Find the car’s kinetic energy in terms of its
mass, m, acceleration, a, and the time, t. (b)
Your answer in the previous part also equals the
amount of work, W , done from t = 0 until time
t. Take the derivative of the previous expression
to find the power expended by the car at time t.
(c) Suppose two cars with the same mass both
start from rest at the same time, but one has
twice as much acceleration as the other. At any
moment, how many times more power is being
dissipated by the more quickly accelerating car?
(The answer is not 2.) √

7-p5 While in your car on the freeway, you’re
travelling at a constant speed of 55 miles/hour,
requiring a power output of 50 horsepower from
the engine. Almost all of the energy provided by
the engine is used to fight air resistance, which is
proportional in magnitude to the square of the
speed of the car. If you step on the gas pedal
all the way and increase the power output to

100 horsepower, what final speed will you reach?
Note that this problem can be done without any
conversions or knowledge of US units. √

7-s1 A soccer ball of mass m is moving at
speed v when you kick it in the same direction
it is moving. You kick it with constant force F ,
and you want to triple the ball’s speed. Over
what distance must your foot be in contact with
the ball? √

7-s2 A laptop of mass m and a desktop com-
puter of mass 3m are both dropped from the top
of a building. The laptop has kinetic energy K
when it reaches the ground.
(a) Find the kinetic energy of the desktop ma-
chine on impact, in terms of K, m, or both.

√

(b) Find its speed in terms of the same variables.√

7-s3 A girl picks up a stone of mass m from
the ground and throws it at speed v, releasing
the stone from a height h above the ground. If
the maximum power output of the girl is P , how
many stones could she throw in a time T?

7-s4 A car accelerates from rest. At low
speeds, its acceleration is limited by static fric-
tion, so that if we press too hard on the gas, we
will “burn rubber” (or, for many newer cars, a
computerized traction-control system will over-
ride the gas pedal). At higher speeds, the limit
on acceleration comes from the power of the en-
gine, which puts a limit on how fast kinetic en-
ergy can be developed.
(a) Show that if a force F is applied to an object
moving at speed v, the power required is given
by P = vF .
(b) Find the speed v at which we cross over from
the first regime described above to the second.
At speeds higher than this, the engine does not
have enough power to burn rubber. Express your
result in terms of the car’s power P , its mass m,
the coefficient of static friction µs, and g.

√

(c) Show that your answer to part b has units
that make sense.
(d) Show that the dependence of your answer on
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each of the four variables makes sense physically.
(e) The 2010 Maserati Gran Turismo Convertible
has a maximum power of 3.23×105 W (433 horse-
power) and a mass (including a 50-kg driver) of
2.03× 103 kg. (This power is the maximum the
engine can supply at its optimum frequency of
7600 r.p.m. Presumably the automatic trans-
mission is designed so a gear is available in which
the engine will be running at very nearly this fre-
quency when the car is moving at v.) Rubber on
asphalt has µs ≈ 0.9. Find v for this car. An-
swer: 18 m/s, or about 40 miles per hour.
(f) Our analysis has neglected air friction, which
can probably be approximated as a force propor-
tional to v2. The existence of this force is the rea-
son that the car has a maximum speed, which is
176 miles per hour. To get a feeling for how good
an approximation it is to ignore air friction, find
what fraction of the engine’s maximum power is
being used to overcome air resistance when the
car is moving at the speed v found in part e.
Answer: 1%

7-s5 A piece of paper of mass m is dropped
from a height H above the ground. Because of
air resistance, the paper lands with only 1/5th
the speed that it would have landed with had
there been no air resistance.
(a) What is the work on the paper due to
gravity?

√

(b) What is the work on the paper due to the
drag force? √

7-s6 A block of mass m is at the top of a
ramp of length L inclined at angle θ with re-
spect to the horizontal. The block slides down
the ramp, and the coefficient of friction between
the two surfaces is µk. Parts a-c are about find-
ing the speed of the block when it reaches the
bottom of the ramp.
(a) Based on units, infer as much as possible
about the form of the answer.
(b) Find the speed.

√

(c) Check that the dependence of the result on
the variables make sense. Under what conditions
is the result unphysical?

(d) The speed of the block at the bottom of the
ramp is only half of what it would have been
without friction. Knowing this, what is the coef-
ficient of friction µk in terms of the other given
quantities? √

7-s7 Some kids are playing a game where they
shoot a ball of mass m off a spring into a cup that
is a distance D away from the base of the table
(see figure). The ball starts at a height H, and
the spring has spring constant k. The goal of
the problem is to find the distance you should
compress the spring so that the ball lands in the
cup.
(a) Infer as much as possible about the form of
the result based on units.
(b) Find the result. √

Problem 7-s7.

7-s8 A person on a bicycle is to coast down
a ramp of height h and then pass through a
circular loop of radius r. What is the smallest
value of h for which the cyclist will complete the
loop without falling? (Ignore the kinetic energy
of the spinning wheels.)

√

7-s9 Suppose that the cyclist in problem 7-
s8 wants to have a little extra security, passing
through the top of the loop at twice the mini-
mum speed that would have theoretically been
required.
(a) What is this speed?

√

(b) Find the height of the ramp that is needed.√
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7-s10 Consider the system shown in the fig-
ure. Block A has mass MA and block B has mass
MB . There is a coefficient of kinetic friction µk
between block A and the table. The system is
released from rest and block B drops a distance
D.
(a) What is the work done by gravity on block
B?

√

(b) What is the tension in the string?
√

(c) What is the work done on block B by the
string?

√

(d) By adding your results in parts a and c, find
the speed of block B.

√

(e) Show that the sum of the works done on block
A equals the change in KE of block A.

Problem 7-s10.

7-s11 (a) A circular hoop of mass m and ra-
dius r spins like a wheel while its center remains
at rest. Its period (time required for one revo-
lution) is T . Show that its kinetic energy equals
2π2mr2/T 2.
(b) If such a hoop rolls with its center moving
at velocity v, its kinetic energy equals (1/2)mv2,
plus the amount of kinetic energy found in the
first part of this problem. Show that a hoop rolls
down an inclined plane with half the acceleration
that a frictionless sliding block would have.

7-s12 As shown in the figure, a box of mass
m is dropped from a height H above a spring.
The platform has negligible mass. The spring
has spring constant k.
(a) By what amount is the spring compressed?
Your answer requires the quadratic equation; to

choose the correct root, note that x needs to be
positive.

√

(b) What is the speed of the box when it is first
in contact with the platform?

√

(c) What is the maximum speed of the box?
Hint: the box speeds up until the force from the
spring equals the gravitational force. √

?

Problem 7-s12.

7-s13 A skateboarder starts at rest nearly at
the top of a giant cylinder, and begins rolling
down its side. (If he started exactly at rest and
exactly at the top, he would never get going!)
Show that his board loses contact with the pipe
after he has dropped by a height equal to one
third the radius of the pipe.

?

7-s14 The figure shows a slab of mass M
rolling freely down an inclined plane inclined at
an angle θ to the horizontal. The slab is on top of
a set of rollers, each of radius r, that roll without
slipping at their top and bottom surfaces. The
rollers may for example be cylinders, or spheres
such as ball bearings. Each roller’s center of mass
coincides with its geometrical center. The sum
of the masses of the rollers is m, and the sum
of their moments of inertia (each about its own
center) is I. Find the acceleration of the slab,
and verify that your expression has the correct
behavior in interesting limiting cases. √

?
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Problem 7-s13.

Problem 7-s14.

7-v1 The magnitude of the force between two
magnets separated by a distance r can be ap-
proximated as kr−3 for large values of r. The
constant k depends on the strengths of the mag-
nets and the relative orientations of their north
and south poles. Two magnets are released on
a slippery surface at an initial distance ri, and
begin sliding towards each other. What will be
the total kinetic energy of the two magnets when
they reach a final distance rf? (Ignore friction.)√

7-v2 An object’s potential energy is described
by the function U(x) = −αx2+βx4, where α and
β are positive constants.
(a) For what positive value of x is the force on

the object equal to zero?
√

(b) What is the force on the particle when x =
2
√
α/β? √

7-v3 The potential energy of a particle mov-
ing in a certain one-dimensional region of space
is

U(x) = (1.00 J/m3)x3 − (7.00 J/m2)x2

+ (10.0 J/m)x.

(a) Determine the force F (x) acting on the par-
ticle as a function of position.
(b) Is the force you found in part a conservative,
or non-conservative? Explain.
(c) Let “R” refer to the region x = −1.00 m
to x = +6.00 m. Draw U(x) on R (label your
axes). On your plot, label all points of stable
and unstable equilibrium on R, and find their
locations.
(d) What is the maximum force (in magnitude)
experienced by a particle on R?
(e) The particle has mass 1.00 kg and is released
from rest at x = 2.00 m. Describe the subse-
quent motion. What is the maximum KE that
the particle achieves?

7-v4 The potential energy of a particle mov-
ing in a certain one-dimensional region of space
is

U(x) = (1.00 J/m4)x4 − (4.00 J/m2)x2

+ (1.00 J/m)x.

You might want to plot the function U(x) using
a graphing calculator or an online utility such as
desmos.com. An object of mass 2.00 kg is re-
leased from rest at x = 2.00 m.
(a) At what position does the object have maxi-
mum speed?

√

(b) What is the maximum speed of the object?√

(c) What is the velocity of the object when it
reaches the unstable equilibrium point?

√

(d) What is the lowest value of x that the object
gets to?
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√

7-v5 A banana starts at rest and is subject
to the force shown. This force is the only force
acting on the banana.
(a) What is the work done on the banana as it
moves from x = 0 m to 2 m?

√

(b) From 2 m to 3 m?
√

(c) If this force acts on the banana for 0.5 s, what
is the average power delivered to the banana?√

Problem 7-v5.

7-v6 An object of mass m is moving with
speed v in the +x-direction when, starting at x =
0, it is subjected to the position-dependent force
F (x) = −kx2, where k is a positive constant.
What is the maximum x-coordinate the object
will reach? √

7-v7 In 1935, Yukawa proposed an early
theory of the force that held the neutrons and
protons together in the nucleus. His equation
for the potential energy of two such particles,
at a center-to-center distance r, was PE(r) =
gr−1e−r/a, where g parametrizes the strength
of the interaction, e is the base of natural log-
arithms, and a is about 10−15 m. Find the force
between two nucleons that would be consistent
with this equation for the potential energy.√

7-v8 A rail gun is a device like a train on
a track, with the train propelled by a power-
ful electrical pulse. Very high speeds have been
demonstrated in test models, and rail guns have
been proposed as an alternative to rockets for
sending into outer space any object that would

be strong enough to survive the extreme accel-
erations. Suppose that the rail gun capsule is
launched straight up, and that the force of air
friction acting on it is given by F = be−cx, where
x is the altitude, b and c are constants, and e is
the base of natural logarithms. The exponen-
tial decay occurs because the atmosphere gets
thinner with increasing altitude. (In reality, the
force would probably drop off even faster than
an exponential, because the capsule would be
slowing down somewhat.) Find the amount of
kinetic energy lost by the capsule due to air fric-
tion between when it is launched and when it
is completely beyond the atmosphere. (Gravity
is negligible, since the air friction force is much
greater than the gravitational force.) √

7-v9 The figure shows two unequal masses,
M and m, connected by a string running over a
pulley. This system was analyzed previously in
problem 5-p2 on p. 63, using Newton’s laws.
(a) Analyze the system using conservation of
energy instead. Find the speed the weights gain
after being released from rest and traveling a
distance h.

√

(b) Use your result from part a to find the
acceleration, reproducing the result of the
earlier problem.

√

Problem 7-v9.
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7-v10 A mass moving in one dimension is at-
tached to a horizontal spring. It slides on the sur-
face below it, with equal coefficients of static and
kinetic friction, µk = µs. The equilibrium posi-
tion is x = 0. If the mass is pulled to some initial
position and released from rest, it will complete
some number of oscillations before friction brings
it to a stop. When released from x = a (a > 0),
it completes exactly 1/4 of an oscillation, i.e., it
stops precisely at x = 0. Similarly, define b > 0
as the greatest x from which it could be released
and comlete 1/2 of an oscillation, stopping on
the far side and not coming back toward equi-
librium. Find b/a. Hint: To keep the algebra
simple, set every fixed parameter of the system
equal to 1. √

7-v11 In 2003, physicist and philosopher
John Norton came up with the following appar-
ent paradox, in which Newton’s laws, which ap-
pear deterministic, can produce nondeterminis-
tic results. Suppose that a bead moves friction-
lessly on a curved wire under the influence of
gravity. The shape of the wire is defined by the
function y(x), which passes through the origin,
and the bead is released from rest at the ori-
gin. For convenience of notation, choose units
such that g = 1, and define ẏ = dy/dt and
y′ = dy/dx.
(a) Show that the equation of motion is

y = −1

2
ẏ2
(
1 + y′−2

)
.

(b) To simplify the calculations, assume from
now on that y′ � 1. Find a shape for the wire
such that x = t4 is a solution. (Ignore units.)

√

(c) Show that not just the motion assumed in
part b, but any motion of the following form is
a solution:

x =

{
0 if t ≤ t0
(t− t0)4 if t ≥ t0

This is remarkable because there is no physical
principle that determines t0, so if we place the

bead at rest at the origin, there is no way to
predict when it will start moving.

?
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8 Conservation of momentum

This is not a textbook. It’s a book of problems
meant to be used along with a textbook. Although
each chapter of this book starts with a brief sum-
mary of the relevant physics, that summary is
not meant to be enough to allow the reader to
actually learn the subject from scratch. The pur-
pose of the summary is to show what material is
needed in order to do the problems, and to show
what terminology and notation are being used.

8.1 Momentum: a con-
served vector

Consider the hockey puck in figure 8.1. If we
release it at rest, we expect it to remain at rest.
If it did start moving all by itself, that would
be strange: it would have to pick some direction
in which to move, and why would it have such
a deep desire to visit the region of space on one
side rather than the other? Such behavior, which
is not actually observed, would suggest that the
laws of physics differed between one region of
space and another.

Figure 8.1: A hockey puck is released at rest.
Will it start moving in some direction?

The laws of physics are in fact observed to be

the same everywhere, and this symmetry leads to
a conservation law, conservation of momentum.
The momentum of a material object, notated p
for obscure reasons, is given by the product of
its mass and its momentum,

p = mv. (8.1)

From the definition, we see that momentum is a
vector. That’s important because up until now,
the only conserved quantities we’d encountered
were mass and energy, which are both scalars.
Clearly the laws of physics would be incomplete
if we never had a law of physics that related to
the fact that the universe has three dimensions of
space. For example, it wouldn’t violate conserva-
tion of mass or energy if an object was moving in
a certain direction and then suddenly changed its
direction of motion, while maintaining the same
speed.

If we differentiating the equation for momen-
tum with respect to time and apply Newton’s
second law, we obtain

Ftotal =
dp

dt
. (8.2)

We can also see from this equation that in the
special case of a system of particles, conservation
of momentum is closely related to Newton’s third
law.

8.2 Collisions

A collision is an interaction between particles in
which the particles interact over some period of
time and then stop interacting. It is assumed
that external forces are negligible. Often the re-
sult of a collision can be uniquely predicted by
simultaneously imposing conservation of energy
and conservation of momentum,∑

Ej =
∑

E′j (8.3)∑
pk =

∑
p′k, (8.4)

97
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where j runs over the types of energy and k over
the particles.

Some collisions are highly elastic, meaning
that little or no kinetic energy is transformed
into other forms, such as heat or sound. Other
collisions, for example car crashes, are highly in-
elastic. Unless we have some reason to believe
that the collision is elastic, we cannot assume
that the total kinetic energy is conserved.

8.3 The center of mass

Figure 4.4 on p. 44 showed two ice skaters, ini-
tially at rest, pushing off from each other in op-
posite directions. If their masses are equal, then
the average of their positions, (x1 + x2)/2, re-
mains at rest. Generalizing this to more than one
dimension, more than two particles, and possibly
unequal masses, we define the center of mass of
a system of particles to be

xcm =

∑
mixi∑
mi

, (8.5)

which is a weighted average of all the position
vectors xi. The velocity vcm with which this
point moves is related to the total momentum of
the system by

ptotal = mtotalvcm. (8.6)

If no external force acts on the system, it follows
that vcm is constant. Often problems can be
simplified by adopting the center of mass frame
of reference, in which vcm = 0.
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Problems

8-a1 When the contents of a refrigerator
cool down, the changed molecular speeds imply
changes in both momentum and energy. Why,
then, does a fridge transfer power through its
radiator coils, but not force?

. Solution, p. 236

8-a2 A firework shoots up into the air, and
just before it explodes it has a certain momen-
tum and kinetic energy. What can you say about
the momenta and kinetic energies of the pieces
immediately after the explosion? [Based on a
problem from PSSC Physics.]

. Solution, p. 236

8-a3 Two people in a rowboat wish to move
around without causing the boat to move. What
should be true about their total momentum? Ex-
plain.

8-a4 Two blobs of putty collide head-on and
stick. The collision is completely symmetric: the
blobs are of equal mass, and they collide at equal
speeds. What becomes of the energy the blobs
had before the collision? The momentum?

8-d1 Derive a formula expressing the kinetic
energy of an object in terms of its momentum
and mass. √

8-d2 Show that for a body made up of many
equal masses, the equation for the center of mass
becomes a simple average of all the positions of
the masses.

8-d3 Objects of mass m and 4m are dropped
from the top of a building (both starting from
rest). When it hits the ground, the object of
mass m has momentum p. What is the mo-
mentum of the heavier object when it hits the
ground?

8-d4 The force acting on an object is F =
Ae−t/τ , where A and τ are positive constants.
The object is at rest at time t = 0.
(a) What is the momentum of the object at time

t = τ?
√

(b) What is the final momentum of the object?√

8-d5 The force acting on an object is F =
At2. The object is at rest at time t = 0. What
is its momentum at t = T? √

8-g1 Decide whether the following statements
about one-dimensional motion are true or false:
(a) The momentum transferred to an object is
equal to the final momentum of the object.
(b) The momentum delivered to an object by a
force F is equal to the average force on the ob-
ject multiplied by the time over which the force
acts on the object.
(c) Momentum transfer has the same dimensions
as force (SI units of newtons).
(d) The area underneath a momentum-vs-time
graph gives the average force delivered to an ob-
ject.

8-g2 Can the result of a collision always be
determined by the condition that both energy
and momentum are conserved? If your answer is
no, give a counterexample.

8-g3 The big difference between the equations
for momentum and kinetic energy is that one is
proportional to v and one to v2. Both, how-
ever, are proportional to m. Suppose someone
tells you that there’s a third quantity, funkos-
ity, defined as f = m2v, and that funkosity is
conserved. How do you know your leg is being
pulled?

. Solution, p. 236 ?

8-j1 A mass m moving at velocity v collides
with a stationary target having the same mass
m. Find the maximum amount of energy that
can be released as heat and sound. √

8-j2 A bullet leaves the barrel of a gun with
a kinetic energy of 90 J. The gun barrel is 50 cm
long. The gun has a mass of 4 kg, the bullet 10
g.
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(a) Find the bullet’s final velocity.
√

(b) Find the bullet’s final momentum.
√

(c) Find the momentum of the recoiling gun.
(d) Find the kinetic energy of the recoiling gun,
and explain why the recoiling gun does not kill
the shooter. √

8-j3 The figure shows the force acting on a
58.5 g tennis ball as a function of time.
(a) What is the momentum transferred to the
tennis ball?

√

(b) What is the final speed of the tennis ball if
it is initially at rest?

√

(c) What is the final speed of the tennis ball if
its initial velocity is −25m/s? √

Problem 8-j3.

8-j4 A learjet traveling due east at 300 mi/hr
collides with a jumbo jet which was heading
southwest at 150 mi/hr. The jumbo jet’s mass is
five times greater than that of the learjet. When
they collide, the learjet sticks into the fuselage
of the jumbo jet, and they fall to earth together.
Their engines stop functioning immediately af-
ter the collision. On a map, what will be the
direction from the location of the collision to the
place where the wreckage hits the ground? (Give
an angle.) √

8-j5 A 1000 kg car approaches an intersection
traveling north at 20.0 m/s. A 1200 kg car ap-
proaches the same intersection traveling east at
22.0 m/s. The two cars collide at the intersection
and lock together. The drivers probably wish it
was all over now, but they’re still moving. What

is the velocity of the cars immediately after the
collision? √

8-j6 Two equal masses travel at equal speeds
and collide in a perfectly inelastic collision. The
final velocity of the two masses is 1/3 the initial
speed. What was the angle between the veloc-
ity vectors of the two masses when they collided?
(Give an exact expression, not a decimal approx-
imation.) √

8-j7 A ball of mass m1 is moving to the right
at speed v0 when it collides with a ball of mass
m2 initially at rest. After the collision, m1 loses
75% of its initial kinetic energy and has a veloc-
ity at an angle θ1 = 60◦ below the horizontal, as
shown.
(a) What is the speed of ball 1 after the collision?√

(b) What are the x and y components of the mo-
mentum of ball 1 after the collision?

√

(c) What are the x and y components of the mo-
mentum of ball 2 after the collision?

√

(d) What fraction of the initial kinetic energy
does ball 2 have after the collision?

√

(e) Is this collision elastic, or inelastic? Explain.

Problem 8-j7.

hw-collision-2d-given-one-angle
8-j8 The graph shows the force, in meganew-
tons, exerted by a rocket engine on the rocket as
a function of time. If the rocket’s mass is 4000
kg, at what speed is the rocket moving when the
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engine stops firing? Assume it goes straight up,
and neglect the force of gravity, which is much
less than a meganewton. √

Problem 8-j8.

hw-rocket
8-j9 Cosmic rays are particles from outer
space, mostly protons and atomic nuclei, that
are continually bombarding the earth. Most of
them, although they are moving extremely fast,
have no discernible effect even if they hit your
body, because their masses are so small. Their
energies vary, however, and a very small minority
of them have extremely large energies. In some
cases the energy is as much as several Joules,
which is comparable to the KE of a well thrown
rock! If you are in a plane at a high altitude and
are so incredibly unlucky as to be hit by one of
these rare ultra-high-energy cosmic rays, what
would you notice, the momentum imparted to
your body, the energy dissipated in your body
as heat, or both? Base your conclusions on nu-
merical estimates, not just random speculation.
(At these high speeds, one should really take into
account the deviations from Newtonian physics
described by Einstein’s special theory of relativ-
ity. Don’t worry about that, though.)

8-j10 A 10-kg bowling ball moving at 2.0 m/s
hits a 1.0-kg bowling pin, which is initially at
rest. The other pins are all gone already, and the
collision is head-on, so that the motion is one-
dimensional. Assume that negligible amounts of

heat and sound are produced. Find the velocity
of the pin immediately after the collision.

8-m1 A student of mass M is traveling on
his skateboard of mass m. They are both mov-
ing at speed v, when suddenly the student kicks
the board back so that it is immediately at rest
relative to the ground. How fast is the student
moving after kicking back the skateboard?

8-m2 Rachel and Sara are playing a game of
tug-of-war on frictionless ice. They are separated
by a distance L, and the coordinate system is
given in the figure (with Sara at x = +L/2 and
Rachel at x = −L/2). Rachel has a mass MR,
Sara has a mass MS , and MR > MS . Where will
they meet?

Problem 8-m2.

8-m3 The figure shows a view from above
of a collision about to happen between two air
hockey pucks sliding without friction. They have
the same speed, vi, before the collision, but the
big puck is 2.3 times more massive than the small
one. Their sides have sticky stuff on them, so
when they collide, they will stick together. At
what angle will they emerge from the collision?
In addition to giving a numerical answer, please
indicate by drawing on the figure how your angle
is defined.

. Solution, p. 236

8-m4 The moon doesn’t really just orbit the
Earth. By Newton’s third law, the moon’s grav-
itational force on the earth is the same as the
earth’s force on the moon, and the earth must re-
spond to the moon’s force by accelerating. If we
consider the earth and moon in isolation and ig-
nore outside forces, then Newton’s first law says
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Problem 8-m3.

their common center of mass doesn’t accelerate,
i.e., the earth wobbles around the center of mass
of the earth-moon system once per month, and
the moon also orbits around this point. The
moon’s mass is 81 times smaller than the earth’s.
Compare the kinetic energies of the earth and
moon.

8-m5 A very massive object with velocity v
collides head-on with an object at rest whose
mass is very small. No kinetic energy is con-
verted into other forms. Prove that the low-mass
object recoils with velocity 2v. [Hint: Use the
center-of-mass frame of reference.]

8-m6 An ice puck of mass m, traveling with
speed v, hits another identical ice puck that is
sitting at rest. The collision is 1-dimensional.
(a) If the collision is perfectly elastic, what is
the final speed of the puck that was initially at
rest?

√

(b) If the collision is perfectly inelastic, what
is the final speed of the two pucks after the
collision?

√

(c) If the collision is perfectly inelastic, what
fraction of the total energy was lost during the
collision?

√

(d) If one-fourth of the initial kinetic energy was
lost during the collision, what is the final speed
of the puck that was initially at rest? √

8-m7 A bullet of mass m strikes a block of
mass M which is hanging by a string of length
L from the ceiling. It is observed that, after
the sticky collision, the maximum angle that the
string makes with the vertical is θ. This setup is
called a ballistic pendulum, and it can be used
to measure the speed of the bullet.
(a) What vertical height does the block reach?√

(b) What was the speed of the block just after
the collision?

√

(c) What was the speed of the bullet just before
it struck the block? √

8-m8 A car of mass M and a truck of mass
2M collide head-on with equal speeds v, and the
collision is perfectly inelastic, i.e., the maximum
possible amount of kinetic energy is transformed
into heat and sound, consistent with conserva-
tion of momentum.
(a) What is the magnitude of the change in mo-
mentum of the car?

√

(b) What is the magnitude of the change in mo-
mentum of the truck?

√

(c) What is the final speed of the two vehicles?√

(d) What fraction of the initial kinetic energy
was lost as a result of the collision? √

8-m9 A 5.00 kg firework is launched straight
up into the air. When it reaches its maximum
height of H = 140 m, it explodes into two frag-
ments that fly off in horizontal directions. The
explosion is very quick, and only lasts 15 ms.
One of the two fragments (fragment A, with mass
MA = 2.00 kg) lands 290 meters away from the
initial launch position.
(a) Find the speed of fragment A just after the
explosion.

√

(b) By using conservation of momentum and
your answer from part a, find the speed of the
other fragment (call this fragment B) just after
the explosion.

√

(c) Calculate the magnitude of the momentum
transferred to fragment A due to the explosion.
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√

(d) Calculate the magnitude of the impulse de-
livered by gravity to fragment A over the course
of the explosion.

√

(e) How far away from the initial launch position
does fragment B land? Hint: the center of mass
of the two fragments lands at the location where
the firework was initially launched. √

8-m10 An object of mass m, moving at veloc-
ity u, undergoes a one-dimensional elastic colli-
sion with a mass km that is initially at rest. Let
the positive direction be in the direction of the
initial motion, so that u > 0. (a) What is the
final velocity of mass m?

√

(b) What is the final velocity of the mass km?√
?

8-m11 Two blocks, each of mass M , are con-
nected by a thread and moving with speed v0.
Between them is also a spring of spring constant
k, and it is compressed a distance x (so that
the tension in the thread is kx). Suddenly, the
thread breaks, and the spring relaxes to its equi-
librium length. Find the speed of the block that
is pushed forward by the spring.

?

8-m12 Suppose a system consisting of point-
like particles has a total kinetic energy Kcm mea-
sured in the center-of-mass frame of reference.
Since they are pointlike, they cannot have any
energy due to internal motion.
(a) Prove that in a different frame of reference,
moving with velocity u relative to the center-
of-mass frame, the total kinetic energy equals
Kcm + M |u|2/2, where M is the total mass.
[Hint: You can save yourself a lot of writing if
you express the total kinetic energy using the dot
product.]
(b) Use this to prove that if energy is conserved
in one frame of reference, then it is conserved in
every frame of reference. The total energy equals
the total kinetic energy plus the sum of the po-
tential energies due to the particles’ interactions
with each other, which we assume depends only
on the distance between particles.

8-m13 A flexible rope of mass m and length
L slides without friction over the edge of a table.
Let x be the length of the rope that is hanging
over the edge at a given moment in time.
(a) Show that x satisfies the equation of motion
d2 x/ dt2 = gx/L. [Hint: Use F = dp/dt, which
allows you to handle the two parts of the rope
separately even though mass is moving out of
one part and into the other.]
(b) Give a physical explanation for the fact that
a larger value of x on the right-hand side of the
equation leads to a greater value of the acceler-
ation on the left side.
(c) When we take the second derivative of the
function x(t) we are supposed to get essentially
the same function back again, except for a con-
stant out in front. The function ex has the prop-
erty that it is unchanged by differentiation, so it
is reasonable to look for solutions to this problem
that are of the form x = bect, where b and c are
constants. Show that this does indeed provide a
solution for two specific values of c (and for any
value of b).
(d) Show that the sum of any two solutions to
the equation of motion is also a solution.
(e) Find the solution for the case where the rope
starts at rest at t = 0 with some nonzero value
of x.

?

8-m14 A rocket ejects exhaust with an ex-
haust velocity u. The rate at which the exhaust
mass is used (mass per unit time) is b. We as-
sume that the rocket accelerates in a straight line
starting from rest, and that no external forces act
on it. Let the rocket’s initial mass (fuel plus the
body and payload) be mi, and mf be its final
mass, after all the fuel is used up. (a) Find the
rocket’s final velocity, v, in terms of u, mi, and
mf . Neglect the effects of special relativity. (b)
A typical exhaust velocity for chemical rocket en-
gines is 4000 m/s. Estimate the initial mass of
a rocket that could accelerate a one-ton payload
to 10% of the speed of light, and show that this
design won’t work. (For the sake of the estimate,
ignore the mass of the fuel tanks. The speed is
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fairly small compared to c, so it’s not an unrea-
sonable approximation to ignore relativity.)√

?



9 Conservation of angular momentum

This is not a textbook. It’s a book of problems
meant to be used along with a textbook. Although
each chapter of this book starts with a brief sum-
mary of the relevant physics, that summary is
not meant to be enough to allow the reader to
actually learn the subject from scratch. The pur-
pose of the summary is to show what material is
needed in order to do the problems, and to show
what terminology and notation are being used.

9.1 Angular momentum

We have discarded Newton’s laws of motion and
begun the process of rebuilding the laws of me-
chanics from scratch using conservation laws. So
far we have encountered conservation of energy
and momentum.

It is not hard to come up with examples to
show that this list of conservation laws is incom-
plete. The earth has been rotating about its own
axis at very nearly the same speed (once every
24 hours) for all of human history. Why hasn’t
the planet’s rotation slowed down and come to
a halt? Conservation of energy doesn’t protect
us against this unpleasant scenario. The kinetic
energy tied up in the earth’s spin could be trans-
formed into some other type of energy, such as
heat. Nor is such a deceleration prevented by
conservation of momentum, since the total mo-
mentum of the earth due to its rotation cancels
out.

There is a third important conservation law
in mechanics, which is conservation of angular
momentum. A spinning body such as the earth
has angular momentum. Conservation of an-
gular momentum arises from symmetry of the
laws of physics with respect to rotation. That is,
there is no special direction built into the laws of
physics, such as the direction toward the constel-
lation Sagittarius. Suppose that a non-spinning
asteroid were to gradually start spinning. Even if
there were some source of energy to initiate this
spin (perhaps the heat energy stored in the rock),

it wouldn’t make sense for the spin to start spon-
taneously, because then the axis of spin would
have to point in some direction, but there is no
way to determine why one particular direction
would be preferred.

As a concrete example, suppose that a bike
wheel of radius r and mass m is spinning at a
rate such that a point on the rim (where all the
mass is concentrated) moves at speed v. We then
define the wheel’s angular momentum L to have
magnitude mvr.

More generally, we define the angular momen-
tum of a system of particles to be the sum of
the quantity r × p, where r is the position of a
particle relative to an arbitrarily chosen point
called the axis, p is the particle’s momentum
vector, and × represents the vector cross prod-
uct. This definition is chosen both because ex-
periments show that this is the quantity that is
conserved. It follows from the definition that an-
gular momentum is a vector, and that its direc-
tion is defined by the same right-hand rule used
to define the cross product.

9.2 Rigid-body dynamics

In the special case where a rigid body rotates
about an axis of symmetry and its center of mass
is at rest, the dimension parallel to the axis be-
comes irrelevant both kinematically and dynam-
ically. We can imagine squashing the system flat
so that the object rotates in a two-dimensional
plane about a fixed point. The kinetic energy in
this situation is

K =
1

2
Iω2

and the angular momentum about the center of
mass is

L = Iω,

105
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Figure 9.1: Moments of inertia of some geometric shapes.

where I is a constant of proportionality, called
the moment of inertia. These relations are anal-
ogous to K = (1/2)mv2 and p = mv for mo-
tion of a particle. The angular velocity can also
be made into a vector ω, which points along the
axis in the right-handed direction. We then have
L = Iω.

For a system of particles, the moment of iner-
tia is given by

I =
∑

mir
2
i ,

where ri is the ith particle’s distance from the
axis. For a continuous distribution of mass,

I =

∫
r2 dm.

Figure ?? gives the moments of inertia of some
commonly encountered shapes.

9.3 Torque

For each of the three conserved quantities we
have encountered so far, we can define a rate

of transfer or transformation:

P =
dE

dt
[power]

F =
dp

dt
[force]

τ =
dL

dt
[torque].

The torque exerted by a force F can be expressed
as

τ = r× F.

For rigid-body rotation about an axis of symme-
try, we have

α =
τ

I
,

which is analogous to Newton’s second law.

9.4 Statics

If an object is to be in equilibrium, both the total
torque and the total force acting on it must be
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zero: ∑
F = 0∑
τ = 0

We consider an object to be in equilibrium when
these conditions apply, even if it is moving.

An equilibrium can be stable, like a marble at
the bottom of a bowl, unstable, like a marble
placed on top of a hemispherical hill, or neutral,
like a marble placed on a flat tabletop.
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Problems

9-a1 A skilled motorcyclist can ride up a
ramp, fly through the air, and land on another
ramp. Why would it be useful for the rider to
speed up or slow down the back wheel while in
the air?

9-a2 The earth moves about the sun in an
elliptical orbit where angular momentum about
the sun is conserved. Earth’s distance from the
sun ranges from 0.983 AU (at perihelion, the
closest point) to 1.017 AU (at aphelion, the far-
thest point). The AU is a unit of distance. If the
orbital speed of Earth at aphelion is v, what is
the orbital speed of Earth at perihelion?

9-a3 (a) Alice says Cathy’s body has zero
momentum, but Bob says Cathy’s momentum is
nonzero. Nobody is lying or making a mistake.
How is this possible? Give a concrete example.
(b) Alice and Bob agree that Dong’s body has
nonzero momentum, but disagree about Dong’s
angular momentum, which Alice says is zero, and
Bob says is nonzero. Explain.

9-a4 Two objects have the same momentum
vector. Assume that they are not spinning; they
only have angular momentum due to their mo-
tion through space. Can you conclude that their
angular momenta are the same? Explain. [Based
on a problem by Serway and Faughn.]

9-a5 Find the angular momentum of a parti-
cle whose position is r = 3x̂− ŷ + ẑ (in meters)
and whose momentum is p = −2x̂ + ŷ + ẑ (in
kg·m/s). √

9-d1 The sun turns on its axis once every
26.0 days. Its mass is 2.0 × 1030 kg and its
radius is 7.0×108 m. Assume it is a rigid sphere
of uniform density.
(a) What is the sun’s angular momentum?

√

In a few billion years, astrophysicists predict
that the sun will use up all its sources of nuclear
energy, and will collapse into a ball of exotic,

dense matter known as a white dwarf. Assume
that its radius becomes 5.8 × 106 m (similar
to the size of the Earth.) Assume it does not
lose any mass between now and then. (Don’t
be fooled by the photo, which makes it look
like nearly all of the star was thrown off by the
explosion. The visually prominent gas cloud
is actually thinner than the best laboratory
vacuum ever produced on earth. Certainly a
little bit of mass is actually lost, but it is not at
all unreasonable to make an approximation of
zero loss of mass as we are doing.)
(b) What will its angular momentum be?
(c) How long will it take to turn once on its
axis?

√

Problem 9-d1.

9-d2 Give a numerical comparison of the two
molecules’ moments of inertia for rotation in the
plane of the page about their centers of mass.√

9-d3 A baseball pitcher can throw a curveball
toward home plate at 138 km/hr with a spin of
2500 r.p.m. What percentage of the total KE
of the baseball is in rotational kinetic energy?
Treat the 145-gram baseball as a uniform sphere
of radius 3.7 cm. √
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9-d4 A merry-go-round consists of a uniform
disc of mass M . It spins around at N revolu-
tions per minute. Mary, who also has mass M ,
is thinking about jumping on.
(a) What is the initial angular velocity of the
merry-go-round (in terms of N alone)?

√

(b) Suppose Mary jumps on the merry-go-round
at the edge with negligible initial velocity. How
many revolutions per minute does the merry-go-
round make?

√

(c) Suppose that, instead of jumping on the edge
with no initial velocity, Mary wants to jump
onto the edge (tangent to the disc) such that the
merry-go-round is at rest right after jumping on.
Express your answer in terms of the radius of
the merry-go-round, R, and the initial angular
velocity of the merry-go-round, ω. √

9-d5 A circular, solid disc of radius R and
mass 2M is rotating with angular velocity ω. A
second disc of radius R and mass M is dropped
onto the rotating disc, and the two slide against
each other until they reach the same final angu-
lar velocity.
(a) What is the final angular velocity of the
discs?

√

(b) What percentage of the initial KE was lost
during the collision? √

9-d6 In a physics lecture, a student holds
a bicycle wheel of moment of inertia I while
sitting on a stool that can spin. With her feet
on the ground so as not to move, she starts the
wheel spinning with angular velocity ω in the
counterclockwise direction when looking down
from above, so that the angular velocity vector
points towards the ceiling. She then picks up
her feet and turns the wheel over so that the
rotation is reversed. This causes her to start
rotating about the stool’s axis of rotation. In the
following, take angular momenta to be positive
if pointing vertically upwards and negative if
pointing vertically downwards.
(a) What is the final (spin) angular momentum
of the bicycle wheel?

√

(b) What is the final angular momentum of rest

of the system, assuming there is no external
frictional torque during the flip?

√

9-d7 Show that a sphere of radius R that is
rolling without slipping has angular momentum
and momentum in the ratio L/p = (2/5)R.

9-d8 A dumbbell consists of two solid, spheri-
cal masses (each of mass M) attached to the two
ends of a bar, also of mass M . The length of the
bar is L.
(a) Find the moment of inertia of the mass distri-
bution about an axis through the center of mass
and perpendicular to the bar, assuming the balls
are pointlike.

√

(b) Now find the moment of inertia assuming the
spherical masses have radius r. You will need to
use the parallel-axis theorem for this. To sim-
plify the math and make it easier to compare
the answers to parts a and b, take the densities
to add in the places where the bar’s volume over-
laps with the volume of a ball.

√

(c) Let r = L/5. By what percentage is your
result from part a off from that in part b? Give
your answer to two significant figures. √

Problem 9-d8.

9-d9 A solid sphere of weight W rolls with-
out slipping up an incline at an angle of θ (with
respect to the horizontal). At the bottom of the
incline the center of mass of the sphere has trans-
lational speed v. How far along the ramp does
the sphere travel before coming to rest (not ver-
tical height, but distance along the ramp)? √

9-d10 A sphere of mass M and radius R is
not necessarily solid or hollow. It has moment of
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inertia I = cMR2. As shown in the figure, the
sphere starts from rest and rolls without slipping
down a ramp from height H. It then moves back
up the other side, but now with no friction at all
between the sphere and the ramp. What height
does the sphere reach? √

Problem 9-d10.

9-d11 You race a hoop, a solid sphere, and
a solid cylinder down an incline of angle θ with
respect to the horizontal. Each object rolls with-
out slipping.
(a) What is the linear acceleration of the center
of mass of the hoop?

√

(b) The solid sphere?
√

(c) The solid cylinder?Note this problem is easier
if you don’t do each part separately, but rather
say that I = cMR2, and plug in different values
of c at the very end of the calculation. √

9-d12 The figure shows a tabletop experi-
ment that can be used to determine an unknown
moment of inertia. A rotating platform of radius
R has a string wrapped around it. The string is
threaded over a pulley and down to a hanging
weight of mass m. The mass is released from
rest, and its downward acceleration a (a > 0) is
measured. Find the total moment of inertia I of
the platform plus the object sitting on top of it.
(The moment of inertia of the object itself can
then be found by subtracting the value for the
empty platform.) √

9-d13 Show that when a thin, uniform ring
rotates about a diameter, the moment of inertia
is half as big as for rotation about the axis of
symmetry.

Problem 9-d12.

. Solution, p. 236

9-d14 A bug stands at the right end of a
rod of length `, which is initially at rest in a
horizontal position. The rod rests on a fulcrum
which is at a distance b to the left of the rod’s
center, so that when the rod is released from rest,
the bug’s end will drop. For what value of b
will the bug experience apparent weightlessness
at the moment when the rod is released? √

Problem 9-d14.

9-d15 The figure shows a trap door of length
`, which is released at rest from a horizontal posi-
tion and swings downward under its own weight.
The bug stands at a distance b from the hinge.
Because the bug feels the floor dropping out from
under it with some acceleration, it feels a change
in the apparent acceleration of gravity from g to
some value ga, at the moment when the door is
released. Find ga. √
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Problem 9-d15.

9-e1 The nucleus 168Er (erbium-168) contains
68 protons (which is what makes it a nucleus of
the element erbium) and 100 neutrons. It has
an ellipsoidal shape like an American football,
with one long axis and two short axes that are of
equal diameter. Because this is a subatomic sys-
tem, consisting of only 168 particles, its behav-
ior shows some clear quantum-mechanical prop-
erties. It can only have certain energy lev-
els, and it makes quantum leaps between these
levels. Also, its angular momentum can only
have certain values, which are all multiples of
2.109 × 10−34 kg · m2/s. The table shows some
of the observed angular momenta and energies of
168Er, in SI units (kg ·m2/s and joules).
L× 1034 E × 1014

0 0
2.109 1.2786
4.218 4.2311
6.327 8.7919
8.437 14.8731
10.546 22.3798
12.655 31.135
14.764 41.206
16.873 52.223

(a) These data can be described to a good ap-
proximation as a rigid end-over-end rotation. Es-
timate a single best-fit value for the moment of
inertia from the data, and check how well the
data agree with the assumption of rigid-body
rotation.

√

(b) Check whether this moment of inertia is on
the right order of magnitude. The moment of in-
ertia depends on both the size and the shape of
the nucleus. For the sake of this rough check, ig-
nore the fact that the nucleus is not quite spher-

ical. To estimate its size, use the fact that a neu-
tron or proton has a volume of about 1 fm3 (one
cubic femtometer, where 1 fm = 10−15 m), and
assume they are closely packed in the nucleus.

9-e2 When we talk about rigid-body rota-
tion, the concept of a perfectly rigid body can
only be an idealization. In reality, any object
will compress, expand, or deform to some ex-
tent when subjected to the strain of rotation.
However, if we let it settle down for a while,
perhaps it will reach a new equilibrium. As an
example, suppose we fill a centrifuge tube with
some compressible substance like shaving cream
or Wonder Bread. We can model the contents
of the tube as a one-dimensional line of mass,
extending from r = 0 to r = `. Once the ro-
tation starts, we expect that the contents will
be most compressed near the “floor” of the tube
at r = `; this is both because the inward force
required for circular motion increases with r for
a fixed ω, and because the part at the floor has
the greatest amount of material pressing “down”
(actually outward) on it. The linear density
dm/dr, in units of kg/m, should therefore in-
crease as a function of r. Suppose that we have
dm/dr = µer/`, where µ is a constant. Find the
moment of inertia. √

9-e3 (a) As suggested in the figure, find the
area of the infinitesimal region expressed in po-
lar coordinates as lying between r and r+dr and
between θ and θ + dθ.

√

(b) Generalize this to find the infinitesimal
element of volume in cylindrical coordinates
(r, θ, z), where the Cartesian z axis is perpendic-
ular to the directions measured by r and θ.

√

(c) Find the moment of inertia for rotation about
its axis of a cone whose mass is M , whose height
is h, and whose base has a radius b. √

9-e4 Find the moment of inertia of a solid
rectangular box of mass M and uniform density,
whose sides are of length a, b, and c, for rotation
about an axis through its center parallel to the
edges of length a.
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√

9-e5 (a) Prove the identity a×(b×c) = b(a ·
c)− c(a · b) by expanding the product in terms
of its components. Note that because the x, y,
and z components are treated symmetrically in
the definitions of the vector cross product, it is
only necessary to carry out the proof for the x
component of the result.
(b) Applying this to the angular momentum of
a rigidly rotating body, L =

∫
r × (ω × r) dm,

show that the diagonal elements of the moment
of inertia tensor can be expressed as, e.g., Ixx =∫

(y2 + z2) dm.
(c) Find the diagonal elements of the moment of
inertia matrix of an ellipsoid with axes of lengths
a, b, and c, in the principal-axis frame, and with
the axis at the center. √

9-e6 Let two sides of a triangle be given by
the vectors A and B, with their tails at the ori-
gin, and let mass m be uniformly distributed on
the interior of the triangle. (a) Show that the dis-
tance of the triangle’s center of mass from the in-
tersection of sides A and B is given by 1

3 |A+B|.
(b) Consider the quadrilateral with mass 2m,
and vertices at the origin, A, B, and A + B.
Show that its moment of inertia, for rotation
about an axis perpendicular to it and passing
through its center of mass, is m

6 (A2 +B2).
(c) Show that the moment of inertia for rotation
about an axis perpendicular to the plane of the
original triangle, and passing through its center
of mass, is m

18 (A2 +B2 −A ·B). Hint: Combine
the results of parts a and b with the result of
problem ??.

9-e7 In this problem we investigate the
notion of division by a vector.
(a) Given a nonzero vector a and a scalar b,
suppose we wish to find a vector u that is the
solution of a · u = b. Show that the solution is
not unique, and give a geometrical description
of the solution set.
(b) Do the same thing for the equation a×u = c.
(c) Show that the simultaneous solution of these

two equations exists and is unique.

Remark: This is one motivation for constructing the
number system called the quaternions. For a certain pe-
riod around 1900, quaternions were more popular than
the system of vectors and scalars more commonly used
today. They still have some important advantages over
the scalar-vector system for certain applications, such as
avoiding a phenomenon known as gimbal lock in control-
ling the orientation of bodies such as spacecraft.

?

9-g1 The figure shows scale drawing of a pair
of pliers being used to crack a nut, with an ap-
propriately reduced centimeter grid. Warning:
do not attempt this at home; it is bad manners.
If the force required to crack the nut is 300 N,
estimate the force required of the person’s hand.

. Solution, p. 236

Problem 9-g1.

9-g2 Make a rough estimate of the mechanical
advantage of the lever shown in the figure. In
other words, for a given amount of force applied
on the handle, how many times greater is the
resulting force on the cork?

9-g3 An object is observed to have constant
angular momentum. Can you conclude that no
torques are acting on it? Explain. [Based on a
problem by Serway and Faughn.]

9-g4 You are trying to loosen a stuck bolt on
your RV using a big wrench that is 50 cm long.
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Problem 9-g2.

If you hang from the wrench, and your mass is 55
kg, what is the maximum torque you can exert
on the bolt? √

9-g5 A bicycle wheel with moment of inertia
0.15 kg·m2 takes 30 seconds to come to rest from
an initial angular velocity of 90 r.p.m. What is
the magnitude of the average frictional torque
over this deceleration?

9-g6 The graph shows the torque on a rigid
body as a function of time. The body is at rest
at t = 2 s. Later, at t = 5 s, it is spinning at
angular velocity 90 s−1.
(a) What is the moment of inertia of the body?√

(b) What is its angular velocity at t = 7 s? √

Problem 9-g6.

9-g7 A disk starts from rest and rotates about
a fixed axis, subject to a constant torque. The

work done by the torque during the first revolu-
tion is W . What is the work done by the torque
during the second revolution? √

9-g8 A physical therapist wants her patient
to rehabilitate his injured elbow by laying his
arm flat on a table, and then lifting a 2.1 kg
mass by bending his elbow. In this situation,
the weight is 33 cm from his elbow. He calls her
back, complaining that it hurts him to grasp the
weight. He asks if he can strap a bigger weight
onto his arm, only 17 cm from his elbow. How
much mass should she tell him to use so that he
will be exerting the same torque? (He is raising
his forearm itself, as well as the weight.) √

9-g9 Two horizontal tree branches on the
same tree have equal diameters, but one branch
is twice as long as the other. Give a quantitative
comparison of the torques where the branches
join the trunk. [Thanks to Bong Kang.]

9-g10 Penguins are playful animals. Tux the
Penguin invents a new game using a natural cir-
cular depression in the ice. He waddles at top
speed toward the crater, aiming off to the side,
and then hops into the air and lands on his belly
just inside its lip. He then belly-surfs, moving
in a circle around the rim. The ice is friction-
less, so his speed is constant. Is Tux’s angular
momentum zero, or nonzero? What about the
total torque acting on him? Take the center of
the crater to be the axis. Explain your answers.

9-j1 A massless rod of length ` has weights,
each of mass m, attached to its ends. The rod
is initially put in a horizontal position, and laid
on an off-center fulcrum located at a distance b
from the rod’s center. The rod will topple. (a)
Calculate the total gravitational torque on the
rod directly, by adding the two torques. (b) Ver-
ify that this gives the same result as would have
been obtained by taking the entire gravitational
force as acting at the center of mass.
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9-j2 A solid rectangular door of moment of
inertia I is initially open and at rest when a piece
of sticky clay of mass m and velocity v0 strikes
the door perpendicularly at a distance d from the
axis of the hinges.
(a) Find the angular speed of the door just after
the sticky collision.

√

(b) What fraction of the initial KE was lost dur-
ing the sticky collision?

√

(c) Suppose the door comes to rest after rotating
∆θ > 0 because of a constant frictional torque.
What is the value of this frictional torque? √

9-j3 A ball is connected by a string to a ver-
tical post. The ball is set in horizontal motion
so that it starts winding the string around the
post. Assume that the motion is confined to a
horizontal plane, i.e., ignore gravity. Michelle
and Astrid are trying to predict the final veloc-
ity of the ball when it reaches the post. Michelle
says that according to conservation of angular
momentum, the ball has to speed up as it ap-
proaches the post. Astrid says that according
to conservation of energy, the ball has to keep
a constant speed. Who is right? [Hint: How is
this different from the case where you whirl a
rock in a circle on a string and gradually reel in
the string?]

9-j4 A book is spinning around a circle of
radius R on top of a flat tabletop. The speed
of the book is initially v0. The inward force is
provided by a string attached to the book, going
through a hole at the center of the circle (r = 0),
and passing underneath to a person holding the
string. The person pulls on the string so that
the book spirals inward, eventually cutting the
radius of the circular motion in half.
(a) What is the speed of the book at r = R/2?√

(b) How much work is done by the person pulling
on the string as the book moves from r = R to
r = R/2?

√

(The string’s force exerts no torque on the book,
since it is always in the direction towards the
hole. The force, however, can have a non-zero

component tangential to the book’s motion, be-
cause the book spirals in toward the hole. This
is why the answer to part b is nonzero.)

Problem 9-j4.

9-j5 Suppose a bowling ball is initially thrown
so that it has no angular momentum at all, i.e., it
is initially just sliding down the lane. Eventually
kinetic friction will get it spinning fast enough so
that it is rolling without slipping. Show that the
final velocity of the ball equals 5/7 of its initial
velocity. [Hint: You’ll need the result of problem
9-d7.]

9-j6 A yo-yo of total mass m consists of two
solid cylinders of radius R, connected by a small
spindle of negligible mass and radius r. The top
of the string is held motionless while the string
unrolls from the spindle. Show that the accel-
eration of the yo-yo is g/(1 + R2/2r2). [Hint:
The acceleration and the tension in the string
are unknown. Use τ = ∆L/∆t and F = ma to
determine these two unknowns.]

9-m1 Block A (of mass MA) rests on a fric-
tionless horizontal table. It is connected via a
light string to block B (of mass MB) hanging
over the edge of the table. The pulley itself,
a solid disc, has non-negligible mass MC . The
light string does not slip over the pulley. What
is the magnitude of the linear acceleration of the
system?
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Problem 9-m1.

9-m2 A rod of length b and mass m stands
upright. We want to strike the rod at the bot-
tom, causing it to fall and land flat.
(a) Find the momentum, p, that should be deliv-
ered, in terms of m, b, and g. [Hint: the solution
is nearly determined by units.]

√

(b) Can this really be done without having the
rod scrape on the floor?

?

9-m3 (a) Find the moment of inertia of a uni-
form square of mass m and with sides of length
b, for rotation in its own plane, about one of its
corners.

√

(b) The square is balanced on one corner on a
frictionless surface. An infinitesimal perturba-
tion causes it to topple. Find its angular velocity
at the moment when its side slaps the surface.√

?

9-p1 An object thrown straight up in the air
is momentarily at rest when it reaches the top of
its motion. Does that mean that it is in equilib-
rium at that point? Explain.

9-p2 A person of weight W stands on the ball
of one foot. Find the tension in the calf muscle
and the force exerted by the shinbones on the
bones of the foot, in terms of W,a, and b. For
simplicity, assume that all the forces are at 90-
degree angles to the foot, i.e., neglect the angle
between the foot and the floor. √

9-p3 The rod in the figure is supported by
the finger and the string.
(a) Find the tension, T , in the string, and the

Problem 9-p2.

force, F , from the finger, in terms of m, b, L, and
g.

√

(b) Comment on the cases b = L and b = L/2.
(c) Are any values of b unphysical?

Problem 9-p3.

9-p4 Two atoms will interact through elec-
trical forces between their protons and electrons.
One fairly good approximation to the electrical
energy is the Lennard-Jones formula,

U(r) = k

[(a
r

)12

− 2
(a
r

)6
]
,
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where r is the center-to-center distance between
the atoms and k is a positive constant. Show
that (a) there is an equilibrium point at r = a,
(b) the equilibrium is stable, and
(c) the energy required to bring the atoms from
their equilibrium separation to infinity is k.

9-s1 (a) Find the minimum horizontal force
which, applied at the axle, will pull a wheel
over a step. Invent algebra symbols for what-
ever quantities you find to be relevant, and give
your answer in symbolic form. [Hints: There are
four forces on the wheel at first, but only three
when it lifts off. Normal forces are always per-
pendicular to the surface of contact. Note that
the corner of the step cannot be perfectly sharp,
so the surface of contact for this force really co-
incides with the surface of the wheel.]
(b) Under what circumstances does your result
become infinite? Give a physical interpretation.

Problem 9-s1.

9-s2 A uniform bar of mass M and length
L is held up by a vertical rope attached to the
ceiling, as shown.
(a) What is the tension in the rope?

√

(b) What is the normal force provided by the
ground on the bar?

√

(c) What is the static frictional force provided
by the ground on the bar? √

9-s3 (a) The bar of mass m is attached at the
wall with a hinge, and is supported on the right
by a massless cable. Find the tension, T , in the

Problem 9-s2.

cable in terms of the angle θ.
√

(b) Interpreting your answer to part a, what
would be the best angle to use if we wanted to
minimize the strain on the cable?
(c) Again interpreting your answer to part a, for
what angles does the result misbehave mathe-
matically? Interpet this physically.

?

Problem 9-s3.

9-s4 A block of mass m (uniformly dis-
tributed) and dimensions 2L × L is prevented
from toppling over by a rope, making the same
angle with respect to the horizontal as the long
end of the block. (θ < arctan(2) ≈ 63.4◦, which
is another way of saying that the block’s center
of mass lies to the right of the point of contact
with the ground.) (a) What is the tension in the
rope?

√

(b) What is the normal force provided by the
ground?

√

(c) What is the minimum coefficient of friction
required for this configuration to be in static
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equilibrium? Evaluate your expression for θ =
30◦. √

?

Problem 9-s4.

9-s5 A meter-stick balances on a fulcrum
placed at the 50.0 cm mark only when a 4.0 g
weight is placed at the 80.0 cm mark. Without
the weight, the fulcrum needs to be placed at the
48.0 cm mark to balance the stick. What is the
mass of the meter-stick?

9-s6 Julia, whose mass is 2M , is walking
across a uniform bar of mass M and length L,
as shown. The bar is supported by scales at its
left and right ends. The readings on the scales
are N1 and N2, respectively.
(a) What is the maximum distance x from the
left end of the bar that she can reach so that N2

does not exceed Mg?
√

(b) What is the reading N1 when she reaches this
maximum distance? √

Problem 9-s6.

9-s7 A bar of mass m and length L is sup-
ported by a hinge on one end and by a rope on
the other end. The rope makes an angle θ with

respect to the horizontal. In addition, a weight
W is hung from the bar at a distance x away
from the hinge. Take the +x direction to the
right, and +y vertically upwards.
(a) What is the tension in the rope?

√

(b) What is the x component of the force from
the hinge on the bar?

√

(c) What is the y component of the force from
the hinge on the bar? √

Problem 9-s7.

9-s8 A stoplight consists of three pieces of
mass M : a thin, vertical bar mounted at the
center of a base of width w, a horizontal bar of
length D, and the stoplight fixture itself. (The
two bars have a uniform mass distribution.) The
structure is screwed to the ground at the base.
For simplicity, we take there to be only two
screws, one on the left and one on the right side
of the base, which has width w < (D/2). Assume
that the entire normal force from the ground acts
on the right-hand side of the base. (This is where
the structure would naturally pivot.)
(a) By taking the right side of the base as your
pivot point, you should be able to easily see that
the screw on the left must provide a downwards
force to keep the stoplight in static equilibrium.
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What is the magnitude of this force?
√

(b) Find the upward normal force acting on the
base. √

Problem 9-s8.

9-s9 A uniform ladder of mass m and length
L leans against a smooth wall, making an angle
θ with respect to the ground. The dirt exerts a
normal force and a frictional force on the ladder,
producing a force vector with magnitude F1 at
an angle φ with respect to the ground. Since the
wall is smooth, it exerts only a normal force on
the ladder; let its magnitude be F2.
(a) Explain why φ must be greater than θ. No
math is needed.
(b) Choose any numerical values you like for m
and L, and show that the ladder can be in equi-
librium (zero torque and zero total force vector)
for θ = 45.00◦ and φ = 63.43◦.

9-v1 Continuing problem 9-s9, find an equa-
tion for φ in terms of θ, and show that m and
L do not enter into the equation. Do not as-
sume any numerical values for any of the vari-
ables. You will need the trig identity sin(a−b) =
sin a cos b− sin b cos a. (As a numerical check on
your result, you may wish to check that the an-
gles given in part b of the previous problem sat-
isfy your equation.)

√
?

Problem 9-v1.

9-v2 A person of mass M is climbing a lad-
der of length L and negligible mass, propped up
against a wall making an angle θ with respect
to the horizontal. There is no friction between
the ladder and the wall, but there is a coefficient
of static friction µs between the ladder and the
ground. What is the maximum distance along
the ladder that the person can reach before the
ladder starts to slide?

?

Problem 9-v2.

9-v3 You wish to determine the mass of a
ship in a bottle without taking it out. Show that
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this can be done with the setup shown in the
figure, with a scale supporting the bottle at one
end, provided that it is possible to take readings
with the ship slid to several different locations.
Note that you can’t determine the position of
the ship’s center of mass just by looking at it,
and likewise for the bottle. In particular, you
can’t just say, “position the ship right on top of
the fulcrum” or “position it right on top of the
balance.”

?

Problem 9-v3.

9-v4 The box shown in the figure is being ac-
celerated by pulling on it with the rope.
(a) Assume the floor is frictionless. What is
the maximum force that can be applied with-
out causing the box to tip over?

√

(b) Repeat part a, but now let the coefficient of
friction be µ.

√

(c) What happens to your answer to part b when
the box is sufficiently tall? How do you interpret
this?

?

Problem 9-v4.

9-v5 (a) The two identical rods are attached
to one another with a hinge, and are supported

by the two massless cables. Find the angle α in
terms of the angle β, and show that the result is
a purely geometric one, independent of the other
variables involved.

√

(b) Using your answer to part a, sketch the con-
figurations for β → 0, β = 45◦, and β = 90◦. Do
your results make sense intuitively?

?

Problem 9-v5.

9-v6 Two bars of length L are connected with
a hinge and placed on a frictionless cylinder of
radius r. (a) Show that the angle θ shown in the
figure is related to the unitless ratio r/L by the
equation

r

L
=

cos2 θ

2 tan θ
.

(b) Discuss the physical behavior of this equation
for very large and very small values of r/L.

?

Problem 9-v6.
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9-v7 We have n identical books of width w,
and we wish to stack them at the edge of a ta-
ble so that they extend the maximum possible
distance Ln beyond the edge. Surprisingly, it is
possible to have values of Ln that are greater
than w, even with fairly small n. For large n,
however, Ln begins to grow very slowly. Our
goal is to find Ln for a given n. We adopt the
restriction that only one book is ever used at a
given height.1 (a) Use proof by induction to find
Ln, expressing your result as a sum. (b) Find a
sufficiently tight lower bound on this sum, as a
closed-form expression, to prove that 1,202,604
books suffice for L > 7w.

?

9-v8 The uniform cube has unit weight and
sides of unit length. One corner is attached to
a universal joint, i.e., a frictionless bearing that
allows any type of rotation. If the cube is in
equilibrium, find the magnitudes of the forces a,
b, and c. √

Problem 9-v8.

1When this restriction is lifted, the calculation of Ln

becomes a much more difficult problem, which was par-
tially solved in 2009 by Paterson, Peres, Thorup, Winkler,
and Zwick.



10 Fluids

This is not a textbook. It’s a book of problems
meant to be used along with a textbook. Although
each chapter of this book starts with a brief sum-
mary of the relevant physics, that summary is
not meant to be enough to allow the reader to
actually learn the subject from scratch. The pur-
pose of the summary is to show what material is
needed in order to do the problems, and to show
what terminology and notation are being used.

10.1 Statics

Fluids

In physics, the term fluid is used to mean either
a gas or a liquid. The important feature of a fluid
can be demonstrated by comparing with a cube
of jello on a plate. The jello is a solid. If you
shake the plate from side to side, the jello will
respond by shearing, i.e., by slanting its sides,
but it will tend to spring back into its original
shape. A solid can sustain shear forces, but a
fluid cannot. A fluid does not resist a change in
shape unless it involves a change in volume.

Pressure

We begin by restricting ourselves to the case of
fluid statics, in which the fluid is at rest and in
equilibrium. A small chunk or “parcel” of the
fluid has forces acting on it from the adjacent
portions of the fluid. We have assumed that the
parcel is in equilibrium, and if no external forces
are present then these forces must cancel. By
the definition of a fluid these forces are perpen-
dicular to any part of the imaginary boundary
surrounding the parcel. Since force is an additive
quantity, the force the fluid exerts on any surface
must be proportional to the surface’s area. We
therefore define the pressure to be the (perpen-
dicular) force per unit area,

P =
F⊥
A
. (10.1)

If the forces are to cancel, then this force must be
the same on all sides on an object such as a cube,
so it follows that pressure has no direction: it is
a scalar. The SI units of pressure are newtons
per square meter, which can be abbreviated as
pascals, 1 Pa = 1 N/m2. The pressure of the
earth’s atmosphere at sea level is about 100 kPa.

Only pressure differences are ordinarily of any
importance. For example, your ears hurt when
you fly in an airplane because there is a pressure
difference between your inner ear and the cabin;
once the pressures are equalized, the pain stops.

Variation of pressure with depth

If a fluid is subjected to a gravitational field and
is in equilibrium, then the pressure can only de-
pend on depth (figure 10.1).

Figure 10.1: The pressure is the same at all the
points marked with dots.

To find the variation with depth, we consider
the vertical forces acting on a tiny, cubical parcel
of the fluid having infinitesimal height dy, where
positive y is up. By requiring equilibrium, we
find that the difference in pressure between the
top and bottom is dP = −ρg dy. A more elegant
way of writing this is in terms of a dot product,

dP = ρg · dy (10.2)

which automatically takes care of the plus or mi-
nus sign, and avoids any requirements about the
coordinate system. By integrating this equation,
we can find the change in pressure ∆P corre-
sponding to any change in depth ∆y.

121
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Archimedes’ principle

A helium balloon or a submarine experiences un-
equal pressure above and below, due to the vari-
ation of pressure with depth. The total force
of the surrounding fluid does not vanish, and is
called the buoyant force. In a fluid in equilib-
rium that does not contain any foreign object,
any parcel of fluid evidently has its weight can-
celed out by the buoyant force on it. This buoy-
ant force is unchanged if another object is substi-
tuted for the parcel of fluid, so the buoyant force
on a submerged object is upward and equal to
the weight of the displaced fluid. This is called
Archimedes’ principle.

10.2 Dynamics

Continuity

We now turn to fluid dynamics, eliminating the
restriction to cases in which the fluid is at rest
and in equilibrium. Mass is conserved, and this
constrains the ways in which a fluid can flow.
For example, it is not possible to have a piece of
pipe with water flowing out of it at each end in-
definitely. The principle of continuity states that
when a fluid flows steadily (so that the velocity
at any given point is constant over time), mass
enters and leaves a region of space at equal rates.

Liquids are highly incompressible, so that it is
often a good approximation to assume that the
density is the same everywhere. In the case of
incompressible flow, we can frequently relate the
rate of steady flow to the cross-sectional area,
as in figure 10.2. Because the water is incom-
pressible, the rate at which mass flows through a
perpendicular cross-section depends only on the
product of the velocity and the cross-sectional
area. Therefore as the water falls and acceler-
ates, the cross-sectional area goes down.

Bernoulli’s equation

Consider a parcel of fluid as it flows from one
place to another. If it accelerates or decelerates,

Figure 10.2: Due to conservation of mass, the
stream of water narrows.

then its kinetic energy changes. If it rises or falls,
its potential energy changes as well. If there is
a net change in KE + PE, then this must be
accomplished through forces from the surround-
ing fluid. For example, if water is to move uphill
at constant speed, then there must be a pres-
sure difference, such as one produced by a pump.
Based on these considerations, one can show that
along a streamline of the flow,

ρgy +
1

2
ρv2 + P = constant, (10.3)

which is Bernoulli’s principle.
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Problems

10-a1 The pressure at 11,000 meters (where
most commercial airliners fly) is about a quarter
of atmospheric pressure at sea level. Suppose
you’re a passenger on a plane, flying at such an
altitude but with the cabin pressurized to 1 atm,
and you notice a gremlin on the wing. Suppose
that the window near your seat isn’t screwed in
and is held in place only by the difference in pres-
sure. What force would the gremlin need to exert
on your 40 cm × 50 cm window in order to get
in? √

10-a2 The figure shows a schematic diagram
of a car on a hydraulic lift. The small piston has
diameter d and the large one D. Any difference
in height between the two sides is not enough to
create a significant difference in pressure due to
gravity.
(a) If we would like to lift a car of mass M , what
force is required at the piston end?

√

(b) If we would like to lift the car by a distance
L, how far does the piston need to move? As-
sume that the fluid is incompressible, so that its
volume is conserved.

√

(c) By considering the work done in lifting the
car, verify that your answers to part a and b are
consistent with conservation of energy.

Problem 10-a2.

10-d1 A drinking straw works because, when
you suck air out of the straw, there is decreased
pressure. The equilibrium water level inside the
straw is such that the pressure at the water level

outside the straw (atmospheric pressure) is equal
to the pressure at the same height inside the
straw. Inside the straw, there are two contri-
butions: the air pressure inside the straw plus
the column of water above this height.
(a) Suppose you find that you can only suck wa-
ter up to a height of 1.0 m. What is the minimum
pressure inside the straw?

√

(b) Superman, strong as he is, can suck out all
the air from a (strong-walled) straw. What is the
tallest straw through which Superman can drink
water out of a lake? √

10-d2 The first transatlantic telegraph cable
was built in 1858, lying at a depth of up to 3.2
km. What is the pressure at this depth, in at-
mospheres?

10-d3 One way to measure the density of an
unknown liquid is by using it as a barometer.
Suppose you have a column of length L of the
unknown liquid (inside a vacuum tube), which
provides the same pressure as atmospheric pres-
sure P0.
(a) What is the density of the unknown liquid?√

(b) Mercury barometers have L = 760 mm at
standard atmospheric pressure P0 = 1.013 ×
105 Pa. Given these data, what is the density
of mercury to three significant figures? √

10-d4 A U-shaped tube, with both ends ex-
posed to the atmosphere, has two immiscible liq-
uids in it: water, and some unknown liquid. The
unknown liquid sits on top of the water on the
right side of the tube in a column of height H.
Also, the water extends a height h above the
unknown-water interface. If the density of water
is ρw, what is the density of the unknown liquid?√

10-d5 Typically the atmosphere gets colder
with increasing altitude. However, sometimes
there is an inversion layer, in which this trend is
reversed, e.g., because a less dense mass of warm
air moves into a certain area, and rises above the
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Problem 10-d4.

denser colder air that was already present. Sup-
pose that this causes the pressure P as a func-
tion of height y to be given by a function of the
form P = Poe

−ky(1 + by), where constant tem-
perature would give b = 0 and an inversion layer
would give b > 0. (a) Infer the units of the con-
stants Po, k, and b. (b) Find the density of the
air as a function of y, of the constants, and of
the acceleration of gravity g. (c) Check that the
units of your answer to part b make sense.

. Solution, p. 237
10-d6 Estimate the pressure at the center
of the Earth, assuming it is of constant density
throughout. The gravitational field g is not con-
stant with respect to depth. It equals Gmr/b3

for r, the distance from the center, less than b,
the earth’s radius. Here m is the mass of the
earth, and G is Newton’s universal gravitational
constant, which has units of N·m2/kg2.
(a) State your result in terms of G, m, and b.

√

(b) Show that your answer from part a has the
right units for pressure.
(c) Evaluate the result numerically.

√

(d) Given that the earth’s atmosphere is on the
order of one thousandth the earth’s radius, and
that the density of the earth is several thousand
times greater than the density of the lower atmo-
sphere, check that your result is of a reasonable
order of magnitude.

10-g1 A uniform, solid sphere floats in a liq-
uid of known density. We measure its draft, i.e.,
the depth to which it is submerged. From this
measurement, we want to find the density of the
sphere.

(a) Based on units, infer as much as possible
about the form of the result.
(b) Find the density of the sphere in terms of the
relevant variables. √

10-g2 Suppose we want to send a space probe
to Venus and have it release a balloon that can
float over the landscape and collect data. The
venerian atmosphere is hot and corrosive, so it
would destroy the kind of mylar or rubber bal-
loon we use on earth. The purpose of this prob-
lem is to get a feel for things by estimating
whether an aluminum beer can full of helium
would float on Venus. Here are some data:

density of atmosphere 67 kg/m3

density of helium 6.0 kg/m3

mass of beer can 15 g
volume of beer can 330 cm3

Find the ratio FB/Fg of the buoyant force to
the can’s weight. Does it float?

√

10-g3 Aluminum and lead have densities
2.8ρw and 11.3ρw, respectively, where ρw is the
density of water. If the maximum mass of the
lead that you can lift while underwater is M ,
what is the maximum for aluminum? √

10-g4 A block of wood is floating in water. It
has density kρw, where ρw is the density of water.
When you apply a downward force of magnitude
F , the block becomes fully submerged. What is
the mass of the block? √

10-g5 Gina has a mass of 62 kg.
(a) Estimate her volume, assuming that her den-
sity is the same as that of water.

√

(b) Gina is in air, which has density 1.2 kg/m3.
What is the buoyant force on her?

√

(c) Without the air pushing up slightly, she
would weigh more on a standard scale. How
much more would the scale claim her mass was?√

10-g6 An object of mass m has an appar-
ent weight (3/5)mg when submerged in water,
which has density ρw. If the object is placed
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in bromine, which has density 3.1ρw, it floats.
What fraction of the object is submerged in
bromine? √

10-k1 A river with a certain width and depth
splits into two parts, each of which has the same
width and depth as the original river. What can
you say about the speed of the current after the
split?

Problem 10-k1.

10-k2 At one cross-section of the Mississippi
River, the width is 150 m, the depth is 12 m, and
the speed of the water flowing is 1.2 m/s.
(a) What is the rate of flow of the Mississippi
River at this location, measured as volume per
unit time?

√

(b) What is the corresponding rate of flow of
mass?

√

(c) If the river narrows to 140 m with a depth of
20 m, what is the new speed of the water? √

10-k3 The firehose shown in the figure has
radius a, and water flows through it at speed u.
The conical nozzle narrows the radius down to b.
Find the speed v at which the water leaves the
nozzle. √

10-k4 A pipe of slow-moving water is basi-
cally at atmospheric pressure, P0. As the pipe
narrows (without changing height), the water
speeds up, and the pressure decreases. How fast
would the water need to move in order for the
pressure in the pipe to be 0.75P0? √

Problem 10-k3.
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11 Gravity

This is not a textbook. It’s a book of problems
meant to be used along with a textbook. Although
each chapter of this book starts with a brief sum-
mary of the relevant physics, that summary is
not meant to be enough to allow the reader to
actually learn the subject from scratch. The pur-
pose of the summary is to show what material is
needed in order to do the problems, and to show
what terminology and notation are being used.

11.1 Kepler’s laws

Johannes Kepler (1571-1630) studied newly
available high-precision data on the motion of
the planets, and discovered the following three
empirical laws:

Kepler’s elliptical orbit law: The planets orbit
the sun in elliptical orbits with the sun at one
focus.

Kepler’s equal-area law: The line connecting a
planet to the sun sweeps out equal areas in equal
amounts of time.

Kepler’s law of periods: The time required for
a planet to orbit the sun, called its period, is pro-
portional to the long axis of the ellipse raised to
the 3/2 power. The constant of proportionality
is the same for all the planets.

Figure 11.1: If the time interval taken by the
planet to move from P to Q is equal to the time
interval from R to S, then according to Kepler’s
equal-area law, the two shaded areas are equal.

11.2 Newton’s law of gravity

Kepler’s laws were a beautifully simple expla-
nation of what the planets did, but they didn’t
address why they moved as they did. Once New-
ton had formulated his laws of motion and taught
them to some of his friends, they began trying
to connect them to Kepler’s laws. It was clear
now that an inward force would be needed to
bend the planets’ paths. Since the outer planets
were moving slowly along more gently curving
paths than the inner planets, their accelerations
were apparently less. This could be explained if
the sun’s force was determined by distance, be-
coming weaker for the farther planets. In the
approximation of a circular orbit, it is not diffi-
cult to show that Kepler’s law of periods requires
that this weakening with distance vary accord-
ing to F ∝ 1/r2. We know that objects near
the earth’s surface feel a gravitational force that
is also in proportion to their masses. Newton
therefore hypothesized a universal law of grav-
ity,

F =
Gm1m2

r2
,

which states that any two massive particles, any-
where in the universe, attract each other with a
certain amount of force. The universal constant
G is equal to 6.67× 10−11 N·m2/kg2.

11.3 The shell theorem

Newton proved the following theorem, known as
the shell theorem:

If an object lies outside a thin, spherical shell
of mass, then the vector sum of all the gravita-
tional forces exerted by all the parts of the shell
is the same as if the shell’s mass had been con-
centrated at its center. If the object lies inside
the shell, then all the gravitational forces cancel
out exactly.

The earth is nearly spherical, and the density

127
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in each concentric spherical shell is nearly con-
stant. Therefore for terrestrial gravity, each shell
acts as though its mass was at the center, and
the result is the same as if the whole mass was
there.

Figure 11.2: Cut-away view of a spherical shell
of mass. A, who is outside the shell, feels grav-
itational forces from every part of the shell —
stronger forces from the closer parts, and weaker
ones from the parts farther away. The shell the-
orem states that the vector sum of all the forces
is the same as if all the mass had been concen-
trated at the center of the shell. B, at the center,
is clearly weightless, because the shell’s gravita-
tional forces cancel out. Surprisingly, C also feels
exactly zero gravitational force.

11.4 Universality of free fall

Suppose that massesm1 andm2 interact gravita-
tionally, and m1 is fixed in place, or has so much
mass that its inertia makes its acceleration neg-
ligible. For example, m1 could be the earth, and
m2 a rock. When we combine Newton’s law of
gravity with Newton’s second law, we find that
m2’s acceleration equals Gm1/r

2, which is com-
pletely independent of the mass m2. (We assume
that no other forces act.) That is, if we give an
object a certain initial position and velocity in an
ambient gravitational field, then its later motion
is independent of its mass: free fall is universal.

This fact had first been demonstrated em-
pirically a generation earlier by Galileo, who
dropped a cannonball and a musketball simul-
taneously from the leaning tower of Pisa, and
observed that they hit the ground at nearly the
same time. This contradicted Aristotle’s long-
accepted idea that heavier objects fell faster.
Modern experiments have verified the universal-
ity of free fall to the phenomenal precision of
about one part in 1011.

11.5 Current status of New-
ton’s theory

Newton’s theory of gravity, according to which
masses act on one another instantaneously at a
distance, is not consistent with Einstein’s the-
ory of relativity, which requires that all phys-
ical influences travel no faster than the speed
of light. Einstein generalized Newton’s descrip-
tion of gravity in his general theory of relativ-
ity. Newton’s theory is a good approximation to
the general theory when the masses that interact
move at speeds small compared to the speed of
light, when the gravitational fields are weak, and
when the distances involved are small in cosmo-
logical terms. General relativity is needed in or-
der to discuss phenomena such as neutron stars
and black holes, the big bang and the expan-
sion of the universe. The effects of general rel-
ativity also become important, for example, in
the Global Positioning System (GPS), where ex-
tremely high precision is required, so that even
extremely small deivations from the Newtonian
picture are important.

General relativity shares with Newtonian
gravity the prediction that free fall is universal.
High-precision tests of this universality are there-
fore stringent tests of both theories.

11.6 Energy

Newton’s law of gravity can be restated as a de-
scription of energy rather than force. Taking the
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indefinite integral of the force law gives the ex-
pression

PE = −GMm

r
,

where for convenience the constant of integration
is taken to be zero.
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Problems

11-a1 Astronomers have detected a solar sys-
tem consisting of three planets orbiting the star
Upsilon Andromedae. The planets have been
named b, c, and d. Planet b’s average distance
from the star is 0.059 A.U., and planet c’s aver-
age distance is 0.83 A.U., where an astronomical
unit or A.U. is defined as the distance from the
Earth to the sun. For technical reasons, it is
possible to determine the ratios of the planets’
masses, but their masses cannot presently be de-
termined in absolute units. Planet c’s mass is
3.0 times that of planet b. Compare the star’s
average gravitational force on planet c with its
average force on planet b. [Based on a problem
by Arnold Arons.]

. Solution, p. 237

11-a2 The star Lalande 21185 was found in
1996 to have two planets in roughly circular or-
bits, with periods of 6 and 30 years. What is the
ratio of the two planets’ orbital radii? √

11-d1 Ceres, the largest asteroid in our solar
system, is a spherical body with a mass 6000
times less than the earth’s, and a radius which
is 13 times smaller. If an astronaut who weighs
400 N on earth is visiting the surface of Ceres,
what is her weight?

. Solution, p. 237

11-d2 (a) A certain vile alien gangster lives
on the surface of an asteroid, where his weight is
0.20 N. He decides he needs to lose weight with-
out reducing his consumption of princesses, so
he’s going to move to a different asteroid where
his weight will be 0.10 N. The real estate agent’s
database has asteroids listed by mass, however,
not by surface gravity. Assuming that all as-
teroids are spherical and have the same density,
how should the mass of his new asteroid compare
with that of his old one?
(b) Jupiter’s mass is 318 times the Earth’s, and
its gravity is about twice Earth’s. Is this consis-
tent with the results of part a? If not, how do
you explain the discrepancy?

. Solution, p. 237

11-d3 Roy has a mass of 60 kg. Laurie has a
mass of 65 kg. They are 1.5 m apart.
(a) What is the magnitude of the gravitational
force of the earth on Roy?
(b) What is the magnitude of Roy’s gravitational
force on the earth?
(c) What is the magnitude of the gravitational
force between Roy and Laurie?
(d) What is the magnitude of the gravitational
force between Laurie and the sun? √

11-d4 The planet Uranus has a mass of 8.68×
1025 kg and a radius of 2.56×104 km. The figure
shows the relative sizes of Uranus and Earth.
(a) Compute the ratio gU/gE , where gU is the
strength of the gravitational field at the surface
of Uranus and gE is the corresponding quantity
at the surface of the Earth.

√

(b) What is surprising about this result? How
do you explain it?

11-d5 The International Space Station orbits
at an average altitude of about 370 km above sea
level. Compute the value of g at that altitude.√

11-d6 Two spherical objects, both of mass m
and radius R, have center-to-center separation
4R and are initially at rest. No external forces
act. The spheres accelerate towards one another
until they collide.
(a) What is the speed of each object just before
the collision? Find the exact answer using
energy methods.

√

(b) Using the final speed from part (a), and
assuming the acceleration is roughly constant
and equal to the initial acceleration, calculate
an upper limit on the time it takes for the two
objects to collide. (The actual time will be
shorter, because the acceleration increases as
they get closer.)

√

(c) Calculate a numerical value of the time from
part b, in the case of two bowling balls having
m = 7 kg and R = 0.1 m.

√
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Problem 11-d9.

Problem 11-d10.
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Problem 11-d4.

11-d7 The figure shows the International
Space Station (ISS). One of the purposes of the
ISS is supposed to be to carry out experiments
in microgravity. However, the following factor
limits this application. The ISS orbits the earth
once every 92.6 minutes. It is desirable to keep
the same side of the station always oriented to-
ward the earth, which means that the station has
to rotate with the same period. In the photo, the
direction of orbital motion is left or right on the
page, so the rotation is about the axis shown as
up and down on the page. The greatest distance
of any pressurized compartment from the axis
of rotation is 36.5 meters. Find the acceleration
due to the rotation at this point, and the appar-
ent weight of a 60 kg astronaut at that location.√

11-d8 During a solar eclipse, the moon, earth
and sun all lie on the same line, with the moon
between the earth and sun. Define your coordi-
nates so that the earth and moon lie at greater
x values than the sun. For each force, give the
correct sign as well as the magnitude. (a) What
force is exerted on the moon by the sun? (b) On
the moon by the earth? (c) On the earth by the
sun? (d) What total force is exerted on the sun?
(e) On the moon? (f) On the earth? √

11-d9 Suppose that on a certain day there is
a crescent moon, and you can tell by the shape
of the crescent that the earth, sun and moon

Problem 11-d7.

form a triangle with a 135◦ interior angle at the
moon’s corner. What is the magnitude of the
total gravitational force of the earth and the sun
on the moon? (If you haven’t done problem 11-
d8 already, you might want to try it first, since
it’s easier, and some of its results can be recycled
in this problem.) √

11-d10 On Feb. 28, 2007, the New Hori-
zons space probe, on its way to a 2015 flyby of
Pluto, passed by the planet Jupiter for a gravity-
assisted maneuver that increased its speed and
changed its course. The dashed line in the fig-
ure shows the spacecraft’s trajectory, which is
curved because of three forces: the force of the
exhaust gases from the probe’s own engines, the
sun’s gravitational force, and Jupiter’s gravita-
tional force. Find the magnitude of the total
gravitational force acting on the probe. You will
find that the sun’s force is much smaller than
Jupiter’s, so that the magnitude of the total force
is determined almost entirely by Jupiter’s force.
However, this is a high-precision problem, and
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you will find that the total force is slightly dif-
ferent from Jupiter’s force. √

11-g1 Tidal interactions with the earth are
causing the moon’s orbit to grow gradually
larger. Laser beams bounced off of a mirror left
on the moon by astronauts have allowed a mea-
surement of the moon’s rate of recession, which is
about 4 cm per year. This means that the grav-
itational force acting between earth and moon
is decreasing. By what fraction does the force
decrease with each 27-day orbit?

[Based on a problem by Arnold Arons.]
. Solution, p. 237

11-g2 How high above the Earth’s surface
must a rocket be in order to have 1/100 the
weight it would have at the surface? Express
your answer in units of the radius of the Earth.√

11-g3 You are considering going on a space
voyage to Mars, in which your route would be
half an ellipse, tangent to the Earth’s orbit at
one end and tangent to Mars’ orbit at the other.
Your spacecraft’s engines will only be used at
the beginning and end, not during the voyage.
How long would the outward leg of your trip last?
(The orbits of Earth and Mars are nearly circu-
lar, and Mars’s is bigger by a factor of 1.52.)√

11-g4 Where would an object have to be lo-
cated so that it would experience zero total grav-
itational force from the earth and moon? √

11-j1 In a Star Trek episode, the Enterprise
is in a circular orbit around a planet when some-
thing happens to the engines. Spock then tells
Kirk that the ship will spiral into the planet’s
surface unless they can fix the engines. Is this
scientifically correct? Why?

11-j2 Astronomers have recently observed
stars orbiting at very high speeds around an un-
known object near the center of our galaxy. For
stars orbiting at distances of about 1014 m from
the object, the orbital velocities are about 106

m/s. Assuming the orbits are circular, estimate

the mass of the object, in units of the mass of
the sun, 2× 1030 kg. If the object was a tightly
packed cluster of normal stars, it should be a
very bright source of light. Since no visible light
is detected coming from it, it is instead believed
to be a supermassive black hole. √

11-j3 (a) A geosynchronous orbit is one in
which the satellite orbits above the equator,
and has an orbital period of 24 hours, so
that it is always above the same point on the
spinning earth. Calculate the altitude of such a
satellite.

√

(b) What is the gravitational field experienced
by the satellite? Give your answer as a percent-
age in relation to the gravitational field at the
earth’s surface.

√

11-j4 (a) Suppose a rotating spherical body
such as a planet has a radius r and a uniform
density ρ, and the time required for one rotation
is T . At the surface of the planet, the appar-
ent acceleration of a falling object is reduced by
the acceleration of the ground out from under it.
Derive an equation for the apparent acceleration
of gravity, g, at the equator in terms of r, ρ, T ,
and G.

√

(b) Applying your equation from a, by what frac-
tion is your apparent weight reduced at the equa-
tor compared to the poles, due to the Earth’s
rotation?

√

(c) Using your equation from a, derive an equa-
tion giving the value of T for which the appar-
ent acceleration of gravity becomes zero, i.e., ob-
jects can spontaneously drift off the surface of
the planet. Show that T only depends on ρ, and
not on r.

√

(d) Applying your equation from c, how long
would a day have to be in order to reduce the
apparent weight of objects at the equator of the
Earth to zero? [Answer: 1.4 hours]
(e) Astronomers have discovered objects they
called pulsars, which emit bursts of radiation at
regular intervals of less than a second. If a pulsar
is to be interpreted as a rotating sphere beaming
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out a natural “searchlight” that sweeps past the
earth with each rotation, use your equation from
c to show that its density would have to be much
greater than that of ordinary matter.
(f) Astrophysicists predicted decades ago that
certain stars that used up their sources of en-
ergy could collapse, forming a ball of neutrons
with the fantastic density of ∼ 1017 kg/m3. If
this is what pulsars really are, use your equation
from c to explain why no pulsar has ever been
observed that flashes with a period of less than
1 ms or so.

11-j5 The figure shows an image from the
Galileo space probe taken during its August 1993
flyby of the asteroid Ida. Astronomers were sur-
prised when Galileo detected a smaller object or-
biting Ida. This smaller object, the only known
satellite of an asteroid in our solar system, was
christened Dactyl, after the mythical creatures
who lived on Mount Ida, and who protected the
infant Zeus. For scale, Ida is about the size and
shape of Orange County, and Dactyl the size of
a college campus. Galileo was unfortunately un-
able to measure the time, T , required for Dactyl
to orbit Ida. If it had, astronomers would have
been able to make the first accurate determina-
tion of the mass and density of an asteroid. Find
an equation for the density, ρ, of Ida in terms
of Ida’s known volume, V , the known radius, r,
of Dactyl’s orbit, and the lamentably unknown
variable T . (This is the same technique that was
used successfully for determining the masses and
densities of the planets that have moons.)

. Solution, p. 237

11-j6 On an airless body such as the moon,
there is no atmospheric friction, so it should be
possible for a satellite to orbit at a very low al-
titude, just high enough to keep from hitting
the mountains. (a) Suppose that such a body
is a smooth sphere of uniform density ρ and ra-
dius r. Find the velocity required for a ground-
skimming orbit.

√

(b) A typical asteroid has a density of about
2 g/cm3, i.e., twice that of water. (This is a lot

Problem 11-j5.

lower than the density of the earth’s crust, prob-
ably indicating that the low gravity is not enough
to compact the material very tightly, leaving lots
of empty space inside.) Suppose that it is pos-
sible for an astronaut in a spacesuit to jump at
2 m/s. Find the radius of the largest asteroid
on which it would be possible to jump into a
ground-skimming orbit. √

11-j7 If a bullet is shot straight up at a high
enough velocity, it will never return to the earth.
This is known as the escape velocity. In this
problem, you will analyze the motion of an ob-
ject of mass m whose initial velocity is exactly
equal to escape velocity. We assume that it is
starting from the surface of a spherically sym-
metric planet of mass M and radius b. The trick
is to guess at the general form of the solution,
and then determine the solution in more detail.
Assume (as is true) that the solution is of the
form r = ktp, where r is the object’s distance
from the center of the planet at time t, and k
and p are constants.
(a) Find the acceleration, and use Newton’s sec-
ond law and Newton’s law of gravity to deter-
mine k and p. You should find that the result is
independent of m.

√

(b) What happens to the velocity as t approaches
infinity?
(c) Determine escape velocity from the Earth’s
surface. √
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11-j8 Planet X rotates, as the earth does,
and is perfectly spherical. An astronaut who
weighs 980.0 N on the earth steps on a scale at
the north pole of Planet X and the scale reads
600.0 N; at the equator of Planet X, the scale
only reads 500.0 N. The distance from the north
pole to the equator is 20,000 km, measured
along the surface of Planet X.
(a) Explain why the astronaut appears to weigh
more at the north pole of planet X than at the
equator. Which is the “actual” weight of the
astronaut? Analyze the forces acting on an
astronaut standing on a scale, providing one
analysis for the north pole, and one for the
equator.
(b) Find the mass of planet X. Is planet X more
massive than the earth, or less massive? The
radius of the earth is 6370 km, and its mass is
5.97× 1024 kg.

√

(c) If a 30,000 kg satellite is orbiting the planet
very close to the surface, what is its orbital
period? Assume planet X has no atmosphere,
so that there’s no air resistance.

√

(d) How long is a day on planet X? Is this longer
than, or shorter than, the period of the satellite
in part c?

√

11-j9 A 20.0 kg satellite has a circular or-
bit with a period of 2.40 hours and a radius of
8.00×106 m around planet Z. The magnitude of
the gravitational acceleration on the surface of
the planet is 8.00 m/s2.
(a) What is the mass of planet Z?

√

(b) What is the radius of planet Z?
√

(c) Find the KE and the PE of the satellite.
What is the ratio PE/KE (including both magni-
tude and sign)? You should get an integer. This
is a special case of something called the virial
theorem.

√

(d) Someone standing on the surface of the
planet sees a moon orbiting the planet (a cir-
cular orbit) with a period of 20.0 days. What is
the distance between planet Z and its moon?√

11-m1 Astronomers calculating orbits of
planets often work in a nonmetric system of
units, in which the unit of time is the year, the
unit of mass is the sun’s mass, and the unit of
distance is the astronomical unit (A.U.), defined
as half the long axis of the earth’s orbit. In these
units, find an exact expression for the gravita-
tional constant, G. √

11-m2 Suppose that we inhabited a universe
in which, instead of Newton’s law of gravity, we
had F = k

√
m1m2/r

2, where k is some constant
with different units than G. (The force is still
attractive.) However, we assume that a = F/m
and the rest of Newtonian physics remains true,
and we use a = F/m to define our mass scale, so
that, e.g., a mass of 2 kg is one which exhibits
half the acceleration when the same force is ap-
plied to it as to a 1 kg mass.
(a) Is this new law of gravity consistent with
Newton’s third law?
(b) Suppose you lived in such a universe, and you
dropped two unequal masses side by side. What
would happen?
(c) Numerically, suppose a 1.0-kg object falls
with an acceleration of 10 m/s2. What would
be the acceleration of a rain drop with a mass of
0.1 g? Would you want to go out in the rain?
(d) If a falling object broke into two unequal
pieces while it fell, what would happen?
(e) Invent a law of gravity that results in behav-
ior that is the opposite of what you found in part
b. [Based on a problem by Arnold Arons.]

11-m3 The structures that we see in the
universe, such as solar systems, galaxies, and
clusters of galaxies, are believed to have con-
densed from clumps that formed, due to grav-
itational attraction, in preexisting clouds of gas
and dust. Observations of the cosmic microwave
background radiation suggest that the mixture
of hot hydrogen and helium that existed soon
after the Big Bang was extremely uniform, but
not perfectly so. We can imagine that any region
that started out a little more dense would form a
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natural center for the collapse of a clump. Sup-
pose that we have a spherical region with density
ρ and radius r, and for simplicity let’s just as-
sume that it’s surrounded by vacuum. (a) Find
the acceleration of the material at the edge of
the cloud. To what power of r is it proportional?√

(b) The cloud will take a time t to collapse to
some fraction of its original size. Show that t is
independent of r.
Remark: This result suggests that structures would get
a chance to form at all scales in the universe. That is,
solar systems would not form before galaxies got to, or
vice versa. It is therefore physically natural that when
we look at the universe at essentially all scales less than
a billion light-years, we see structure.

11-m4 You have a fixed amount of material
with a fixed density. If the material is formed
into some shape S, then there will be some point
in space at which the resulting gravitational field
attains its maximum value gS . What shape max-
imizes gS?

11-m5 The escape velocity of a massive body
is the speed for which the total energy of a pro-
jectile is zero: the projectile has just enough
KE to move infinitely far away from the massive
body, with no left-over KE. The escape velocity
depends on the distance from which the projec-
tile is launched — often the body’s surface.

The Schwarzschild radius (Rs) of a massive
body is the radius where the escape velocity is
equal to the speed of light, c = 3.00 × 108 m/s.
An object is called a black hole if it has a
Schwarzschild radius.

An object must be very compact to be a black
hole. For example, escape velocity from the sur-
face of the earth is tens of thousands of times less
than c, as is the escape velocity for a projectile
launched from the center of the earth through a
hypothetical radial, evacuated tunnel.

In this problem we will make some numerical
estimates of how compact an object has to be in
order to be a black hole. We will use Newtonian
gravity, which is a poor approximation for such

strong gravitational fields, so we expect these es-
timates to be rough.
(a) For an object of mass M , what would its ra-
dius have to be if all of its mass was to fit within
the Schwarzschild radius?

√

(b) Evaluate your equation from part a for M
equal to the masses of the earth and the sun. If
these bodies were compressed to approximately
these sizes, they would become black holes. (Be-
cause these are rough estimates, treat them as
having no more than 1 significant figure.) √

11-m6 Problems 11-m6-11-m8 all investigate
the following idea. Cosmological surveys at the
largest observable distance scales have detected
structures like filaments. As an idealization of
such a structure, consider a uniform mass distri-
bution lying along the entire x axis, with mass
density λ in units of kg/m. The purpose of this
problem is to find the gravitational field created
by this structure at a distance y.
(a) Determine as much as possible about the
form of the solution, based on units.
(b) To evaluate the actual result, find the contri-
bution dgy to the y component of the field arising
from the mass dm lying between x and x + dx,
then integrate it.

. Solution, p. 238

11-m7 Let us slightly change the physical sit-
uation described in problem 11-m6, letting the
filament have a finite size, while retaining its
symmetry under rotation about the x axis. The
details don’t actually matter very much for our
purposes, but if we like, we can take the mass
density to be constant within a cylinder of ra-
dius b centered on the x axis. Now consider the
following two limits:

g1 = lim
y→0

lim
b→0

g and

g2 = lim
b→0

lim
y→0

g.

Each of these is a limit inside another limit, the
only difference being the order of the limits. Ei-
ther of these could be used as a definition of the
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field at a point on an infinitely thin filament. Do
they agree?

11-m8 Suppose we have a mass filament like
the one described in problems 11-m6 and 11-m7,
but now rather than taking it to be straight, let
it have the shape of an arbitrary smooth curve.
Locally, “under a microscope,” this curve will
look like an arc of a circle, i.e., we can describe
its shape solely in terms of a radius of curvature.
As in problem 11-m7, consider a point P lying
on the filament itself, taking g to be defined as
in definition g1. Investigate whether g is finite,
and also whether it points in a specific direction.
To clarify the mathematical idea, consider the
following two limits:

A = lim
x→0

1

x
and

B = lim
x→0

1

x2
.

We say that A = ∞, while B = +∞, i.e., both
diverge, but B diverges with a definite sign. For
a straight filament, as in problem 11-m6, with an
infinite radius of curvature, symmetry guaran-
tees that the field at P has no specific direction,
in analogy with limit A. For a curved filament,
a calculation is required in order to determine
whether we get behavior A or B. Based on your
result, what is the expected dynamical behavior
of such a filament?

11-p1 (a) If the earth was of uniform density,
would your weight be increased or decreased at
the bottom of a mine shaft? Explain.
(b) In real life, objects weigh slightly more at the
bottom of a mine shaft. What does that allow
us to infer about the Earth?

11-p2 Consult a proof of the shell theorem
in your textbook or in some other source such
as Wikipedia.Prove that the theorem fails if the
exponent of r in Newton’s law of gravity differs
from −2.

11-p3 The shell theorem describes two cases,
inside and outside. Show that for an alternative
law of gravity F = GMmr (with r1 rather than
r−2), the outside case still holds.

11-p4 The figure shows a region of outer
space in which two stars have exploded, leaving
behind two overlapping spherical shells of gas,
which we assume to remain at rest. The figure is
a cross-section in a plane containing the shells’
centers. A space probe is released with a very
small initial speed at the point indicated by the
arrow, initially moving in the direction indicated
by the dashed line. Without any further infor-
mation, predict as much as possible about the
path followed by the probe and its changes in
speed along that path.

11-p5 Approximate the earth’s density as be-
ing constant. (a) Find the gravitational field at
a point P inside the earth and half-way between
the center and the surface. Express your result
as a ratio gP /gS relative to the field we expe-
rience at the surface. (b) As a check on your
answer, make sure that the same reasoning leads
to a reasonable result when the fraction 1/2 is re-
placed by the value 0 (P being the earth’s center)
or the value 1 (P being a point on the surface).

11-p6 The earth is divided into solid inner
core, a liquid outer core, and a plastic mantle.
Physical properties such as density change dis-
continuously at the boundaries between one layer
and the next. Although the density is not com-
pletely constant within each region, we will ap-
proximate it as being so for the purposes of this
problem. (We neglect the crust as well.) Let R
be the radius of the earth as a whole and M its
mass. The following table gives a model of some
properties of the three layers, as determined by
methods such as the observation of earthquake
waves that have propagated from one side of the
planet to the other.
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Problem 11-p4.
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region outer radius/R mass/M
mantle 1 0.69
outer core 0.55 0.29
inner core 0.19 0.017

The boundary between the mantle and the
outer core is referred to as the Gutenberg dis-
continuity. Let gs be the strength of the earth’s
gravitational field at its surface and gG its value
at the Gutenberg discontinuity. Find gG/gs.√

11-s1 Starting at a distance r from a planet
of mass M , how fast must an object be mov-
ing in order to have a hyperbolic orbit, i.e., one
that never comes back to the planet? This ve-
locity is called the escape velocity. Interpreting
the result, does it matter in what direction the
velocity is? Does it matter what mass the object
has? Does the object escape because it is moving
too fast for gravity to act on it? √

11-s2 A certain binary star system consists
of two stars with masses m1 and m2, separated
by a distance b. A comet, originally nearly at
rest in deep space, drops into the system and at
a certain point in time arrives at the midpoint
between the two stars. For that moment in time,
find its velocity, v, symbolically in terms of b, m1,
m2, and fundamental constants. √
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12 Oscillations

This is not a textbook. It’s a book of problems
meant to be used along with a textbook. Although
each chapter of this book starts with a brief sum-
mary of the relevant physics, that summary is
not meant to be enough to allow the reader to
actually learn the subject from scratch. The pur-
pose of the summary is to show what material is
needed in order to do the problems, and to show
what terminology and notation are being used.

12.1 Periodic motion

The sine function has the property that sin(x+
2π) = sinx, so that whetever the function is do-
ing at one point, it is guaranteed to do the same
thing again at a point 2π to the right. Such
a function is called periodic. When an object’s
position as a function of time is periodic, we say
that it exhibits periodic motion. Examples in-
clude uniform circular motion and a mass vibrat-
ing back and forth frictionlessly on a spring. The
time from one repetition of the motion to the
next is called the period, T . The inverse of the
period is the frequency,

f =
1

T
,

and it is also convenient to define the angular
frequency

ω =
2π

T
.

Either f or ω can be referred to simply as fre-
quency, when context makes it clear or the dis-
tinction isn’t important. The units of frequency
are s−1, which can also be abbreviated as hertz,
1 Hz = 1 s−1.

12.2 Simple harmonic mo-
tion

When an object is displaced from equilibrium, it
can oscillate around the equilibrium point. Let

the motion be one-dimensional, let the equilib-
rium be at x = 0, and let friction be negligible.
Then by conservation of energy, the oscillations
are periodic, and they extend from some nega-
tive value of x on the left to a value on the right
that is the same except for the sign. We describe
the size of the oscillations as their amplitude, A.

When the oscillations are small enough,
Hooke’s law F = −kx is a good approxima-
tion, because any function looks linear close up.
Therefore all such oscillations have a universal
character, differing only in amplitude and fre-
quency. Such oscillations are referred to as sim-
ple harmonic motion.

For simple harmonic motion, Newton’s second
law gives x′′ = −(k/m)x. This is a type of
equation referred to as a differential equation,
because it relates the function x(t) to its own
(second) derivative. The solution of the equa-
tion is x = A sin(ωt+ δ), where

ω =

√
k

m

is independent of the amplitude.

12.3 Damped oscillations

The total energy of an oscillation is proportional
to the square of the amplitude. In the simple
harmonic oscillator, the amplitude and energy
are constant. Unlike this idealization, real oscil-
lating systems have mechanisms such as friction
that dissipate energy. These mechanisms are re-
ferred to as damping. A simple mathematical
model that incorporates this behavior is to incor-
porate a frictional force that is proportional to
velocity. The equation of motion then becomes
mx′′ + bx′ + kx = 0. In the most common case,
where b < 2

√
km. In this underdamped case, the

solutions are decaying exponentials of the form

x = Ae−ct sinωt,

141
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where c = b/2m and ω = [k/m− b2/4m2]1/2.

It is customary to describe the amount of
damping with a quantity called the quality fac-
tor, Q, defined as the number of cycles required
for the energy to fall off by a factor of e2π ≈ 535.
The terminology arises from the fact that friction
is often considered a bad thing, so a mechanical
device that can vibrate for many oscillations be-
fore it loses a significant fraction of its energy
would be considered a high-quality device.

Underdamped motion occurs for Q > 1/2. For
the case Q < 1/2, referred to as overdamped,
there are no oscillations, and the motion is a de-
caying exponential.

12.4 Driven oscillations

It is often of interest to consider an oscillator
that is driven by an oscillating force. Examples
would be a mother pushing a child on a play-
ground swing, or the ear responding to a sound
wave. We assume for simplicity that the driving
force oscillates sinusoidally with time, although
most of the same results are qualitatively correct
when this requirement is relaxed. The oscillator
responds to the driving force by gradually set-
tling down into a steady, sinusoidal pattern of
vibration called the steady state. Figure 12.1
shows the bell-shaped curve that results when
we graph the energy of the steady-state response
against the frequency of the driving force. We
have the following results.

Figure 12.1: The response of an oscillator to a
driving force, showing the definition of the full
width at half maximum (FWHM).

(1) The steady-state response to a sinusoidal
driving force occurs at the frequency of the force,
not at the system’s own natural frequency of vi-
bration.

(2) A vibrating system resonates at its own
natural frequency.1 That is, the amplitude of the
steady-state response is greatest in proportion
to the amount of driving force when the driving
force matches the natural frequency of vibration.

(3) When a system is driven at resonance, the
steady-state vibrations have an amplitude that
is proportional to Q.

(4) The FWHM of a resonance, defined in fig-
ure 12.1, is related to its Q and its resonant fre-
quency fres by the equation

FWHM =
fres
Q

.

(This equation is only a good approximation
when Q is large.)

1This is an approximation, which is valid in the usual
case where Q is significantly greater than 1.



PROBLEMS 143

Problems

12-a1 Many single-celled organisms propel
themselves through water with long tails, which
they wiggle back and forth. (The most obvious
example is the sperm cell.) The frequency of the
tail’s vibration is typically about 10-15 Hz. To
what range of periods does this range of frequen-
cies correspond? √

12-a2 The figure shows the oscillation of a
microphone in response to the author whistling
the musical note “A.” The horizontal axis, rep-
resenting time, has a scale of 1.0 ms per square.
Find the period T , the frequency f , and the an-
gular frequency ω. √

Problem 12-a2.

12-d1 Show that the equation T = 2π
√
m/k

has units that make sense.

12-d2 (a) Pendulum 2 has a string twice as
long as pendulum 1. If we define x as the dis-
tance traveled by the bob along a circle away
from the bottom, how does the k of pendulum 2
compare with the k of pendulum 1? Give a nu-
merical ratio. [Hint: the total force on the bob is
the same if the angles away from the bottom are
the same, but equal angles do not correspond to
equal values of x.]

(b) Based on your answer from part (a), how
does the period of pendulum 2 compare with the
period of pendulum 1? Give a numerical ratio.

12-d3 A pneumatic spring consists of a pis-
ton riding on top of the air in a cylinder. The
upward force of the air on the piston is given by

Fair = ax−β , where β = 1.4 and a is a constant
with funny units of N ·m1.4. For simplicity, as-
sume the air only supports the weight mg of the
piston itself, although in practice this device is
used to support some other object. The equi-
librium position, x0, is where mg equals −Fair.
(Note that in the main text I have assumed the
equilibrium position to be at x = 0, but that is
not the natural choice here.) Assume friction is
negligible, and consider a case where the ampli-
tude of the vibrations is very small. Find the
angular frequency of oscillation. √

12-d4 Verify that energy is conserved in sim-
ple harmonic motion.

12-d5 Archimedes’ principle states that an
object partly or wholly immersed in fluid experi-
ences a buoyant force equal to the weight of the
fluid it displaces. For instance, if a boat is float-
ing in water, the upward pressure of the water
(vector sum of all the forces of the water press-
ing inward and upward on every square inch of
its hull) must be equal to the weight of the wa-
ter displaced, because if the boat was instantly
removed and the hole in the water filled back in,
the force of the surrounding water would be just
the right amount to hold up this new “chunk”
of water. (a) Show that a cube of mass m with
edges of length b floating upright (not tilted) in
a fluid of density ρ will have a draft (depth to
which it sinks below the waterline) h given at
equilibrium by h0 = m/b2ρ. (b) Find the total
force on the cube when its draft is h, and ver-
ify that plugging in h− h0 gives a total force of
zero. (c) Find the cube’s period of oscillation as
it bobs up and down in the water, and show that
can be expressed in terms of and g only. √

12-d6 A hot scientific question of the 18th
century was the shape of the earth: whether its
radius was greater at the equator than at the
poles, or the other way around. One method
used to attack this question was to measure
gravity accurately in different locations on the
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earth using pendula. If the highest and low-
est latitudes accessible to explorers were 0 and
70 degrees, then the the strength of gravity
would in reality be observed to vary over a range
from about 9.780 to 9.826 m/s2. This change,
amounting to 0.046 m/s2, is greater than the
0.022 m/s2 effect to be expected if the earth had
been spherical. The greater effect occurs because
the equator feels a reduction due not just to the
acceleration of the spinning earth out from un-
der it, but also to the greater radius of the earth
at the equator. What is the accuracy with which
the period of a one-second pendulum would have
to be measured in order to prove that the earth
was not a sphere, and that it bulged at the equa-
tor? √

12-d7 A certain mass, when hung from a cer-
tain spring, causes the spring to stretch by an
amount h compared to its equilibrium length. If
the mass is displaced vertically from this equilib-
rium, it will oscillate up and down with a period
Tosc. Give a numerical comparison between Tosc
and Tfall, the time required for the mass to fall
from rest through a height h, when it isn’t at-
tached to the spring. (You will need the result
of problem ??). √

12-d8 An object undergoing simple har-
monic motion oscillates with position x(t) =
(35 cm) cos[(25 s−1)t+ π].
(a) Find the period, angular frequency, and
frequency.

√

(b) What is the initial velocity? What is the
maximum speed?

√

(c) What is the initial acceleration? What is the
maximum in magnitude of the acceleration?

√

(d) Find the location and velocity of the object
at 1.00 s. √

12-d9 On a frictionless, horizontal air track,
a glider oscillates at the end of an ideal spring of
force constant 150 N/m. The graph shows the
acceleration of the glider as a function of time.
(a) Find the period of oscillations and the mass

of the glider.
√

(b) Notice that the graph says that the maxi-
mum acceleration of the glider is 12.0 m/s2. Use
this to find the amplitude of oscillations, A.

√

(c) When the glider is A/3 away from its equilib-
rium position, what are its kinetic and potential
energies?

√

(d) Suppose x(t) = A cos(ωt+φ), where 0 ≤ φ <
2π. Find φ. √

Problem 12-d9.

12-g1 Consider the same pneumatic piston
described in problem 12-d3, but now imagine
that the oscillations are not small. Sketch a
graph of the total force on the piston as it would
appear over this wider range of motion. For a
wider range of motion, explain why the vibra-
tion of the piston about equilibrium is not simple
harmonic motion, and sketch a graph of x vs t,
showing roughly how the curve is different from
a sine wave. [Hint: Acceleration corresponds to
the curvature of the x − t graph, so if the force
is greater, the graph should curve around more
quickly.]

12-g2 The figure shows a see-saw with two
springs at Codornices Park in Berkeley, Califor-
nia. Each spring has spring constant k, and a
kid of mass m sits on each seat. (a) Find the
period of vibration in terms of the variables k,
m, a, and b. (b) Discuss the special case where
a = b, rather than a > b as in the real see-saw.
(c) Show that your answer to part a also makes
sense in the case of b = 0. √
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Problem 12-g2.

12-g3 Find the period of vertical oscillations
of the mass m. The spring, pulley, and ropes
have negligible mass. √

Problem 12-g3.

12-g4 The equilibrium length of each spring
in the figure is b, so when the mass m is at
the center, neither spring exerts any force on
it. When the mass is displaced to the side, the
springs stretch; their spring constants are both
k.
(a) Find the energy, U , stored in the springs, as
a function of y, the distance of the mass up or
down from the center.

√

(b) Show that the period of small up-down oscil-
lations is infinite.

Problem 12-g4.

12-g5 For a one-dimensional harmonic os-
cillator, the solution to the energy conservation
equation,

U +K =
1

2
kx2 +

1

2
mv2 = constant,

is an oscillation with frequency ω =
√
k/m.

Now consider an analogous system consisting of
a bar magnet hung from a thread, which acts
like a magnetic compass. A normal compass
is full of water, so its oscillations are strongly
damped, but the magnet-on-a-thread compass
has very little friction, and will oscillate repeat-
edly around its equilibrium direction. The mag-
netic energy of the bar magnet is

U = −Bm cos θ,

where B is a constant that measures the strength
of the earth’s magnetic field, m is a constant that
parametrizes the strength of the magnet, and θ is
the angle, measured in radians, between the bar
magnet and magnetic north. The equilibrium
occurs at θ = 0, which is the minimum of U .
(a) By making analogies between rotational and
linear motion, translate the equation defining the
linear quantity k to one that defines an analo-
gous angular one κ (Greek letter kappa). Apply-
ing this to the present example, find an expres-
sion for κ. (Assume the thread is so thin that
its stiffness does not have any significant effect
compared to earth’s magnetic field.)

√

(b) Find the frequency of the compass’s vibra-
tions. √
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12-j1 A mass m on a spring oscillates around
an equilibrium at x = 0. Any function F (x)
with an equilibrium at x = 0, F (0) = 0,
can be approximated as F (x) = −kx, and if
the spring’s behavior is symmetric with respect
to positive and negative values of x, so that
F (−x) = −F (x), then the next level of im-
provement in such an approximation would be
F (x) = −kx − bx3. The general idea here is
that any smooth function can be approximated
locally by a polynomial, and if you want a better
approximation, you can use a polynomial with
more terms in it. When you ask your calculator
to calculate a function like sin or ex, it’s using a
polynomial approximation with 10 or 12 terms.
Physically, a spring with a positive value of b gets
stiffer when stretched strongly than an “ideal”
spring with b = 0. A spring with a negative b
is like a person who cracks under stress — when
you stretch it too much, it becomes more elastic
than an ideal spring would. We should not ex-
pect any spring to give totally ideal behavior no
matter no matter how much it is stretched. For
example, there has to be some point at which it
breaks.

Do a numerical simulation of the oscillation of
a mass on a spring whose force has a nonvan-
ishing b. Is the period still independent of am-
plitude? Is the amplitude-independent equation
for the period still approximately valid for small
enough amplitudes? Does the addition of an x3

term with b > 0 tend to increase the period, or
decrease it? Include a printout of your program
and its output with your homework paper.

12-j2 An idealized pendulum consists of a
pointlike mass m on the end of a massless, rigid
rod of length L. Its amplitude, θ, is the angle the
rod makes with the vertical when the pendulum
is at the end of its swing. Write a numerical sim-
ulation to determine the period of the pendulum
for any combination of m, L, and θ. Examine
the effect of changing each variable while manip-
ulating the others.

Problems 12-k1 through 12-k4 require specific
knowledge of the properties of simple and physi-
cal pendulums.
12-k1 A simple pendulum of length L is re-
leased from from angle θ. Solve for the maximum
speed of the pendulum bob two ways:
(a) Exactly, by using conservation of energy.

√

(b) Approximately, by assuming θ � 1, using
|vmax| = Aω, and writing A and ω in terms of
the given quantities. Your result is the first non-
zero term in the Taylor expansion of the exact
answer around θ = 0. √

12-k2 A pendulum of length L has period
T on Earth. If a pendulum of length 2L has a
period 4T on planet W, then what is the accel-
eration due to gravity on planet W? Give your
answer to two significant figures. √

12-k3 A uniform rod of length L is hung at
one end. What is the period of oscillations for
this physical pendulum? √

12-k4 A pendulum with length L has pe-
riod T when a very small mass is placed at the
end of it (with size much less than L). Suppose
we do not want to ignore the size of the bob.
Consider a spherical bob with radius xL (x is a
dimensionless constant, and L is the length of
the string, connecting the pivot to the center of
the bob). The period of motion of this physical
pendulum is T = 2π

√
L/gf(x). What is f(x)?

Your expression for f(x) should satisfy f(0) = 1.
(Why?) √

12-m1 If one stereo system is capable of pro-
ducing 20 watts of sound power and another can
put out 50 watts, how many times greater is the
amplitude of the sound wave that can be created
by the more powerful system? (Assume they are
playing the same music.)

12-m2 What fraction of the total energy of
an object undergoing SHM is kinetic at time t =
T/3 (where T is the period of motion) if:
(a) the object is at maximum displacement from
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equilibrium at t = 0;
√

(b) the object is at equilibrium at t = 0. √

12-m3 An object undergoing simple har-
monic motion has amplitude A and angular fre-
quency ω. What is the speed of the object when
it is at a distance x = A/4 from equilibrium?√

12-m4 A spring is attached to a wall as shown
(the horizontal surface is frictionless). One fact
is known about the spring: when compressed a
distance 11.0 cm, the spring holds 1.00 J of elas-
tic potential energy.
(a) What mass M must be attached to the spring
so that it will oscillate with a period of 1.00 s?√

(b) If the amplitude of the motion is 5.00 cm and
the period is that specified in part a, where is the
object (relative to equilibrium) and in what di-
rection is it moving 0.35 s after it has passed the
equilibrium position, moving to the left?

√

(c) At the instant described in part b, what are
the kinetic and potential energies of the system?√

(d) What force (magnitude and direction) does
the spring exert on mass M when it is 3.00 cm
to the right of the equilibrium position, moving
to the right?

12-p1 (a) Let W be the amount of work done
by friction in the first cycle of oscillation, i.e., the
amount of energy lost to heat. Find the fraction
of the original energy E that remains in the os-
cillations after n cycles of motion.

(b) From this, prove the equation(
1− W

E

)Q
= e−2π

(recalling that the number 535 in the definition
of Q is e2π).

(c) Use this to prove the approximation 1/Q ≈
(1/2π)W/E. (Hint: Use the approximation
ln(1 + x) ≈ x, which is valid for small values
of x, as shown on p. ??.)

12-p2 (a) We observe that the amplitude of
a certain free oscillation decreases from Ao to
Ao/Z after n oscillations. Find its Q.

√

(b) The figure is from Shape memory in Spider
draglines, Emile, Le Floch, and Vollrath, Nature
440:621 (2006). Panel 1 shows an electron mi-
croscope’s image of a thread of spider silk. In
2, a spider is hanging from such a thread. From
an evolutionary point of view, it’s probably a
bad thing for the spider if it twists back and
forth while hanging like this. (We’re referring
to a back-and-forth rotation about the axis of
the thread, not a swinging motion like a pendu-
lum.) The authors speculate that such a vibra-
tion could make the spider easier for predators
to see, and it also seems to me that it would be
a bad thing just because the spider wouldn’t be
able to control its orientation and do what it was
trying to do. Panel 3 shows a graph of such an
oscillation, which the authors measured using a
video camera and a computer, with a 0.1 g mass
hung from it in place of a spider. Compared to
human-made fibers such as kevlar or copper wire,
the spider thread has an unusual set of proper-
ties:

1. It has a low Q, so the vibrations damp out
quickly.

2. It doesn’t become brittle with repeated
twisting as a copper wire would.

3. When twisted, it tends to settle in to a new
equilibrium angle, rather than insisting on
returning to its original angle. You can see
this in panel 2, because although the exper-
imenters initially twisted the wire by 35 de-
grees, the thread only performed oscillations
with an amplitude much smaller than ±35
degrees, settling down to a new equilibrium
at 27 degrees.

4. Over much longer time scales (hours), the
thread eventually resets itself to its origi-
nal equilbrium angle (shown as zero degrees
on the graph). (The graph reproduced here
only shows the motion over a much shorter
time scale.) Some human-made materials
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Problem 12-p2.

Problem 12-m4.

have this “memory” property as well, but
they typically need to be heated in order to
make them go back to their original shapes.

Focusing on property number 1, estimate the Q
of spider silk from the graph. √

12-p3 An object has underdamped motion as
depicted in the figure, where T = 2π/ω, and, as
described in the text, ω differs from ω0 =

√
k/m.

(a) What fraction of the energy was lost during
this first cycle? This fraction is lost in every en-
suing cycle.

√

(b) Where will the object be (in terms of A) af-
ter the second full oscillation?

√

(c) By assuming ω ≈ ω0, what is the value of b?
To express your answer, write b = C

√
km, and

solve for the unitless constant C.
√

(d) Use this value of b to find the percentage in-
crease in the period of the motion as compared

to the undamped case. You should get an answer
much less than 1%, which means the approxima-
tion made in part c was justified. √

?

Problem 12-p3.

12-s1 Many fish have an organ known as a
swim bladder, an air-filled cavity whose main
purpose is to control the fish’s buoyancy and al-
low it to keep from rising or sinking without hav-
ing to use its muscles. In some fish, however, the
swim bladder (or a small extension of it) is linked
to the ear and serves the additional purpose of
amplifying sound waves. For a typical fish hav-
ing such an anatomy, the bladder has a resonant
frequency of 300 Hz, the bladder’s Q is 3, and
the maximum amplification is about a factor of
100 in energy. Over what range of frequencies
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would the amplification be at least a factor of
50? √

12-s2 As noted in section ??, it is only ap-
proximately true that the amplitude has its max-
imum at the natural frequency (1/2π)

√
k/m.

Being more careful, we should actually define
two different symbols, fo = (1/2π)

√
k/m and

fres for the slightly different frequency at which
the amplitude is a maximum, i.e., the actual res-
onant frequency. In this notation, the amplitude
as a function of frequency is

A =
F

2π

√
4π2m2 (f2 − f2

0 )
2

+ b2f2

.

Show that the maximum occurs not at fo but
rather at

fres =

√
f2

0 −
b2

8π2m2
=

√
f2

0 −
1

2
FWHM2

Hint: Finding the frequency that minimizes the
quantity inside the square root is equivalent to,
but much easier than, finding the frequency that
maximizes the amplitude.

12-s3 An oscillator with sufficiently strong
damping has its maximum response at ω = 0.
Using the result derived on page ?? , find the
value of Q at which this behavior sets in.

12-s4 The goal of this problem is to refine
the proportionality FWHM ∝ fres/Q into the
equation FWHM = fres/Q, i.e., to prove that
the constant of proportionality equals 1.

(a) Show that the work done by a damping
force F = −bv over one cycle of steady-state
motion equals Wdamp = −2π2bfA2. Hint: It
is less confusing to calculate the work done over
half a cycle, from x = −A to x = +A, and then
double it.

(b) Show that the fraction of the undriven os-
cillator’s energy lost to damping over one cycle
is |Wdamp|/E = 4π2bf/k.

(c) Use the previous result, combined with
the result of problem 4, to prove that Q equals
k/2πbf .

(d) Combine the preceding result for Q with
the equation FWHM = b/2πm from section ??
to prove the equation FWHM = fres/Q.

12-s5 An oscillator has Q=6.00, and, for con-
venience, let’s assume Fm = 1.00, ωo = 1.00, and
m = 1.00. The usual approximations would give

ωres = ωo,

Ares = 6.00, and

∆ω = 1/6.00.

Determine these three quantities numerically us-
ing the result derived on page ?? , and compare
with the approximations.
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13 Waves

This is not a textbook. It’s a book of problems
meant to be used along with a textbook. Although
each chapter of this book starts with a brief sum-
mary of the relevant physics, that summary is
not meant to be enough to allow the reader to
actually learn the subject from scratch. The pur-
pose of the summary is to show what material is
needed in order to do the problems, and to show
what terminology and notation are being used.

13.1 Free waves

References:

• Crowell, Simple Nature, lightandmat-
ter.com, sec. 6.1

• OpenStax University Physics, openstax.org,
v. 1, sec. 16.1-4

13.2 Bounded waves

References:

• Crowell, Simple Nature, lightandmat-
ter.com, v. 1, sec. 6.2
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Problems

13-a1 The following is a graph of the height
of a water wave as a function of position, at a
certain moment in time.

Trace this graph onto another piece of pa-
per, and then sketch below it the corresponding
graphs that would be obtained if

(a) the amplitude and frequency were doubled
while the velocity remained the same;

(b) the frequency and velocity were both dou-
bled while the amplitude remained unchanged;

(c) the wavelength and amplitude were re-
duced by a factor of three while the velocity was
doubled.

Explain all your answers. [Problem by Arnold
Arons.]

13-a2 (a) The graph shows the height of a wa-
ter wave pulse as a function of position. Draw a
graph of height as a function of time for a specific
point on the water. Assume the pulse is travel-
ing to the right.
(b) Repeat part a, but assume the pulse is trav-
eling to the left.
(c) Now assume the original graph was of height
as a function of time, and draw a graph of height
as a function of position, assuming the pulse is
traveling to the right.
(d) Repeat part c, but assume the pulse is trav-
eling to the left.
Explain all your answers. [Problem by Arnold
Arons.]

13-a3 The figure shows one wavelength of
a steady sinusoidal wave traveling to the right
along a string. Define a coordinate system in
which the positive x axis points to the right and
the positive y axis up, such that the flattened
string would have y = 0. Copy the figure, and
label with y = 0 all the appropriate parts of the
string. Similarly, label with v = 0 all parts of the
string whose velocities are zero, and with a = 0
all parts whose accelerations are zero. There
is more than one point whose velocity is of the

greatest magnitude. Pick one of these, and indi-
cate the direction of its velocity vector. Do the
same for a point having the maximum magnitude
of acceleration. Explain all your answers.

[Problem by Arnold Arons.]

13-a4 (a) Find an equation for the rela-
tionship between the Doppler-shifted frequency
of a wave and the frequency of the original
wave, for the case of a stationary observer and a
source moving directly toward or away from the
observer.

√

(b) Check that the units of your answer make
sense.
(c) Check that the dependence on vs makes
sense.

13-a5 Suggest a quantitative experiment to
look for any deviation from the principle of su-
perposition for surface waves in water. Make it
simple and practical.

13-a6 The musical note middle C has a fre-
quency of 262 Hz. What are its period and wave-
length? √

13-a7 Singing that is off-pitch by more than
about 1% sounds bad. How fast would a singer
have to be moving relative to the rest of a band
to make this much of a change in pitch due to
the Doppler effect? √

13-a8 In section ??, we saw that the speed of
waves on a string depends on the ratio of T/µ,
i.e., the speed of the wave is greater if the string
is under more tension, and less if it has more in-
ertia. This is true in general: the speed of a me-
chanical wave always depends on the medium’s
inertia in relation to the restoring force (tension,
stiffness, resistance to compression,...). Based on
these ideas, explain why the speed of sound in
air is significantly greater on a hot day, while
the speed of sound in liquids and solids shows
almost no variation with temperature.
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13-a9 At a particular moment in time, a
wave on a string has a shape described by y =
3.5 cos(0.73πx+0.45πt+0.37π). The stuff inside
the cosine is in radians. Assume that the units of
the numerical constants are such that x, y, and
t are in SI units.
(a) Is the wave moving in the positive x or the
negative x direction?
(b) Find the wave’s period, frequency, wave-
length.
(c) Find the wave’s velocity.
(d) Find the maximum velocity of any point on
the string, and compare with the magnitude and
direction of the wave’s velocity. √

13-a10 The simplest trick with a lasso is
to spin a flat loop in a horizontal plane. The
whirling loop of a lasso is kept under tension
mainly due to its own rotation. Although the
spoke’s force on the loop has an inward compo-
nent, we’ll ignore it. The purpose of this prob-
lem, which is based on one by A.P. French, is
to prove a cute fact about wave disturbances
moving around the loop. As far as I know, this
fact has no practical implications for trick rop-
ing! Let the loop have radius r and mass per
unit length µ, and let its angular velocity be ω.
(a) Find the tension, T , in the loop in terms of
r, µ, and ω. Assume the loop is a perfect circle,
with no wave disturbances on it yet.

√

(b) Find the velocity of a wave pulse traveling
around the loop. Discuss what happens when
the pulse moves is in the same direction as the
rotation, and when it travels contrary to the ro-
tation. √

13-a11 A string hangs vertically, free at the
bottom and attached at the top.
(a) Find the velocity of waves on the string as a
function of the distance from the bottom.

√

(b) Find the acceleration of waves on the string.
(c) Interpret your answers to parts a and b for
the case where a pulse comes down and reaches
the end of the string. What happens next?
Check your answer against experiment and con-
servation of energy.

Problem 13-a10.

13-d1 Light travels faster in warmer air. On
a sunny day, the sun can heat a road and create a
layer of hot air above it. Let’s model this layer as
a uniform one with a sharp boundary separating
it from the cooler air above. Use this model to
explain the formation of a mirage appearing like
the shiny surface of a pool of water.

13-d2 (a) Compute the amplitude of light
that is reflected back into air at an air-water in-
terface, relative to the amplitude of the incident
wave. Assume that the light arrives in the di-
rection directly perpendicular to the surface.The
speeds of light in air and water are 3.0×108 and
2.2× 108 m/s, respectively.
(b) Find the energy of the reflected wave as a
fraction of the incident energy. √

13-d3 A concert flute produces its lowest
note, at about 262 Hz, when half of a wavelength
fits inside its tube. Compute the length of the
flute.

13-d4 (a) A good tenor saxophone player can
play all of the following notes without changing
her fingering, simply by altering the tightness of
her lips: E[ (150 Hz), E[ (300 Hz), B[ (450 Hz),
and E[ (600 Hz). How is this possible? (I’m not
asking you to analyze the coupling between the
lips, the reed, the mouthpiece, and the air col-
umn, which is very complicated.)
(b) Some saxophone players are known for their
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Problem 13-d3.

ability to use this technique to play “freak
notes,” i.e., notes above the normal range of the
instrument. Why isn’t it possible to play notes
below the normal range using this technique?

13-d5 The table gives the frequencies of the
notes that make up the key of F major, starting
from middle C and going up through all seven
notes.
(a) Calculate the first four or five harmonics of C
and G, and determine whether these two notes
will be consonant or dissonant. (Recall that har-
monics that differ by about 1-10% cause disso-
nance.)
(b) Do the same for C and B[.

13-d6 A Fabry-Perot interferometer, shown
in the figure being used to measure the diame-
ter of a thin filament, consists of two glass plates
with an air gap between them. As the top plate is
moved up or down with a screw, the light pass-
ing through the plates goes through a cycle of
constructive and destructive interference, which
is mainly due to interference between rays that
pass straight through and those that are reflected
twice back into the air gap. (Although the di-
mensions in this drawing are distorted for legibil-
ity, the glass plates would really be much thicker
than the length of the wave-trains of light, so no
interference effects would be observed due to re-
flections within the glass.)

(a) If the top plate is cranked down so that the
thickness, d, of the air gap is much less than the
wavelength λ of the light, i.e., in the limit d→ 0,
what is the phase relationship between the two
rays? (Recall that the phase can be inverted by
a reflection.) Is the interference constructive, or
destructive?
(b) If d is now slowly increased, what is the first
value of d for which the interference is the same
as at d→ 0? Express your answer in terms of λ.
(c) Suppose the apparatus is first set up as shown
in the figure. The filament is then removed, and
n cycles of brightening and dimming are counted
while the top plate is brought down to d = 0.
What is the thickness of the filament, in terms
of n and λ?
Based on a problem by D.J. Raymond.

Problem 13-d6.

13-d7 (a) A wave pulse moves into a new
medium, where its velocity is greater by a factor
α. Find an expression for the fraction, f , of the
wave energy that is transmitted, in terms of α.
Note that, as discussed in the text, you cannot
simply find f by squaring the amplitude of the
transmitted wave.
(b) Suppose we wish to transmit a pulse from
one medium to another, maximizing the fraction
of the wave energy transmitted. To do so, we
sandwich another layer in between them, so that
the wave moves from the initial medium, where
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its velocity is v1, through the intermediate layer,
where it is v2, and on into the final layer, where
it becomes v3. What is the optimal value of v2?
(Assume that the middle layer is thicker than
the length of the pulse, so there are no interfer-
ence effects. Also, although there will be later
echoes that are transmitted after multiple reflec-
tions back and forth across the middle layer, you
are only to optimize the strength of the trans-
mitted pulse that is first to emerge. In other
words, it’s simply a matter of applying your an-
swer from part a twice to find the amount that
finally gets through.)

13-d8 The expressions for the amplitudes of
reflected and transmitted waves depend on the
unitless ratio v2/v1 (or, more generally, on the
ratio of the impedances). Call this ratio α. (a)
Show that changing α to 1/α (e.g., by inter-
changing the roles of the two media) has an effect
on the reflected amplitude that can be expressed
in a simple way, and discuss what this means in
terms of inversion and energy. (b) Find the two
values of α for which |R| = 1/2.
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14 Electrical interactions

This is not a textbook. It’s a book of problems
meant to be used along with a textbook. Although
each chapter of this book starts with a brief sum-
mary of the relevant physics, that summary is
not meant to be enough to allow the reader to
actually learn the subject from scratch. The pur-
pose of the summary is to show what material is
needed in order to do the problems, and to show
what terminology and notation are being used.

14.1 Charge and Coulomb’s
law

It appears superficially that nature has many dif-
ferent types of forces, such as frictional forces,
normal forces, sticky forces, the force that lets
bugs walk on water, the force that makes gun-
powder explode, and the force that causes honey
to flow so slowly. Actually, all of the forces on
this list are manifestations of electrical interac-
tions at the atomic scale. Like gravity, electric-
ity is a 1/r2 force. The electrical counterpart of
Newton’s law of gravity is Coulomb’s law,

F =
k|q1||q2|
r2

, (14.1)

where F is the magnitude of the force, k is a
universal constant, r is the distance between the
two interacting objects, and q1 and q2 are prop-
erties of the objects called their electric charges.
This equation is often written using the alternate
form of the constant ε0 = 1/(4πk).

Electric charge is measured in units of
Coulombs, C. Charge is to electricity as mass is
to gravity. There are two types of charge, which
are conventionally labeled positive and negative.
Charges of the same type repel one another, and
opposite charges attract. Charge is conserved.

Charge is quantized, meaning that all charges
are integer multiples of a certain fundamental
charge e. (The quarks that compose neutrons
and protons have charges that come in thirds of

this unit, but quarks are never observed individ-
ually, only in clusters that have integer multiples
of e.) The electron has charge −e, the proton +e.

14.2 The electric field

Newton conceived of forces as acting instanta-
neously at a distance. We now know that if
masses or charges in a certain location are moved
around, the change in the force felt by a distant
mass or charge is delayed. The effect travels at
the speed of light, which according to Einstein’s
theory of relativity represents a maximum speed
at which cause and effect can propagate, built in
to the very structure of space and time. Because
time doesn’t appear as a variable in Coulomb’s
law, Coulomb’s law cannot fundamentally be a
correct description of electrical interactions. It
is only an approximation, which is valid when
charges are not moving (the science of electro-
statics) or when the time lags in the propagation
of electrical interactions are negligible. These
considerations imply logically that while an elec-
trical effect is traveling through space, it has its
own independent physical reality. We think of
space as being permeated with an electric field,
which varies dynamically according to its own
rules, even if there are no charges nearby. Phe-
nomena such as visible light and radio waves are
ripples in the electric (and magnetic) fields. For
now we will study only static electric fields (ones
that don’t change with time), but fields come
into their own when their own dynamics are im-
portant.

The electric field E at a given point in space
can be defined in terms of the electric force F
that would be exerted on a hypothetical test
charge qt inserted at that point:

E =
F

qt
. (14.2)

By a test charge, we mean one that is small
enough so that its presence doesn’t disturb the

157
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situation that we’re trying to measure. From the
definition, we see that the electric field is a vec-
tor with units of newtons per coulumb, N/C. Its
gravitational counterpart is the familiar g, whose
magnitude on earth is about 9.8 m/s2. Because
forces combine according to the rules of vector
addition, it follows that the electric field of a
combination of charges is the vector sum of the
fields that would have been produced individu-
ally by those charges.

The electric field contains energy. The electri-
cal energy contained in an infinitesimal volume
dv is given by dUe = (1/8πk)E2 dv.

14.3 Conductors and insula-
tors

Some materials, such as metals, are good elec-
trical conductors, meaning that they contain
charges that are free to move. A material like
dry wood is an insulator, because it contains few
such free charges. When a perfect conductor is in
static equilibrium, any net charge is on the sur-
face, and the electric field is zero on its interior.
The electric field at the surface is perpendicular
to the surface.

14.4 The electric dipole

When an unbalanced distribution of charges is
subject to an external electric field E, it experi-
ences a torque τ . We define the electric dipole
moment d to be the vector such that

τ = d×E. (14.3)

When the total charge is zero, this relation
uniquely defines d, regardless of the point chosen
as the axis. In the simplest case, of charges +q
and −q at opposite ends of a stick of length `,
the dipole moment has magnitude q` and points
from the negative charge to the positive one. The
potential energy of a dipole in an external field
is

U = −d ·E. (14.4)

14.5 The field of a continu-
ous charge distribution

The field of a continuous charge distribution can
be found by integrating the contribution to the
field from each infinitesimal part of the distribu-
tion.

14.6 Gauss’s law

When we look at the “sea of arrows” represen-
tation of a field, 14.1/1, there is a natural visual
tendency to imagine connecting the arrows as in
14.1/2. The curves formed in this way are called
field lines, and they have a direction, shown by
the arrowheads.

Figure 14.1: Two different representations of an
electric field.

Electric field lines originate from positive
charges and terminate on negative ones. We can
choose a constant of proportionality that fixes
how coarse or fine the “grain of the wood” is,
but once this choice is made the strength of each
charge is shown by the number of lines that be-
gin or end on it. For example, figure 14.1/2
shows eight lines at each charge, so we know that
q1/q2 = (−8)/8 = −1. Because lines never begin
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or end except on a charge, we can always find
the total charge inside any given region by sub-
tracting the number of lines that go in from the
number that come out and multiplying by the
appropriate constant of proportionality. Ignor-
ing the constant, we can apply this technique to
figure 14.2 to find qA = −8, qB = 2− 2 = 0, and
qC = 5− 5 = 0.

Figure 14.2: The number of field lines coming
in and out of each region depends on the total
charge it encloses.

Let us now make this description more math-
ematically precise. Given a smooth, closed sur-
face such as the ones in figure 14.2, we have an
inside and an outside, so that at any point on
the surface we can define a unit normal n̂ (i.e.,
a vector with magnitude 1, perpendicular to the
surface) that points outward. Given an infinitesi-
mally small piece of the surface, with area dA, we
define an area vector dA = n̂ dA. The infinites-
imal flux dΦ through this infinitesimal patch of
the surface is defined as dΦ = E · dA, and in-
tegrating over the entire surface gives the total
flux Φ =

∫
dΦ =

∫
E · dA. Intuitively, the flux

measures how many field lines pierce the surface.
Gauss’s law states that

qin =
Φ

4πk
, (14.5)

where qin is the total charge inside a closed sur-
face, and Φ is the flux through the surface. (In
terms of the constant ε0 = 1/(4πk), we have
qin = ε0Φ.)

Unlike Coulomb’s law, Gauss’s law holds in
all circumstances, even when there are charges
moving in complicated ways and electromagnetic

waves flying around. Gauss’s law can be thought
of as a definition of electric charge.

14.7 Gauss’s law in differen-
tial form

Gauss’ law is a bit spooky. It relates the field on
the Gaussian surface to the charges inside the
surface. What if the charges have been moving
around, and the field at the surface right now
is the one that was created by the charges in
their previous locations? Gauss’ law — unlike
Coulomb’s law — still works in cases like these,
but it’s far from obvious how the flux and the
charges can still stay in agreement if the charges
have been moving around.

For this reason, it would be more physically at-
tractive to restate Gauss’ law in a different form,
so that it related the behavior of the field at one
point to the charges that were actually present
at that point. We define the divergence of the
electric field,

divE =
∂Ex
∂x

+
∂Ey
∂y

+
∂Ez
∂z

.

Gauss’s law in differential form is

divE = 4πkρ.
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Problems

14-a1 The figure shows a neuron, which is
the type of cell your nerves are made of. Neu-
rons serve to transmit sensory information to the
brain, and commands from the brain to the mus-
cles. All this data is transmitted electrically, but
even when the cell is resting and not transmit-
ting any information, there is a layer of negative
electrical charge on the inside of the cell mem-
brane, and a layer of positive charge just out-
side it. This charge is in the form of various
ions dissolved in the interior and exterior fluids.
Why would the negative charge remain plastered
against the inside surface of the membrane, and
likewise why doesn’t the positive charge wander
away from the outside surface?

Problem 14-a1.

14-a2 A helium atom finds itself momentar-
ily in this arrangement. Find the direction and
magnitude of the force acting on the right-hand
electron. The two protons in the nucleus are so

close together (∼ 1 fm) that you can consider
them as being right on top of each other. √

Problem 14-a2.

14-a3 The helium atom of problem 14-a2 has
some new experiences, goes through some life
changes, and later on finds itself in the config-
uration shown here. What are the direction and
magnitude of the force acting on the bottom elec-
tron? (Draw a sketch to make clear the definition
you are using for the angle that gives direction.)√

Problem 14-a3.

14-a4 Suppose you are holding your hands in
front of you, 10 cm apart.
(a) Estimate the total number of electrons in
each hand.

√

(b) Estimate the total repulsive force of all the
electrons in one hand on all the electrons in the
other.

√

(c) Why don’t you feel your hands repelling each
other?
(d) Estimate how much the charge of a proton
could differ in magnitude from the charge of an
electron without creating a noticeable force be-
tween your hands.
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14-a5 Suppose that a proton in a lead nucleus
wanders out to the surface of the nucleus, and
experiences a strong nuclear force of about 8 kN
from the nearby neutrons and protons pulling it
back in. Compare this numerically to the repul-
sive electrical force from the other protons, and
verify that the net force is attractive. A lead
nucleus is very nearly spherical, is about 6.5 fm
in radius, and contains 82 protons, each with a
charge of +e, where e = 1.60× 10−19 C. √

14-a6 The subatomic particles called muons
behave exactly like electrons, except that a
muon’s mass is greater by a factor of 206.77.
Muons are continually bombarding the Earth as
part of the stream of particles from space known
as cosmic rays. When a muon strikes an atom,
it can displace one of its electrons. If the atom
happens to be a hydrogen atom, then the muon
takes up an orbit that is on the average 206.77
times closer to the proton than the orbit of the
ejected electron. How many times greater is the
electric force experienced by the muon than that
previously felt by the electron? √

14-a7 The Earth and Moon are bound to-
gether by gravity. If, instead, the force of attrac-
tion were the result of each having a charge of the
same magnitude but opposite in sign, find the
quantity of charge that would have to be placed
on each to produce the required force. √

14-a8 The figure shows one layer of the three-
dimensional structure of a salt crystal. The
atoms extend much farther off in all directions,
but only a six-by-six square is shown here. The
larger circles are the chlorine ions, which have
charges of −e, where e = 1.60 × 10−19 C. The
smaller circles are sodium ions, with charges
of +e. The center-to-center distance between
neighboring ions is about 0.3 nm. Real crystals
are never perfect, and the crystal shown here has
two defects: a missing atom at one location, and
an extra lithium atom, shown as a grey circle,
inserted in one of the small gaps. If the lithium
atom has a charge of +e, what is the direction

and magnitude of the total force on it? Assume
there are no other defects nearby in the crystal
besides the two shown here. √

Problem 14-a8.

14-a9 In the semifinals of an electrostatic
croquet tournament, Jessica hits her positively
charged ball, sending it across the playing field,
rolling to the left along the x axis. It is repelled
by two other positive charges. These two equal
charges are fixed on the y axis at the locations
shown in the figure. (a) Express the force on
the ball in terms of the ball’s position, x. (b)
At what value of x does the ball experience the
greatest deceleration? Express you answer in
terms of b. [Based on a problem by Halliday
and Resnick.] √

Problem 14-a9.



162 CHAPTER 14. ELECTRICAL INTERACTIONS

14-a10 As shown in the figure, a particle
of mass m and charge q hangs from a string of
length `, forming a pendulum fixed at a central
point. Another charge q is fixed at the same
distance `, directly below the center. Find the
equilibrium values of θ and determine whether
they are stable or unstable.

?

Problem 14-a10.

14-d1 (a) At time t = 0, a positively charged
particle is placed, at rest, in a vacuum, in which
there is a uniform electric field of magnitude E.
Write an equation giving the particle’s speed, v,
in terms of t, E, and its mass and charge m and
q.

√

(b) If this is done with two different objects
and they are observed to have the same motion,
what can you conclude about their masses and
charges? (For instance, when radioactivity was
discovered, it was found that one form of it had
the same motion as an electron in this type of
experiment.)

14-d2 Three charges are arranged on a square
as shown. All three charges are positive. What
value of q2/q1 will produce zero electric field at
the center of the square? √

14-d3 In an electrical storm, the cloud and
the ground act like a parallel-plate capacitor,
which typically charges up due to frictional elec-
tricity in collisions of ice particles in the cold

Problem 14-d2.

upper atmosphere. Lightning occurs when the
magnitude of the electric field reaches a critical
value Ec, at which air is ionized.
(a) Treat the cloud as a flat square with sides of
length L. If it is at a height h above the ground,
find the amount of energy released in the light-
ning strike.

√

(b) Based on your answer from part a, which is
more dangerous, a lightning strike from a high-
altitude cloud or a low-altitude one?
(c) Make an order-of-magnitude estimate of the
energy released by a typical lightning bolt, as-
suming reasonable values for its size and altitude.
Ec is about 106 N/C.

See problem ?? for a note on how recent re-
search affects this estimate.

Problem 14-d3.

14-d4 The figure shows cross-sectional views
of two cubical capacitors, and a cross-sectional
view of the same two capacitors put together so
that their interiors coincide. A capacitor with
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the plates close together has a nearly uniform
electric field between the plates, and almost zero
field outside; these capacitors don’t have their
plates very close together compared to the di-
mensions of the plates, but for the purposes of
this problem, assume that they still have approx-
imately the kind of idealized field pattern shown
in the figure. Each capacitor has an interior vol-
ume of 1.00 m3, and is charged up to the point
where its internal field is 1.00 V/m.
(a) Calculate the energy stored in the electric
field of each capacitor when they are separate.√

(b) Calculate the magnitude of the interior field
when the two capacitors are put together in the
manner shown. Ignore effects arising from the
redistribution of each capacitor’s charge under
the influence of the other capacitor.

√

(c) Calculate the energy of the put-together con-
figuration. Does assembling them like this re-
lease energy, consume energy, or neither? √

14-g1 The definition of the dipole moment,
D =

∑
qiri, involves the vector ri stretching

from the origin of our coordinate system out to
the charge qi. There are clearly cases where this
causes the dipole moment to be dependent on
the choice of coordinate system. For instance, if
there is only one charge, then we could make the
dipole moment equal zero if we chose the origin
to be right on top of the charge, or nonzero if we
put the origin somewhere else.
(a) Make up a numerical example with two
charges of equal magnitude and opposite sign.
Compute the dipole moment using two different
coordinate systems that are oriented the same
way, but differ in the choice of origin. Comment
on the result.
(b) Generalize the result of part a to any pair of
charges with equal magnitude and opposite sign.
This is supposed to be a proof for any arrange-
ment of the two charges, so don’t assume any
numbers.
(c) Generalize further, to n charges.

14-g2 Compare the two dipole moments.

Problem 14-g2.

14-g3 Find an arrangement of charges that
has zero total charge and zero dipole moment,
but that will make nonvanishing electric fields.

14-g4 This is a one-dimensional problem,
with everything confined to the x axis. Dipole
A consists of a −1.000 C charge at x = 0.000 m
and a 1.000 C charge at x = 1.000 m. Dipole
B has a −2.000 C charge at x = 0.000 m and a
2.000 C charge at x = 0.500 m.
(a) Compare the two dipole moments.
(b) Calculate the field created by dipole A at
x = 10.000 m, and compare with the field dipole
B would make. Comment on the result. √

14-g5 A dipole has a midplane, i.e., the plane
that cuts through the dipole’s center, and is per-
pendicular to the dipole’s axis. Consider a two-
charge dipole made of point charges ±q located
at z = ±`/2. Use approximations to find the
field at a distant point in the midplane, and show
that its magnitude comes out to be kD/R3 (half
what it would be at a point on the axis lying an
equal distance from the dipole).

14-j1 Astronomers believe that the mass dis-
tribution (mass per unit volume) of some galax-
ies may be approximated, in spherical coordi-
nates, by ρ = ae−br, for 0 ≤ r ≤ ∞, where ρ is
the density. Find the total mass. √

14-j2 A hydrogen atom in a particular state
has the charge density (charge per unit volume)
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of the electron cloud given by ρ = ae−brz2, where
r is the distance from the proton, and z is the co-
ordinate measured along the z axis. Given that
the total charge of the electron cloud must be
−e, find a in terms of the other variables. √

14-j3 (a) A rod of length L is uniformly
charged with charge Q. It can be shown by
integration that the field at a point lying in
the midplane of the rod at a distance R is

E = kλL/
[
R2
√

1 + L2/4R2
]
, where λ is the

charge per unit length. Starting from this
result, take the limit as the length of the rod
approaches infinity. Note that λ is not changing,
so as L gets bigger, the total charge Q increases.

(b) It can be shown that the field of an infinite,
uniformly charged plane is 2πkσ. Now you’re
going to rederive the same result by a different
method. Suppose that it is the x− y plane that
is charged, and we want to find the field at the
point (0, 0, z). (Since the plane is infinite, there
is no loss of generality in assuming x = 0 and
y = 0.) Imagine that we slice the plane into an
infinite number of straight strips parallel to the y
axis. Each strip has infinitesimal width dx, and
extends from x to x+ dx. The contribution any
one of these strips to the field at our point has a
magnitude which can be found from part a. By
vector addition, prove the desired result for the
field of the plane of charge.

14-j4 Consider the electric field created by
a uniformly charged cylindrical surface that ex-
tends to infinity in one direction.
(a) Show that the field at the center of the cylin-
der’s mouth is 2πkσ, which happens to be the
same as the field of an infinite flat sheet of
charge!
(b) This expression is independent of the radius
of the cylinder. Explain why this should be so.
For example, what would happen if you doubled
the cylinder’s radius?

14-j5 (a) Show that the energy in the electric
field of a point charge is infinite! Does the

Problem 14-j4.

integral diverge at small distances, at large
distances, or both?
(b) Now calculate the energy in the electric
field of a uniformly charged sphere with radius
b. Based on the shell theorem, it can be shown
that the field for r > b is the same as for a point
charge, while the field for r < b is kqr/b3. (Ex-
ample ?? shows this using a different technique.)

Remark: The calculation in part a seems to show that
infinite energy would be required in order to create a
charged, pointlike particle. However, there are processes
that, for example, create electron-positron pairs, and
these processes don’t require infinite energy. According
to Einstein’s famous equation E = mc2, the energy re-
quired to create such a pair should only be 2mc2, which
is finite. √

14-j6 (a) A rod of length L is uniformly
charged with charge Q. It can be shown by in-
tegration that the field at a point lying in the
midplane of the rod at a distance R is E =

kλL/
[
R2
√

1 + L2/4R2
]
, where λ is the charge

per unit length. Show that this field reduces to
E = 2kλ/R in the limit of L→∞.
(b) An infinite strip of width b has a surface
charge density σ. Find the field at a point at
a distance z from the strip, lying in the plane
perpendicularly bisecting the strip.

√

(c) Show that this expression has the correct be-
havior in the limit where z approaches zero, and
also in the limit of z � b. For the latter, you’ll
need the result of problem 14-j3a, which is given
on page ??.

14-j7 A solid cylinder of radius b and length `
is uniformly charged with a total charge Q. Find
the electric field at a point at the center of one
of the flat ends.
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Problem 14-j6.

14-m1 A sphere of radius b contains a uni-
form charge density ρ. Use Gauss’s law to find
the electric field at radius r ≤ b, and verify that
the result is the same as the one obtained using
Newton’s shell theorem for gravity. Problem by
P. Widmann. √

14-m2 A spherical shell of uniform charge
density ρ extends from r = a to r = b. Find the
field in the regions r ≤ a, a ≤ r ≤ b, and r ≥ b.
Problem by P. Widmann. √

14-m3 A piece of metal contains a hollow
spherical cavity of radius a, and at the center of
this cavity is a point charge q. Find the charge
density on the inner surface of the cavity. Prob-
lem by P. Widmann. √

14-m4 An infinite, uniform slab of charge
with density ρ extends from x = 0 to x = h.
The distant field on the left is zero. Find the
field in the three regions x ≤ 0, 0 ≤ x ≤ h, and
h ≤ x. Problem by P. Widmann. √

14-m5 Assume the earth is an infinite flat
sheet, as some persons claim. Flat-earth cos-
mologies often omit any description of what’s on
the flip side, so let’s assume that the gravita-
tional field is zero there. If the density of the
earth is 4 g/cm3, find the thickness that the earth
must have in order to give g = 9.8 m/s2 on our
side. Problem by P. Widmann. √

14-m6 (a) Use Gauss’ law to find the field
inside an infinite cylinder with radius b and uni-
form charge density ρ. (The external field has

the same form as the one in problem ??.)
√

(b) Check that your answer makes sense on the
axis.
(c) Check that the units of your answer make
sense.

14-m7 In a certain region of space, the elec-
tric field is constant (i.e., the vector always has
the same magnitude and direction). For simplic-
ity, assume that the field points in the positive
x direction. (a) Use Gauss’s law to prove that
there is no charge in this region of space. This is
most easily done by considering a Gaussian sur-
face consisting of a rectangular box, whose edges
are parallel to the x, y, and z axes.
(b) If there are no charges in this region of space,
what could be making this electric field?

14-m8 (a) In a certain region of space, the
electric field is given by E = bxx̂, where b is a
constant. Find the amount of charge contained
within a cubical volume extending from x = 0 to
x = a, from y = 0 to y = a, and from z = 0 to
z = a.
(b) Repeat for E = bxẑ.
(c) Repeat for E = 13bzẑ− 7czŷ.
(d) Repeat for E = bxzẑ.

14-m9 Light is a wave made of electric and
magnetic fields, and the fields are perpendicular
to the direction of the wave’s motion, i.e., they’re
transverse. An example would be the electric
field given by E = bx̂ sin cz, where b and c are
constants. (There would also be an associated
magnetic field.) We observe that light can travel
through a vacuum, so we expect that this wave
pattern is consistent with the nonexistence of any
charge in the space it’s currently occupying. Use
Gauss’s law to prove that this is true.

14-m10 An electric field is given in cylindrical
coordinates (R,φ, z) by ER = ce−u|z|R−1 cos2 φ,
where the notation ER indicates the component
of the field pointing directly away from the axis,
and the components in the other directions are
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zero. (This isn’t a completely impossible ex-
pression for the field near a radio transmitting
antenna.) (a) Find the total charge enclosed
within the infinitely long cylinder extending from
the axis out to R = b. (b) Interpret the R-
dependence of your answer to part a.

14-m11 An electron in an atom acts like a
probability cloud surrounding the nucleus. For
a hydrogen atom in its lowest-energy state, the
probability falls off exponentially, so we can
mock this up with a charge density ρ = ρ0e

−r/a,
where r is the distance from the nucleus, and
ρ0 and a are constants. Find the electric field.
Problem by P. Widmann. √



15 The electric potential

This is not a textbook. It’s a book of problems
meant to be used along with a textbook. Although
each chapter of this book starts with a brief sum-
mary of the relevant physics, that summary is
not meant to be enough to allow the reader to
actually learn the subject from scratch. The pur-
pose of the summary is to show what material is
needed in order to do the problems, and to show
what terminology and notation are being used.

15.1 The electric potential

When a test charge q is at a particular posi-
tion in a static electric field, it has an electri-
cal potential energy U . The electrical poten-
tial energy per unit charge, U/q, is called the
electric potential, notated V , ϕ, or Φ, and mea-
sured in units of volts, V. Because it is defined
in terms of a potential energy, the electric poten-
tial is only defined up to an additive constant.
In the context of an electric circuit, we often use
the synonym “voltage” for the electric potential.
Voltage differences are measured by a voltmeter,
which reads the difference in potential between
its two probes. A voltmeter is wired in parallel
with a circuit, and an ideal voltmeter acts like
a perfect insulator, so that no charge ever flows
through it.

In one dimension, the electric field and electric
potential are related by

E = −dV

dx
,

or equivalently, via the fundamental theorem of
calculus,

V (x2)− V (x1) = −
∫ x2

x1

E dx.

Generalizing to three dimensions,

E = −∇V

(involving the gradient operator ∇) and

∆V = −
∫

E · dx

(in terms of a path integral). In electrostatics,
the path integral in the latter equation is inde-
pendent of the path taken.

Since the field of a charge distribution depends
additively upon the charges, the same is true of
the potential. Given a continuous charge distri-
bution, it is sometimes easier to find the poten-
tial by integration than the field, since the po-
tential is a scalar. Having found the potential,
one can always take the gradient to find the field.

15.2 Capacitance

A capacitor is a device that stores energy in
an electric field. The simplest example con-
sists of two parallel conducting plates. The en-
ergy is proportional to the square of the field
strength, which is proportional to the charges on
the plates. If we assume the plates carry charges
that are the same in magnitude, +q and −q, then
the energy stored in the capacitor must be pro-
portional to q2. For historical reasons, we write
the constant of proportionality as 1/2C,

E =
1

2C
q2.

The constant C is a geometrical property of
the capacitor, called its capacitance. Based on
this definition, the units of capacitance must
be coulombs squared per joule, and this com-
bination is more conveniently abbreviated as the
farad, 1 F = 1 C2/J.

Voltage is electrical potential energy per unit
charge, so the voltage difference across a capaci-
tor is related to the amount by which its energy
would increase if we increased the absolute val-
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ues of the charges on the plates from q to q+∆q:

V = (Eq+∆q − Eq)/∆q

=
∆

∆q

(
1

2C
q2

)
=

q

C

Many books use this as the definition of capac-
itance. It follows from this relation that capac-
itances in parallel add, Cequivalent = C1 + C2,
whereas when they are wired in series, it is their
inverses that add, C−1

equivalent = C−1
1 + C−1

2 .

15.3 Dielectrics

Many electrically insulating materials fall into a
category known as dielectrics. Such materials
can be modeled as containing many microscopic
dipoles (molecules) that are randomly oriented
but can become aligned when subjected to an
external field. When we apply Gauss’s law to a
region of space in which a dielectric is present,
the charge can have contributions both from free
charges (such as the ones that flow in a circuit)
measurable with measuring devices such as am-
meters, but also from the bound, microscopic
charges inside the dipoles. It can therefore be
useful to rewrite Gauss’s law as

ΦD = qfree,

where

D = εE.

When the field is constant over time and not
too strong, ε is approximately constant, and is
a property of the material called its permittiv-
ity. In a vacuum, ε = 1/4πk, referred to as ε0,
while a dielectric has ε > ε0. With time-varying
fields, most materials have permittivities that
are highly frequency-dependent. For materials
such as crystals, which have special directions
defined by the regular atomic lattice, ε cannot
be modeled as a scalar, and the relation between
D and E becomes more complicated.

When a capacitor has the space between its
electrodes filled with a dielectric, its capacitance
is increased by the factor ε/ε0.

At a boundary between two different materi-
als, if there is no free charge at the boundary,
the components of the fields D⊥ and E‖ are con-
tinuous.

15.4 Poisson’s equation and
Laplace’s equation

Gauss’s law, divE = 4πkρ, can also be stated in
terms of the potential. Since E = ∇V , we have
div∇V = 4πkρ. If we work out the combination
of operators div∇ in a Cartesian coordinate sys-
tem, we get ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2, which
is called the Laplacian and notated ∇2. The
version of Gauss’s law written in terms of the
potential,

∇2V = 4πkρ,

is called Poisson’s equation, while in the special
case of a vacuum, with ρ = 0, we have

∇2V = 0,

known as Laplace’s equation. Many problems
in electrostatics can be stated in terms of find-
ing potential that satisfies Laplace’s equation,
usually with some set of boundary conditions.
For example, if an infinite parallel-plate capac-
itor has plates parallel to the x-y plane at cer-
tain given potentials, then these plates form a
boundary for the region between the plates, and
Laplace’s equation has a solution in this region
of the form V = az + b. It’s easy to verify that
this is a solution of Laplace’s equation, since all
three of the partial derivatives vanish.

15.5 The method of images

A car’s radio antenna is usually in the form of
a whip sticking up above its metal roof. This
is an example involving radio waves, which are
time-varying electric and magnetic fields, but a
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similar, simpler electrostatic example is the fol-
lowing. Suppose that we position a charge q > 0
at a distance ` from a conducting plane. What
is the resulting electric field? The conductor has
charges that are free to move, and due to the field
of the charge q, we will end up with a net concen-
tration of negative charge in the part of the plane
near q. The field in the vacuum surrounding q
will be a sum of fields due to q and fields due
to these charges in the conducting plane. The
problem can be stated as that of finding a so-
lution to Poisson’s equation with the boundary
condition that V = 0 at the conducting plane.
Figure 15.1/1 shows the kind of field lines we
expect.

Figure 15.1: The method of images.

This looks like a very complicated problem,
but there is trick that allows us to find a sim-
ple solution. We can convert the problem into
an equivalent one in which the conductor isn’t
present, but a fictitious image charge −q is
placed at an equal distance behind the plane,
like a reflection in a mirror, as in figure 15.1/2.
The field is then simply the sum of the fields of
the charges q and −q, so we can either add the
field vectors or add the potentials. By symmetry,
the field lines are perpendicular to the plane, so
the plane is an surface of constant potential, as
required.
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Problems

15-a1 The gap between the electrodes in an
automobile engine’s spark plug is 0.060 cm. To
produce an electric spark in a gasoline-air mix-
ture, an electric field of 3.0 × 106 V/m must be
achieved. On starting a car, what minimum volt-
age must be supplied by the ignition circuit? As-
sume the field is uniform.

√

(b) The small size of the gap between the elec-
trodes is inconvenient because it can get blocked
easily, and special tools are needed to measure it.
Why don’t they design spark plugs with a wider
gap?

15-a2 In our by-now-familiar neuron, the
voltage difference between the inner and outer
surfaces of the cell membrane is about Vout −
Vin = −70 mV in the resting state, and the thick-
ness of the membrane is about 6.0 nm (i.e., only
about a hundred atoms thick). What is the elec-
tric field inside the membrane? √

Problem 15-a2.

15-a3 The neuron in the figure has been
drawn fairly short, but some neurons in your
spinal cord have tails (axons) up to a meter long.
The inner and outer surfaces of the membrane
act as the “plates” of a capacitor. (The fact that
it has been rolled up into a cylinder has very
little effect.) In order to function, the neuron
must create a voltage difference V between the
inner and outer surfaces of the membrane. Let
the membrane’s thickness, radius, and length be
t, r, and L. (a) Calculate the energy that must
be stored in the electric field for the neuron to do
its job. (In real life, the membrane is made out
of a substance called a dielectric, whose electri-
cal properties increase the amount of energy that
must be stored. For the sake of this analysis, ig-
nore this fact.)

√

(b) An organism’s evolutionary fitness should be
better if it needs less energy to operate its ner-
vous system. Based on your answer to part a,
what would you expect evolution to do to the di-
mensions t and r? What other constraints would
keep these evolutionary trends from going too
far?

15-a4 The figure shows a simplified diagram
of an electron gun such as the one that creates
the electron beam in a TV tube. Electrons that
spontaneously emerge from the negative elec-
trode (cathode) are then accelerated to the posi-
tive electrode, which has a hole in it. (Once they
emerge through the hole, they will slow down.
However, if the two electrodes are fairly close
together, this slowing down is a small effect, be-
cause the attractive and repulsive forces experi-
enced by the electron tend to cancel.)
(a) If the voltage difference between the elec-
trodes is ∆V , what is the velocity of an electron
as it emerges at B? Assume that its initial ve-
locity, at A, is negligible, and that the velocity
is nonrelativistic. (If you haven’t read ch. 7 yet,
don’t worry about the remark about relativity.)√

(b) Evaluate your expression numerically for the
case where ∆V=10 kV, and compare to the
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speed of light. If you’ve read ch. 7 already, com-
ment on whether the assumption of nonrelativis-
tic motion was justified.√

. Solution, p. 238

15-a5 The figure shows a simplified diagram
of a device called a tandem accelerator, used for
accelerating beams of ions up to speeds on the
order of 1-10% of the speed of light. (Since these
velocities are not too big compared to c, you can
use nonrelativistic physics throughout this prob-
lem.) The nuclei of these ions collide with the
nuclei of atoms in a target, producing nuclear
reactions for experiments studying the structure
of nuclei. The outer shell of the accelerator is
a conductor at zero voltage (i.e., the same volt-
age as the Earth). The electrode at the cen-
ter, known as the “terminal,” is at a high posi-
tive voltage, perhaps millions of volts. Negative
ions with a charge of −1 unit (i.e., atoms with
one extra electron) are produced offstage on the
right, typically by chemical reactions with ce-
sium, which is a chemical element that has a
strong tendency to give away electrons. Rela-
tively weak electric and magnetic forces are used
to transport these −1 ions into the accelerator,
where they are attracted to the terminal. Al-
though the center of the terminal has a hole in it
to let the ions pass through, there is a very thin
carbon foil there that they must physically pen-
etrate. Passing through the foil strips off some
number of electrons, changing the atom into a
positive ion, with a charge of +n times the funda-
mental charge. Now that the atom is positive, it
is repelled by the terminal, and accelerates some
more on its way out of the accelerator.

(a) Find the velocity, v, of the emerging beam
of positive ions, in terms of n, their mass m, the
terminal voltage V , and fundamental constants.
Neglect the small change in mass caused by the
loss of electrons in the stripper foil.

√

(b) To fuse protons with protons, a minimum
beam velocity of about 11% of the speed of light
is required. What terminal voltage would be
needed in this case?

√

(c) In the setup described in part b, we need a
target containing atoms whose nuclei are single
protons, i.e., a target made of hydrogen. Since
hydrogen is a gas, and we want a foil for our
target, we have to use a hydrogen compound,
such as a plastic. Discuss what effect this would
have on the experiment.

Problem 15-a5.

15-d1 A hydrogen atom is electrically neu-
tral, so at large distances, we expect that it will
create essentially zero electric field. This is not
true, however, near the atom or inside it. Very
close to the proton, for example, the field is very
strong. To see this, think of the electron as a
spherically symmetric cloud that surrounds the
proton, getting thinner and thinner as we get
farther away from the proton. (Quantum me-
chanics tells us that this is a more correct pic-
ture than trying to imagine the electron orbiting
the proton.) Near the center of the atom, the
electron cloud’s field cancels out by symmetry,
but the proton’s field is strong, so the total field
is very strong. The potential in and around the
hydrogen atom can be approximated using an
expression of the form V = r−1e−r. (The units
come out wrong, because I’ve left out some con-
stants.) Find the electric field corresponding to
this potential, and comment on its behavior at
very large and very small r.

. Solution, p. 238

15-d2 (a) Given that the on-axis field of a
dipole at large distances is proportional to D/r3,
show that its potential varies as D/r2. (Ignore
positive and negative signs and numerical con-
stants of proportionality.)
(b) Write down an exact expression for the po-
tential of a two-charge dipole at an on-axis point,
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without assuming that the distance is large com-
pared to the size of the dipole. Your expression
will have to contain the actual charges and size of
the dipole, not just its dipole moment. Now use
approximations to show that, at large distances,
this is consistent with your answer to part a.

15-d3 A carbon dioxide molecule is struc-
tured like O-C-O, with all three atoms along a
line. The oxygen atoms grab a little bit of ex-
tra negative charge, leaving the carbon positive.
The molecule’s symmetry, however, means that
it has no overall dipole moment, unlike a V-
shaped water molecule, for instance. Whereas
the potential of a dipole of magnitude D is
proportional to D/r2, (see problem 15-d2), it
turns out that the potential of a carbon dioxide
molecule at a distant point along the molecule’s
axis equals b/r3, where r is the distance from the
molecule and b is a constant (cf. problem 14-g3).
What would be the electric field of a carbon diox-
ide molecule at a point on the molecule’s axis, at
a distance r from the molecule? √

15-d4 A proton is in a region in which the
electric field is given by E = a + bx3. If the
proton starts at rest at x1 = 0, find its speed, v,
when it reaches position x2. Give your answer in
terms of a, b, x2, and e and m, the charge and
mass of the proton. √

15-g1 The figure shows a vacuum chamber
surrounded by four metal electrodes shaped like
hyperbolas. (Yes, physicists do sometimes ask
their university machine shops for things ma-
chined in mathematical shapes like this. They
have to be made on computer-controlled mills.)
We assume that the electrodes extend far into
and out of the page along the unseen z axis,
so that by symmetry, the electric fields are the
same for all z. The problem is therefore effec-
tively two-dimensional. Two of the electrodes
are at voltage +Vo, and the other two at −Vo, as
shown. The equations of the hyperbolic surfaces
are |xy| = b2, where b is a constant. (We can in-
terpret b as giving the locations x = ±b, y = ±b

of the four points on the surfaces that are closest
to the central axis.) There is no obvious, pedes-
trian way to determine the field or potential in
the central vacuum region, but there’s a trick
that works: with a little mathematical insight,
we see that the potential V = Vob

−2xy is consis-
tent with all the given information. (Mathemati-
cians could prove that this solution was unique,
but a physicist knows it on physical grounds: if
there were two different solutions, there would be
no physical way for the system to decide which
one to do!)
(a) Find the field in the vacuum region.

(b) Sketch the field as a “sea of arrows.” √

Problem 15-g1.

15-g2 (a) A certain region of three-
dimensional space has a potential that varies as
V = br2, where r is the distance from the origin.
Find the field.

√

(b) Write down another potential that gives ex-
actly the same field.

15-j1 Find the capacitance of the surface of
the earth, assuming there is an outer spherical
“plate” at infinity. (In reality, this outer plate
would just represent some distant part of the
universe to which we carried away some of the
earth’s charge in order to charge up the earth.)√
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15-j2 Find the energy stored in a capacitor
in terms of its capacitance and the voltage dif-
ference across it. √

15-j3 A capacitor has parallel plates of area
A, separated by a distance h. If there is a vac-
uum between the plates, then Gauss’s law gives
E = 4πkσ = 4πkq/A for the field between the
plates, and combining this with E = V/h, we
find C = q/V = (1/4πk)A/h. (a) Generalize
this derivation to the case where there is a di-
electric between the plates. (b) Suppose we have
a list of possible materials we could choose as
dielectrics, and we wish to construct a capacitor
that will have the highest possible energy den-
sity, Ue/v, where v is the volume. For each di-
electric, we know its permittivity ε, and also the
maximum electric field E it can sustain without
breaking down and allowing sparks to cross be-
tween the plates. Write the maximum energy
density in terms of these two variables, and de-
termine a figure of merit that could be used to
decide which material would be the best choice.

15-m1 A charged particle of mass m and
charge q is below a horizontal conducting plane.
We wish to find the distance ` between the par-
ticle and the plane so that the particle will be in
equilibrium, with its weight supported by elec-
trostatic forces.
(a) Determine as much as possible about the
form of the answer based on units.
(b) Find the full result for `.
(c) Show that the equilibrium is unstable.

15-m2 A point charge q is situated in the
empty space inside a corner formed by two per-
pendicular half-planes made of sheets of metal.
Let the sheets lie in the y-z and x-z planes, so
that the charge’s distances from the planes are
x and y. Both x and y are positive. The charge
will accelerate due to the electrostatic forces
exerted by the sheets. We wish to find the
direction θ in which it will accelerate, expressed
as an angle counterclockwise from the negative
x axis, so that 0 < θ < π/2.

(a) Determine as much as possible about the
form of the answer based on units.
(b) Find the full result for θ.

Problem 15-m2.
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16 Circuits

This is not a textbook. It’s a book of problems
meant to be used along with a textbook. Although
each chapter of this book starts with a brief sum-
mary of the relevant physics, that summary is
not meant to be enough to allow the reader to
actually learn the subject from scratch. The pur-
pose of the summary is to show what material is
needed in order to do the problems, and to show
what terminology and notation are being used.

16.1 Current

Electric current is defined as the rate of flow of
charge through a boundary, I = dq/dt. Its units
of coulombs/second are more conveniently ab-
breviated as amperes, 1 A=1 C/s. Current is
measured by an ammeter, which allows current
to flow through itself. An ammeter is wired in
series with a circuit, which requires breaking the
circuit in order to insert the meter. An ideal
ammeter acts like a perfect conductor.

The power dissipated, transformed, or released
in an electric circuit element is given by P =
I∆V .

16.2 Resistance

Current will not flow at all through a perfect in-
sulator. When a material is neither a perfect
insulator nor a perfect insulator, then current
can flow through it, and the result in terms of
energy is that electrical energy is transformed
into heat. For many materials, under some fairly
large range of electric fields, the density of cur-
rent is proportional to the electric field. When a
two-terminal device is formed from such a mate-
rial, and a voltage difference is applied across it,
then the current flowing through it is given by
Ohm’s law, I = ∆V/R, where R, called the resis-
tance, depends on both the geometry of the de-
vice and the material of which it is constructed.

Despite the name, Ohm’s law is not a law of na-
ture, and it is often violated. Some substances,
such as gases, never obey Ohm’s law; we say that
they are not “ohmic.” The units of resistance are
abbreviated as ohms, 1 Ω = 1 V/A.

Resistances in series add, Requivalent = R1 +
R2, while in parallel R−1

equivalent = R−1
1 +R−1

2 .

16.3 The loop and junction
rules

Kirchoff’s junction rule is a statement of conser-
vation of charge. It says that the sum of the
currents flowing into any junction in a circuit
must be zero (if the junction has no way to store
charge).

Kirchoff’s loop rule is a statement of conser-
vation of energy. For any loop in a circuit, the
sum of the voltage drops must be zero.

175
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Problems

16-a1 In a wire carrying a current of 1.0 pA,
how long do you have to wait, on the average, for
the next electron to pass a given point? Express
your answer in units of microseconds.

. Solution, p. 238

16-a2 Referring back to our old friend the
neuron from problem 14-a1 on page 160, let’s
now consider what happens when the nerve is
stimulated to transmit information. When the
blob at the top (the cell body) is stimulated,
it causes Na+ ions to rush into the top of the
tail (axon). This electrical pulse will then travel
down the axon, like a flame burning down from
the end of a fuse, with the Na+ ions at each
point first going out and then coming back in.
If 1010 Na+ ions cross the cell membrane in 0.5
ms, what amount of current is created? √

Problem 16-a2.

16-a3 Lightning discharges a cloud during an
electrical storm. Suppose that the current in the
lightning bolt varies with time as I = bt, where
b is a constant. Find the cloud’s charge as a
function of time. √

16-a4 (a) You take an LP record out of its
sleeve, and it acquires a static charge of 1 nC.
You play it at the normal speed of 33 1

3 r.p.m.,
and the charge moving in a circle creates an elec-
tric current. What is the current, in amperes?√

(b) Although the planetary model of the atom
can be made to work with any value for the ra-
dius of the electrons’ orbits, more advanced mod-
els that we will study later in this course predict

definite radii. If the electron is imagined as cir-
cling around the proton at a speed of 2.2 × 106

m/s, in an orbit with a radius of 0.05 nm, what
electric current is created? √

Problem 16-a4.

16-a5 A silk thread is uniformly charged
by rubbing it with llama fur. The thread is
then dangled vertically above a metal plate and
released. As each part of the thread makes
contact with the conducting plate, its charge is
deposited onto the plate. Since the thread is
accelerating due to gravity, the rate of charge
deposition increases with time, and by time t
the cumulative amount of charge is q = ct2,
where c is a constant. (a) Find the current
flowing onto the plate.

√

(b) Suppose that the charge is immediately
carried away through a resistance R. Find the
power dissipated as heat.

√

16-a6 In AM (amplitude-modulated) radio,
an audio signal f(t) is multiplied by a sine wave
sinωt in the megahertz frequency range. For
simplicity, let’s imagine that the transmitting
antenna is a whip, and that charge goes back
and forth between the top and bottom. Suppose
that, during a certain time interval, the audio
signal varies linearly with time, giving a charge
q = (a+ bt) sinωt at the top of the whip and −q
at the bottom. Find the current as a function of
time. √

16-d1 If a typical light bulb draws about 900
mA from a 110 V household circuit, what is its
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resistance? (Don’t worry about the fact that it’s
alternating current.) √

16-d2 (a) Express the power dissipated by a
resistor in terms of R and ∆V only, eliminating
I.

√

(b) Electrical receptacles in your home are
mostly 110 V, but circuits for electric stoves, air
conditioners, and washers and driers are usually
220 V. The two types of circuits have differently
shaped receptacles. Suppose you rewire the plug
of a drier so that it can be plugged in to a 110 V
receptacle. The resistor that forms the heating
element of the drier would normally draw 200 W.
How much power does it actually draw now?√

16-d3 A resistor has a voltage difference ∆V
across it, causing a current I to flow.
(a) Find an equation for the power it dissipates
as heat in terms of the variables I and R only,
eliminating ∆V .

√

(b) If an electrical line coming to your house
is to carry a given amount of current, interpret
your equation from part a to explain whether the
wire’s resistance should be small, or large.

16-d4 We have referred to resistors dissipat-
ing heat, i.e., we have assumed that P = I∆V
is always greater than zero. Could I∆V come
out to be negative for a resistor? If so, could
one make a refrigerator by hooking up a resistor
in such a way that it absorbed heat instead of
dissipating it?

16-d5 What resistance values can be created
by combining a 1 kΩ resistor and a 10 kΩ resis-
tor?

. Solution, p. 238

16-d6 Wire is sold in a series of standard
diameters, called “gauges.” The difference in di-
ameter between one gauge and the next in the
series is about 20%. How would the resistance
of a given length of wire compare with the re-
sistance of the same length of wire in the next
gauge in the series? √

16-g1 You are given a battery, a flashlight
bulb, and a single piece of wire. Draw at least
two configurations of these items that would re-
sult in lighting up the bulb, and at least two
that would not light it. (Don’t draw schemat-
ics.) Note that the bulb has two electrical con-
tacts: one is the threaded metal jacket, and the
other is the tip (at the bottom in the figure).

If you’re not sure what’s going on, there are
a couple of ways to check. The best is to try
it in real life by either borrowing the materi-
als from your instructor or scrounging the ma-
terials from around the house. (If you have a
flashlight with this type of bulb, you can remove
the bulb.) Another method is to use the simu-
lation at phet.colorado.edu/en/simulation/

circuit-construction-kit-dc.
[Problem by Arnold Arons.]

Problem 16-g1.

16-g2 You have to do different things with
a circuit to measure current than to measure a
voltage difference. Which would be more practi-
cal for a printed circuit board, in which the wires
are actually strips of metal embedded inside the
board?

. Solution, p. 238

Problem 16-g2.
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16-g3 The figure shows a circuit containing
five lightbulbs connected to a battery. Suppose
you’re going to connect one probe of a voltmeter
to the circuit at the point marked with a dot.
How many unique, nonzero voltage differences
could you measure by connecting the other probe
to other wires in the circuit?

Problems 16-g3 and 16-g4.

16-g4 The lightbulbs in the figure are all iden-
tical. If you were inserting an ammeter at various
places in the circuit, how many unique currents
could you measure? If you know that the current
measurement will give the same number in more
than one place, only count that as one unique
current.

16-g5 In the figure, the battery is 9 V.
(a) What are the voltage differences across each
light bulb?

√

(b) What current flows through each of the three
components of the circuit?

√

(c) If a new wire is added to connect points A and
B, how will the appearances of the bulbs change?
What will be the new voltages and currents?
(d) Suppose no wire is connected from A to B,
but the two bulbs are switched. How will the
results compare with the results from the original
setup as drawn?

Problem 16-g5.

16-g6 A student in a biology lab is given
the following instructions: “Connect the cerebral
eraser (C.E.) and the neural depolarizer (N.D.)
in parallel with the power supply (P.S.). (Un-
der no circumstances should you ever allow the
cerebral eraser to come within 20 cm of your
head.) Connect a voltmeter to measure the volt-
age across the cerebral eraser, and also insert
an ammeter in the circuit so that you can make
sure you don’t put more than 100 mA through
the neural depolarizer.” The diagrams show two
lab groups’ attempts to follow the instructions.
(a) Translate diagram a into a standard-style
schematic. What is correct and incorrect about
this group’s setup? (b) Do the same for diagram
b.

16-g7 A 1.0 Ω toaster and a 2.0 Ω lamp are
connected in parallel with the 110-V supply of
your house. (Ignore the fact that the voltage is
AC rather than DC.)
(a) Draw a schematic of the circuit.
(b) For each of the three components in the cir-
cuit, find the current passing through it and the
voltage drop across it.

√

(c) Suppose they were instead hooked up in se-
ries. Draw a schematic and calculate the same
things. √

16-g8 The heating element of an electric stove
is connected in series with a switch that opens
and closes many times per second. When you



PROBLEMS 179

Problem 16-g6.

turn the knob up for more power, the fraction
of the time that the switch is closed increases.
Suppose someone suggests a simpler alternative
for controlling the power by putting the heat-
ing element in series with a variable resistor con-
trolled by the knob. (With the knob turned all
the way clockwise, the variable resistor’s resis-
tance is nearly zero, and when it’s all the way
counterclockwise, its resistance is essentially in-
finite.) (a) Draw schematics. (b) Why would the
simpler design be undesirable?

16-g9 You have a circuit consisting of two
unknown resistors in series, and a second circuit
consisting of two unknown resistors in parallel.
(a) What, if anything, would you learn about the
resistors in the series circuit by finding that the
currents through them were equal?
(b) What if you found out the voltage differ-
ences across the resistors in the series circuit were
equal?
(c) What would you learn about the resistors in

the parallel circuit from knowing that the cur-
rents were equal?
(d) What if the voltages in the parallel circuit
were equal?

16-g10 How many different resistance values
can be created by combining three unequal resis-
tors? (Don’t count possibilities in which not all
the resistors are used, i.e., ones in which there is
zero current in one or more of them.)

16-g11 Suppose six identical resistors, each
with resistance R, are connected so that they
form the edges of a tetrahedron (a pyramid with
three sides in addition to the base, i.e., one less
side than an Egyptian pyramid). What resis-
tance value or values can be obtained by making
connections onto any two points on this arrange-
ment?

. Solution, p. 238

16-g12 A person in a rural area who has no
electricity runs an extremely long extension cord
to a friend’s house down the road so she can run
an electric light. The cord is so long that its
resistance, x, is not negligible. Show that the
lamp’s brightness is greatest if its resistance, y,
is equal to x. Explain physically why the lamp
is dim for values of y that are too small or too
large.

16-g13 All three resistors have the same re-
sistance, R. Find the three unknown currents in
terms of V1, V2, and R. √

Problem 16-g13.
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16-g14 The figure shows two possible ways of
wiring a flashlight with a switch. Both will serve
to turn the bulb on and off, although the switch
functions in the opposite sense. Why is method
1 preferable?

Problem 16-g14.

16-g15 The bulbs are all identical. Which
one doesn’t light up?

Problem 16-g15.

16-g16 Each bulb has a resistance of one
ohm. How much power is drawn from the one-
volt battery? √

16-g17 The bulbs all have unequal resis-
tances. Given the three currents shown in the
figure, find the currents through bulbs A, B, C,
and D. √

16-g18 It’s fairly common in electrical cir-
cuits for additional, undesirable resistances to
occur because of factors such as dirty, corroded,

Problem 16-g16.

Problem 16-g17.

or loose connections. Suppose that a device with
resistance R normally dissipates power P , but
due to an additional series resistance r the total
power is reduced to P ′. We might, for example,
detect this change because the battery powering
our device ran down more slowly than normal.
(a) Find the unknown resistance r.

√

(b) Check that the units of your result make
sense.
(c) Check that your result makes sense in the
special cases P ′ = P and P ′ = 0.
(d) Suppose we redefine P ′ as the useful power
dissipated in R. For example, this would be the
change we would notice because a flashlight was
dimmer. Find r. √

16-j1 Suppose a parallel-plate capacitor is
built so that a slab of dielectric material can
be slid in or out. (This is similar to the way a
stud finder works.) We insert the dielectric, hook
the capacitor up to a battery to charge it, and
then use an ammeter and a voltmeter to observe
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what happens when the dielectric is withdrawn.
Predict the changes observed on the meters, and
correlate them with the expected change in ca-
pacitance. Discuss the energy transformations
involved, and determine whether positive or neg-
ative work is done in removing the dielectric.

Problem 16-j1.

16-j2 Repeat problem 16-j1, but with one
change in the procedure: after we charge the ca-
pacitor, we open the circuit, and then continue
with the observations.
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17 Basics of relativity

This is not a textbook. It’s a book of problems
meant to be used along with a textbook. Although
each chapter of this book starts with a brief sum-
mary of the relevant physics, that summary is
not meant to be enough to allow the reader to
actually learn the subject from scratch. The pur-
pose of the summary is to show what material is
needed in order to do the problems, and to show
what terminology and notation are being used.

17.1 The Lorentz transfor-
mation

There is a saying among biologists that with-
out evolution, nothing in biology makes sense.
Similarly, it is impossible to make sense out of
electricity and magnetism, beyond simple elec-
trostatics and DC circuits, without understand-
ing a few basic ideas about Einstein’s theory of
special relativity.

According to Galileo and Newton, motion is
relative but time is absolute. This theory of time
and space is called Galilean relativity. Accord-
ing to Galilean relativity, observers in different
states of motion will have position and time coor-
dinates that relate to one another in the manner
shown in figure 17.1.

Experiments show that this absoluteness of
time is only an approximation, valid at low
speeds. At high speeds, or with sufficiently pre-
cise experiments, we find that time is relative.
Although this idea dates back to a 1905 paper
by Einstein, and certain types of indirect exper-
imental evidence go back as far as the 19th cen-
tury, modern technology has made it easier to
demonstrate this in more direct and conceptually
simple experiments. In 2010, for example, Chou
et al. succeeded in building an atomic clock ac-
curate enough to detect an effect at speeds as
low as 10 m/s. The correct relationship between
time and space in different frames of reference,
proposed mathematically by Lorentz and inter-

Figure 17.1: The relationship between time and
space coordinates in two different frames of ref-
erence, according to Galilean relativity.

preted correctly by Einstein, is called the Lorentz
transformation, figure 17.2.

Figure 17.2: The Lorentz transformation.

The Lorentz transformation shown in the fig-
ure has a simple symmetry with respect to a flip
across the diagonal. This symmetry is present
only when we use units specially adapted to rel-
ativity. In such units, the slope of the 45-degree
diagonal is a special speed having the value 1,
and time and space are measured in the same
units. In SI units, this special speed is notated

183
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c, and it has a defined value, equal to approx-
imately 3.0 × 108 m/s. One of the predictions
of relativity is that anything without mass must
move at this speed.

Since light was historically the first example
encountered, c is often referred to as the speed
of light, but relativity tells us that it is better to
think of c as a kind of conversion factor between
space and time.

The speed c has the following fundamentally
important properties. It is the only speed that
observers in different states of motion agree on.
It is the speed at which massless objects always
travel, and it is an ultimate speed limit for mas-
sive objects. It is the maximum speed of propa-
gations for signals or for any mechanism of cause
and effect.

The Lorentz transformation can be expressed
algebraically, although it would be a distraction
to do so here. Its form is determined entirely by
the facts that (1) the slope of the t′ axis is the
velocity of one observer relative to the other, (2)
the main diagonal keeps the same slope, and (3)
the area of the boxes is preserved in the trans-
formation.

17.2 Length contraction and
time dilation

From these facts about the Lorentz transforma-
tion, it can be shown that different observers dis-
agree about lengths and times in the following
way. Let γ = 1/

√
1− v2, where v is the velocity

of one observer relative to another. (In SI units,
substitute v/c for v.)

A clock appears to run fastest to an observer
at rest relative to the clock. According to other
observers, the clock’s rate is lower by a factor of
γ.

A meter stick appears longest to an observer at
rest relative to the stick. An observer in motion
parallel to the stick measures the stick to have
been shortened by a factor of γ.
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Problems

17-a1 The figure illustrates a Lorentz trans-
formation using the conventions described in
sec. 17.1, p. 183. For simplicity, the transforma-
tion chosen is one that lengthens one diagonal
by a factor of 2. Since Lorentz transformations
preserve area, the other diagonal is shortened by
a factor of 2. Let the original frame of refer-
ence, depicted with the square, be A, and the
new one B. (a) By measuring with a ruler on the
figure, show that the velocity of frame B rela-
tive to frame A is 0.6c. (b) Print out a copy of
the page. With a ruler, draw a third parallelo-
gram that represents a second successive Lorentz
transformation, one that lengthens the long di-
agonal by another factor of 2. Call this third
frame C. Use measurements with a ruler to de-
termine frame C’s velocity relative to frame A.
Does it equal double the velocity found in part
a? Explain why it should be expected to turn
out the way it does. √

17-a2 Astronauts in three different space-
ships are communicating with each other. Those
aboard ships A and B agree on the rate at which
time is passing, but they disagree with the ones
on ship C.
(a) Alice is aboard ship A. How does she describe
the motion of her own ship, in its frame of refer-
ence?
(b) Describe the motion of the other two ships
according to Alice.
(c) Give the description according to Betty,
whose frame of reference is ship B.
(d) Do the same for Cathy, aboard ship C.

17-a3 What happens in the equation for γ
when you put in a negative number for v? Ex-
plain what this means physically, and why it
makes sense.

17-a4 The Voyager 1 space probe, launched in
1977, is moving faster relative to the earth than
any other human-made object, at 17,000 meters
per second.

(a) Calculate the probe’s γ.
(b) Over the course of one year on earth, slightly
less than one year passes on the probe. How
much less? (There are 31 million seconds in a
year.) √

17-a5 The earth is orbiting the sun, and
therefore is contracted relativistically in the
direction of its motion. Compute the amount by
which its diameter shrinks in this direction.

√

17-a6 (a) Show that for v = (3/5)c, γ comes
out to be a simple fraction.
(b) Find another value of v for which γ is a simple
fraction.
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Problem 17-a1.



18 Electromagnetism

This is not a textbook. It’s a book of problems
meant to be used along with a textbook. Although
each chapter of this book starts with a brief sum-
mary of the relevant physics, that summary is
not meant to be enough to allow the reader to
actually learn the subject from scratch. The pur-
pose of the summary is to show what material is
needed in order to do the problems, and to show
what terminology and notation are being used.

18.1 Electromagnetism

The top panel of figure 18.1 shows a charged par-
ticle moving to the right, parallel to a current
formed by two countermoving lines of opposite
charge, moving at velocities ±u. The two lines of
charge are drawn offset from each other to make
them easy to distinguish, but we think of them
as coinciding, so that the line is electrically neu-
tral over all, much like a current-carrying cop-
per wire. Based on our knowledge of electro-
statics, we would expect the lone charge to feel
zero force, since the neutral “wire” has no elec-
tric field.

The bottom panel of the figure shows the
same situation in the rest frame of the lone
charge. Although velocities do not exactly add
and subtract in special relativity as they would
in Galilean relativity (problem 17-a1, p. 185),
they approximately do if the velocities are not
too big, so that the velocities of the two lines
of charge are approximately u − v and −u − v.
Since the magnitudes of these velocities are un-
equal, the length contractions are unequal, and
the “wire” is charged, according to an observer
in this frame. Therefore the lone charge feels an
attractive (downward) electrical force.

The descriptions in the two frames of refer-
ence is inconsistent, so we introduce a force in
the original frame. A moving charge always in-
teracts with other moving charges through such
a force, called a magnetic force. Thus if we had

Figure 18.1: A charged particle and a current,
seen in two different frames of reference. The
second frame is moving at velocity v with respect
to the first frame, so all the velocities have v
subtracted from them (approximately).

only known about electrical interactions, relativ-
ity would have compelled us to introduce mag-
netic interactions as well. Relativity unifies the
electrical and magnetic interactions as two sides
of the same coin. The unified theory of electric-
ity and magnetism is called electromagnetism.

18.2 The magnetic field

The magnetic force acting on a charged particle
is qv×B, where B is the magnetic field. This is
partly a definition of B and partly a prediction
about how the force depends on v. The units
of the electric field are N ·s/C ·m, which can be
abbreviated as tesla, 1 T = 1 N·s/C·m.

Empirically, we find that the magnetic field
has no sources or sinks. Gauss’ law for mag-
netism is

ΦB = 0.

In other words, there are no magnetic
monopoles. There are, however, magnetic

187
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dipoles. Subatomic particles such as electrons
and neutrons have magnetic dipole moments, as
do some molecules. As a standard of compar-
ison, the magnetic dipole moment m of a loop
of current has magnitude m = IA, and is in
the (right-handed) direction perpendicular to the
loop. The energy of a magnetic dipole in an ex-
ternal magnetic field is −m ·B, and the torque
acting on it is m×B.

The energy of the magnetic field is

dUm =
c2

8πk
B2 dv.

When a static magnetic field is caused by a
current loop, the Biot-Savart law,

dB =
kI d`× r

c2r3
,

gives the field when we integrate over the loop.
Ampère’s law is another way of relating static

magnetic fields to the static currents that created
them, and it is more easily extended to nonstatic
fields than is the Biot-Savart law. Ampère’s law
states that the circulation of the magnetic field,

ΓB =

∫
B · ds,

around the edge of a surface is related to the
current Ithrough passing through the surface,

Γ =
4πk

c2
Ithrough.
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Problems

18-a1 A particle with a charge of 1.0 C and
a mass of 1.0 kg is observed moving past point
P with a velocity (1.0 m/s)x̂. The electric field
at point P is (1.0 V/m)ŷ, and the magnetic field
is (2.0 T)ŷ. Find the force experienced by the
particle. √

18-a2 For a positively charged particle mov-
ing through a magnetic field, the directions of the
v, B, and F vectors are related by a right-hand
rule:

v along the fingers, with the hand flat

B along the fingers, with the knuckles bent

F along the thumb

Make a three-dimensional model of the three vec-
tors using pencils or rolled-up pieces of paper to
represent the vectors assembled with their tails
together. Make all three vectors perpendicular
to each other. Now write down every possi-
ble way in which the rule could be rewritten by
scrambling up the three symbols v, B, and F.
Referring to your model, which are correct and
which are incorrect?

18-a3 A charged particle is released from rest.
We see it start to move, and as it gets going, we
notice that its path starts to curve. Can we tell
whether this region of space has E 6= 0, or B 6= 0,
or both? Assume that no other forces are present
besides the possible electrical and magnetic ones,
and that the fields, if they are present, are uni-
form.

18-a4 A charged particle is in a region of
space in which there is a uniform magnetic field
B = Bẑ. There is no electric field, and no other
forces act on the particle. In each case, describe
the future motion of the particle, given its initial
velocity.
(a) vo = 0
(b) vo = (1 m/s)ẑ
(c) vo = (1 m/s)ŷ

18-a5 (a) A line charge, with charge per
unit length λ, moves at velocity v along its own
length. How much charge passes a given point
in time dt? What is the resulting current?
(b) Show that the units of your answer in part a
work out correctly.
Remark: This constitutes a physical model of an electric
current, and it would be a physically realistic model of
a beam of particles moving in a vacuum, such as the
electron beam in a television tube. It is not a physically
realistic model of the motion of the electrons in a current-
carrying wire, or of the ions in your nervous system; the
motion of the charge carriers in these systems is much
more complicated and chaotic, and there are charges of
both signs, so that the total charge is zero. But even when
the model is physically unrealistic, it still gives the right
answers when you use it to compute magnetic effects.
This is a remarkable fact, which we will not prove. The
interested reader is referred to E.M. Purcell, Electricity
and Magnetism, McGraw Hill, 1963.

18-a6 Two parallel wires of length L carry
currents I1 and I2. They are separated by a dis-
tance R, and we assume R is much less than L,
so that our results for long, straight wires are ac-
curate. The goal of this problem is to compute
the magnetic forces acting between the wires.
(a) Neither wire can make a force on itself.
Therefore, our first step in computing wire 1’s
force on wire 2 is to find the magnetic field
made only by wire 1, in the space occupied by
wire 2. Express this field in terms of the given
quantities.

√

(b) Let’s model the current in wire 2 by pretend-
ing that there is a line charge inside it, possessing
density per unit length λ2 and moving at veloc-
ity v2. Relate λ2 and v2 to the current I2, using
the result of problem 18-a5a. Now find the mag-
netic force wire 1 makes on wire 2, in terms of
I1, I2, L, and R.
(c) Show that the units of the answer to part b
work out to be newtons.

18-a7 Suppose a charged particle is moving
through a region of space in which there is an
electric field perpendicular to its velocity vec-
tor, and also a magnetic field perpendicular to
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both the particle’s velocity vector and the elec-
tric field. Show that there will be one particu-
lar velocity at which the particle can be moving
that results in a total force of zero on it; this
requires that you analyze both the magnitudes
and the directions of the forces compared to one
another. Relate this velocity to the magnitudes
of the electric and magnetic fields. (Such an ar-
rangement, called a velocity filter, is one way of
determining the speed of an unknown particle.)

18-a8 The following data give the results of
two experiments in which charged particles were
released from the same point in space, and the
forces on them were measured:

q1 = 1 µC , q2 = −2 µC ,
v1 = (1 m/s)x̂ , v2 = (−1 m/s)x̂ ,
F1 = (−1 mN)ŷ F2 = (−2 mN)ŷ

The data are insufficient to determine the mag-
netic field vector; demonstrate this by giving two
different magnetic field vectors, both of which
are consistent with the data.

18-a9 The following data give the results of
two experiments in which charged particles were
released from the same point in space, and the
forces on them were measured:

q1 = 1 nC , q2 = 1 nC ,
v1 = (1 m/s)ẑ , v2 = (3 m/s)ẑ ,
F1 = (5 pN)x̂ F2 = (10 pN)x̂

+(2 pN)ŷ +(4 pN)ŷ
Is there a nonzero electric field at this point? A
nonzero magnetic field?

18-a10 This problem is a continuation of
problem 18-a6. Note that the answer to prob-
lem 18-a6b is given on page ??.
(a) Interchanging the 1’s and 2’s in the answer
to problem 18-a6b, what is the magnitude of the
magnetic force from wire 2 acting on wire 1? Is
this consistent with Newton’s third law?
(b) Suppose the currents are in the same direc-
tion. Make a sketch, and use the right-hand rule
to determine whether wire 1 pulls wire 2 towards
it, or pushes it away.
(c) Apply the right-hand rule again to find the
direction of wire 2’s force on wire 1. Does this

agree with Newton’s third law?
(d) What would happen if wire 1’s current was
in the opposite direction compared to wire 2’s?

18-a11 (a) In the photo, magnetic forces
cause a beam of electrons to move in a circle.
The beam is created in a vacuum tube, in which
a small amount of hydrogen gas has been left. A
few of the electrons strike hydrogen molecules,
creating light and letting us see the beam. A
magnetic field is produced by passing a current
(meter) through the circular coils of wire in front
of and behind the tube. In the bottom figure,
with the magnetic field turned on, the force per-
pendicular to the electrons’ direction of motion
causes them to move in a circle. infer the di-
rection of the magnetic field from the motion of
the electron beam. (The answer is given in the
answer to the self-check on that page.)
(b) Based on your answer to part a, find the di-
rection of the currents in the coils.
(c) What direction are the electrons in the coils
going?
(d) Are the currents in the coils repelling the
currents consisting of the beam inside the tube,
or attracting them? Check your answer by com-
paring with the result of problem 18-a10.

18-a12 A charged particle of mass m and
charge q moves in a circle due to a uniform
magnetic field of magnitude B, which points
perpendicular to the plane of the circle.
(a) Assume the particle is positively charged.
Make a sketch showing the direction of motion
and the direction of the field, and show that
the resulting force is in the right direction to
produce circular motion.
(b) Find the radius, r, of the circle, in terms of
m, q, v, and B.

√

(c) Show that your result from part b has the
right units.
(d) Discuss all four variables occurring on the
right-hand side of your answer from part b. Do
they make sense? For instance, what should
happen to the radius when the magnetic field is
made stronger? Does your equation behave this
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Problem 18-a13.

Problem 18-a11.

way?
(e) Restate your result so that it gives the
particle’s angular frequency, ω, in terms of the
other variables, and show that v drops out.

√

Remark: A charged particle can be accelerated in a circu-
lar device called a cyclotron, in which a magnetic field is
what keeps them from going off straight. This frequency
is therefore known as the cyclotron frequency. The parti-
cles are accelerated by other forces (electric forces), which
are AC. As long as the electric field is operated at the
correct cyclotron frequency for the type of particles be-
ing manipulated, it will stay in sync with the particles,
giving them a shove in the right direction each time they

pass by. The particles are speeding up, so this only works
because the cyclotron frequency is independent of veloc-
ity.

18-a13 Each figure represents the motion of
a positively charged particle. The dots give the
particles’ positions at equal time intervals. In
each case, determine whether the motion was
caused by an electric force, a magnetic force, or
a frictional force, and explain your reasoning. If
possible, determine the direction of the magnetic
or electric field. All fields are uniform. In (a), the
particle stops for an instant at the upper right,
but then comes back down and to the left, re-
tracing the same dots. In (b), it stops on the
upper right and stays there.

18-a14 One model of the hydrogen atom has
the electron circling around the proton at a speed
of 2.2×106 m/s, in an orbit with a radius of 0.05
nm. (Although the electron and proton really
orbit around their common center of mass, the
center of mass is very close to the proton, since
it is 2000 times more massive. For this problem,
assume the proton is stationary.) In homework
problem 16-a4, p. 176, you calculated the elec-
tric current created.
(a) Now estimate the magnetic field created at
the center of the atom by the electron. We are
treating the circling electron as a current loop,
even though it’s only a single particle.

√

(b) Does the proton experience a nonzero force
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from the electron’s magnetic field? Explain.
(c) Does the electron experience a magnetic field
from the proton? Explain.
(d) Does the electron experience a magnetic field
created by its own current? Explain.
(e) Is there an electric force acting between the
proton and electron? If so, calculate it.

√

(f) Is there a gravitational force acting between
the proton and electron? If so, calculate it.
(g) An inward force is required to keep the elec-
tron in its orbit – otherwise it would obey New-
ton’s first law and go straight, leaving the atom.
Based on your answers to the previous parts,
which force or forces (electric, magnetic and
gravitational) contributes significantly to this in-
ward force?
[Based on a problem by Arnold Arons.]

18-a15 The following data give the results
of three experiments in which charged particles
were released from the same point in space, and
the forces on them were measured:

q1 = 1 C , v1 = 0 , F1 = (1 N)ŷ
q2 = 1 C , v2 = (1 m/s)x̂ , F2 = (1 N)ŷ
q3 = 1 C , v3 = (1 m/s)ẑ , F3 = 0

Determine the electric and magnetic fields. √

18-a16 If you put four times more current
through a solenoid, how many times more energy
is stored in its magnetic field? √

18-a17 A Helmholtz coil is defined as a pair
of identical circular coils lying in parallel planes
and separated by a distance, h, equal to their ra-
dius, b. (Each coil may have more than one turn
of wire.) Current circulates in the same direc-
tion in each coil, so the fields tend to reinforce
each other in the interior region. This configu-
ration has the advantage of being fairly open, so
that other apparatus can be easily placed inside
and subjected to the field while remaining visi-
ble from the outside. The choice of h = b results
in the most uniform possible field near the cen-
ter. A photograph of a Helmholtz coil is shown
in example ?? on page ??.
(a) Find the percentage drop in the field at the

center of one coil, compared to the full strength
at the center of the whole apparatus.

√

(b) What value of h (not equal to b) would make
this difference equal to zero? √

18-a18 The figure shows a nested pair of cir-
cular wire loops used to create magnetic fields.
(The twisting of the leads is a practical trick for
reducing the magnetic fields they contribute, so
the fields are very nearly what we would expect
for an ideal circular current loop.) The coordi-
nate system below is to make it easier to discuss
directions in space. One loop is in the y−z plane,
the other in the x − y plane. Each of the loops
has a radius of 1.0 cm, and carries 1.0 A in the
direction indicated by the arrow.
(a) Calculate the magnetic field that would be
produced by one such loop, at its center.

√

(b) Describe the direction of the magnetic field
that would be produced, at its center, by the
loop in the x− y plane alone.
(c) Do the same for the other loop.
(d) Calculate the magnitude of the magnetic field
produced by the two loops in combination, at
their common center. Describe its direction.√

18-a19 Four long wires are arranged, as
shown, so that their cross-section forms a square,
with connections at the ends so that current
flows through all four before exiting. Note that
the current is to the right in the two back wires,
but to the left in the front wires. If the di-
mensions of the cross-sectional square (height
and front-to-back) are b, find the magnetic field
(magnitude and direction) along the long central
axis. √

18-a20 In problem 18-a15, the three exper-
iments gave enough information to determine
both fields. Is it possible to design a procedure
so that, using only two such experiments, we can
always find E and B? If so, design it. If not, why
not?

18-a21 Consider two solenoids, one of which
is smaller so that it can be put inside the other.
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Problem 18-a19.

Assume they are long enough so that each one
only contributes significantly to the field inside
itself, and the interior fields are nearly uniform.
Consider the configuration where the small one is
inside the big one with their currents circulating
in the same direction, and a second configura-
tion in which the currents circulate in opposite
directions. Compare the energies of these config-
urations with the energy when the solenoids are
far apart. Based on this reasoning, which config-
uration is stable, and in which configuration will
the little solenoid tend to get twisted around or
spit out?

18-a22 Consider two solenoids, one of which
is smaller so that it can be put inside the other.
Assume they are long enough to act like ideal
solenoids, so that each one only contributes sig-
nificantly to the field inside itself, and the inte-
rior fields are nearly uniform. Consider the con-
figuration where the small one is partly inside
and partly hanging out of the big one, with their
currents circulating in the same direction. Their
axes are constrained to coincide.
(a) Find the difference in the magnetic energy
between the configuration where the solenoids
are separate and the configuration where the
small one is inserted into the big one. Your
equation will include the length x of the part
of the small solenoid that is inside the big one,
as well as other relevant variables describing the
two solenoids.

√

(b) Based on your answer to part a, find the force
acting

18-a23 Two long, parallel strips of thin metal
foil form a configuration like a long, narrow sand-
wich. The air gap between them has height h,

the width of each strip is w, and their length is `.
Each strip carries current I, and we assume for
concreteness that the currents are in opposite di-
rections, so that the magnetic force, F , between
the strips is repulsive.
(a) Find the force in the limit of w � h.

√

(b) Find the force in the limit of w � h, which
is like two ordinary wires.
(c) Discuss the relationship between the two re-
sults.

18-a24 Suppose we are given a permanent
magnet with a complicated, asymmetric shape.
Describe how a series of measurements with a
magnetic compass could be used to determine
the strength and direction of its magnetic field at
some point of interest. Assume that you are only
able to see the direction to which the compass
needle settles; you cannot measure the torque
acting on it.

18-d1 This problem will lead you through the
steps of applying the Biot-Savart law to prove
that the magnetic field of a long, straight wire
has magnitude

B =
2kI

c2R
.

Almost everything in this equation has to be the
way it is because of units, the only exception
being the unitless factor of 2, so this problem
amounts to proving that it really does come out
to be 2[.] (a) Set up the integral prescribed by
the Biot-Savart law, and simplify it so that it in-
volves only scalar variables rather than a vector
cross product, but do not evaluate it yet.
(b) Your integral will contain several different
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variables, each of which is changing as we inte-
grate along the wire. These will probably in-
clude a position on the wire, a distance from the
point on the wire to the point at which the field
is to be found, and an angle between the wire
and this point-to-point line. In order to eval-
uate the integral, it is necessary to express the
integral in terms of only one of these variables.
It’s not obvious, but the integral turns out to be
easiest to evaluate if you express it in terms of
the angle and eliminate the other variables. Do
so. Note that the d. . . part of the integral has
to be reexpressed in the same way we would do
any time we attacked an integral by substitution
(“u-substitution”).
(c) Pulling out all constant factors now gives a
definite integral. Evaluate this integral, which
you should find is a trivial one, and show that it
equals 2.

18-d2 A regular polygon with n sides can be
inscribed within a circle of radius R and can have
a circle inscribed inside it with radius h. Let
ρ =

√
hR be the geometric mean of these two

radii. A current loop is constructed in the shape
of a regular n-gon. Show that the magnetic field
at the center can be calculated in a simple way
from the perimeter and ρ, and make sense of the
result in the extreme cases n = 2 (a degenerate
polygon enclosing no area) and n→∞.

18-d3 Magnet coils are often wrapped in
multiple layers. The figure shows the special
case where the layers are all confined to a sin-
gle plane, forming a spiral. Since the thickness
of the wires (plus their insulation) is fixed, the
spiral that results is a mathematical type known
as an Archimedean spiral, in which the turns
are evenly spaced. The equation of the spiral is
r = wθ, where w is a constant. For a spiral that
starts from r = a and ends at r = b, show that
the field at the center is given by (kI/c2w) ln b/a.

. Solution, p. 239

18-d4 Perform a calculation similar to the one
in problem 18-d3, but for a logarithmic spiral,
defined by r = weuθ, and show that the field is

Problem 18-d3.

B = (kI/c2u)(1/a−1/b). Note that the solution
to problem 18-d3 is given in the back of the book.

18-g1 A certain region of space has a mag-
netic field given by B = bxŷ. Find the electric
current flowing through the square defined by
z = 0, 0 ≤ x ≤ a, and 0 ≤ y ≤ a. √

18-g2 Verify Ampère’s law in the case shown
in the figure, assuming the known equation for
the field of a wire. A wire carrying current I
passes perpendicularly through the center of the
rectangular Ampèrian surface. The length of the
rectangle is infinite, so it’s not necessary to com-
pute the contributions of the ends.

Problem 18-g2.



19 Maxwell’s equations and electromag-
netic waves

This is not a textbook. It’s a book of problems
meant to be used along with a textbook. Although
each chapter of this book starts with a brief sum-
mary of the relevant physics, that summary is
not meant to be enough to allow the reader to
actually learn the subject from scratch. The pur-
pose of the summary is to show what material is
needed in order to do the problems, and to show
what terminology and notation are being used.

19.1 Maxwell’s equations

The fundamental laws of physics governing elec-
tric and magnetic fields are Maxwell’s equations,
which state that for any closed surface, the fluxes
through the surface are

ΦE = 4πkqin and

ΦB = 0.

For any surface that is not closed, the circula-
tions around the edges of the surface are given
by

ΓE = −∂ΦB
∂t

and

c2ΓB =
∂ΦE
∂t

+ 4πkIthrough.

19.2 Electromagnetic waves

The most important result of Maxwell’s equa-
tions is the existence of electromagnetic waves
which propagate at the velocity of light — that’s
what light is. The waves are transverse, and
the electric and magnetic fields are perpendic-
ular to each other. There are no purely electric
or purely magnetic waves; their amplitudes are
always related to one another by B = E/c. They
propagate in the right-handed direction given by

the cross product E ×B, and carry momentum
p = U/c.

19.3 Maxwell’s equations in
matter

A complete statement of Maxwell’s equations in
the presence of electric and magnetic materials
is as follows:

ΦD = qfree

ΦB = 0

ΓE = −dΦB
dt

ΓH =
dΦD
dt

+ Ifree,

where the auxiliary fields D and H are defined
as

D = εE and

H =
B

µ
,

and ε and µ are the permittivity and permeabil-
ity of the substance.
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Problems

19-a1 A U-shaped wire makes electrical con-
tact with a second, straight wire, which rolls
along it to the right, as shown in the figure. The
whole thing is immersed in a uniform magnetic
field, which is perpendicular to the plane of the
circuit. The resistance of the rolling wire is much
greater than that of the U.
(a) Find the direction of the force on the wire
based on conservation of energy.
(b) Verify the direction of the force using right-
hand rules.
(c) Find the magnitude of the force acting on the
wire. There is more than one way to do this, but
please do it using Faraday’s law (which works
even though it’s the Ampèrian surface itself that
is changing, rather than the field).

√

(d) Consider how the answer to part a would
have changed if the direction of the field had
been reversed, and also do the case where the
direction of the rolling wire’s motion is reversed.
Verify that this is in agreement with your answer
to part c.

Problem 19-a1.

19-a2 A wire loop of resistance R and area A,
lying in the y − z plane, falls through a nonuni-
form magnetic field B = kzx̂, where k is a con-
stant. The z axis is vertical.
(a) Find the direction of the force on the wire
based on conservation of energy.
(b) Verify the direction of the force using right-
hand rules.
(c) Find the magnetic force on the wire.

Problem 19-a2.

√

19-a3 (a) For each term appearing on the
right side of Maxwell’s equations, give an exam-
ple of an everyday situation it describes.
(b) Most people doing calculations in the SI sys-
tem of units don’t use k and k/c2. Instead, they
express everything in terms of the constants

εo =
1

4πk
and

µo =
4πk

c2
.

Rewrite Maxwell’s equations in terms of these
constants, eliminating k and c everywhere.

19-a4 The circular parallel-plate capacitor
shown in the figure is being charged up over time,
with the voltage difference across the plates vary-
ing as V = st, where s is a constant. The plates
have radius b, and the distance between them is
d. We assume d � b, so that the electric field
between the plates is uniform, and parallel to
the axis. Find the induced magnetic field at a
point between the plates, at a distance R from
the axis. √

19-d1 A charged particle is in motion at
speed v, in a region of vacuum through which
an electromagnetic wave is passing. In what di-
rection should the particle be moving in order
to minimize the total force acting on it? Con-
sider both possibilities for the sign of the charge.
(Based on a problem by David J. Raymond.)
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Problem 19-a4.

19-d2 (a) Prove that in an electromagnetic
plane wave, half the energy is in the electric field
and half in the magnetic field.
(b) Based on your result from part a, find the
proportionality constant in the relation dp ∝
E×Bdv, where dp is the momentum of the part
of a plane light wave contained in the volume dv.
The vector E×B, multiplied by the appropriate
constant, is known as the Poynting vector, and
even outside the context of an electromagnetic
plane wave, it can be interpreted as a momen-
tum density or rate of energy flow. (To do this
problem, you need to know the relativistic rela-
tionship between the energy and momentum of
a beam of light from problem ?? on p. ??.)√

19-d3 (a) A beam of light has cross-sectional
area A and power P , i.e., P is the number of
joules per second that enter a window through
which the beam passes. Find the energy density
U/v in terms of P , A, and universal constants.
(b) Find Ẽ and B̃, the amplitudes of the elec-
tric and magnetic fields, in terms of P , A, and
universal constants (i.e., your answer should not
include U or v). You will need the result of prob-
lem 19-d2a. A real beam of light usually consists
of many short wavetrains, not one big sine wave,
but don’t worry about that.

√

(c) A beam of sunlight has an intensity of P/A =
1.35 × 103 W/m2, assuming no clouds or atmo-
spheric absorption. This is known as the solar
constant. Compute Ẽ and B̃, and compare with
the strengths of static fields you experience in
everyday life: E ∼ 106 V/m in a thunderstorm,
and B ∼ 10−3 T for the Earth’s magnetic field.

√

19-d4 Electromagnetic waves are supposed to
have their electric and magnetic fields perpen-
dicular to each other. (Throughout this prob-
lem, assume we’re talking about waves travel-
ing through a vacuum, and that there is only
a single sine wave traveling in a single direction,
not a superposition of sine waves passing through
each other.) Suppose someone claims they can
make an electromagnetic wave in which the elec-
tric and magnetic fields lie in the same plane.
Prove that this is impossible based on Maxwell’s
equations.

19-d5 A positively charged particle is released
from rest at the origin at t = 0, in a region of
vacuum through which an electromagnetic wave
is passing. The particle accelerates in response
to the wave. In this region of space, the wave
varies as E = x̂Ẽ sinωt, B = ŷB̃ sinωt, and we
assume that the particle has a relatively large
value of m/q, so that its response to the wave
is sluggish, and it never ends up moving at any
speed comparable to the speed of light. There-
fore we don’t have to worry about the spatial
variation of the wave; we can just imagine that
these are uniform fields imposed by some exter-
nal mechanism on this region of space.
(a) Find the particle’s coordinates as functions
of time.

√

(b) Show that the motion is confined to −zmax ≤
z ≤ zmax, where zmax = 1.101

(
q2ẼB̃/m2ω3

)
.

19-d6 If you watch a movie played backwards,
some vectors reverse their direction. For in-
stance, people walk backwards, with their veloc-
ity vectors flipped around. Other vectors, such
as forces, keep the same direction, e.g., grav-
ity still pulls down. An electric field is another
example of a vector that doesn’t turn around:
positive charges are still positive in the time-
reversed universe, so they still make diverging
electric fields, and likewise for the converging
fields around negative charges.
(a) How does the momentum of a material ob-
ject behave under time-reversal?
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(b) The laws of physics are still valid in the time-
reversed universe. For example, show that if two
material objects are interacting, and momentum
is conserved, then momentum is still conserved
in the time-reversed universe.
(c) Discuss how currents and magnetic fields
would behave under time reversal.
(d) Similarly, show that the equation dp ∝ E×B
is still valid under time reversal.

. Solution, p. 239

19-d7 This problem is a more advanced ex-
ploration of the time-reversal ideas introduced in
problem 19-d6.
(a) In that problem, we assumed that charge did
not flip its sign under time reversal. Suppose
we make the opposite assumption, that charge
does change its sign. This is an idea introduced
by Richard Feynman: that antimatter is really
matter traveling backward in time! Determine
the time-reversal properties of E and B under
this new assumption, and show that dp ∝ E×B
is still valid under time-reversal.
(b) Show that Maxwell’s equations are time-
reversal symmetric, i.e., that if the fields
E(x, y, z, t) and B(x, y, z, t) satisfy Maxwell’s
equations, then so do E(x, y, z,−t) and
B(x, y, z,−t). Demonstrate this under both pos-
sible assumptions about charge, q → q and
q → −q.

19-g1 (a) Figure ?? on page ?? shows a
hollow sphere with µ/µo = x, inner radius a,
and outer radius b, which has been subjected
to an external field Bo. Finding the fields on
the exterior, in the shell, and on the interior re-
quires finding a set of fields that satisfies five
boundary conditions: (1) far from the sphere,
the field must approach the constant Bo; (2) at
the outer surface of the sphere, the field must
have H‖,1 = H‖,2, as discussed on page ??; (3)
the same constraint applies at the inner surface
of the sphere; (4) and (5) there is an additional
constraint on the fields at the inner and outer
surfaces, as found in problem ??. The goal of
this problem is to find the solution for the fields,

and from it, to prove that the interior field is
uniform, and given by

B =

[
9x

(2x+ 1)(x+ 2)− 2a
3

b3 (x− 1)2

]
Bo.

This is a very difficult problem to solve from first
principles, because it’s not obvious what form
the fields should have, and if you hadn’t been
told, you probably wouldn’t have guessed that
the interior field would be uniform. We could,
however, guess that once the sphere becomes po-
larized by the external field, it would become a
dipole, and at r � b, the field would be a uni-
form field superimposed on the field of a dipole.
It turns out that even close to the sphere, the
solution has exactly this form. In order to com-
plete the solution, we need to find the field in
the shell (a < r < b), but the only way this field
could match up with the detailed angular varia-
tion of the interior and exterior fields would be
if it was also a superposition of a uniform field
with a dipole field. The final result is that we
have four unknowns: the strength of the dipole
component of the external field, the strength of
the uniform and dipole components of the field
within the shell, and the strength of the uniform
interior field. These four unknowns are to be
determined by imposing constraints (2) through
(5) above.
(b) Show that the expression from part a has
physically reasonable behavior in its dependence
on x and a/b.

??



20 LRC circuits

This is not a textbook. It’s a book of problems
meant to be used along with a textbook. Although
each chapter of this book starts with a brief sum-
mary of the relevant physics, that summary is
not meant to be enough to allow the reader to
actually learn the subject from scratch. The pur-
pose of the summary is to show what material is
needed in order to do the problems, and to show
what terminology and notation are being used.

20.1 Complex numbers

For a more detailed treatment of complex num-
bers, see ch. 3 of James Nearing’s free book at
physics.miami.edu/nearing/mathmethods/.

Figure 20.1: Visualizing complex numbers as
points in a plane.

We assume there is a number, i, such that
i2 = −1. The square roots of −1 are then i
and −i. (In electrical engineering work, where i
stands for current, j is sometimes used instead.)
This gives rise to a number system, called the
complex numbers, containing the real numbers
as a subset. Any complex number z can be writ-
ten in the form z = a+bi, where a and b are real,
and a and b are then referred to as the real and
imaginary parts of z. A number with a zero real

part is called an imaginary number. The com-
plex numbers can be visualized as a plane, with
the real number line placed horizontally like the
x axis of the familiar x− y plane, and the imag-
inary numbers running along the y axis. The
complex numbers are complete in a way that
the real numbers aren’t: every nonzero complex
number has two square roots. For example, 1 is
a real number, so it is also a member of the com-
plex numbers, and its square roots are −1 and
1. Likewise, −1 has square roots i and −i, and
the number i has square roots 1/

√
2 + i/

√
2 and

−1/
√

2− i/
√

2.

Figure 20.2: Addition of complex numbers is
just like addition of vectors, although the real
and imaginary axes don’t actually represent di-
rections in space.

Complex numbers can be added and sub-
tracted by adding or subtracting their real and
imaginary parts. Geometrically, this is the same
as vector addition.

The complex numbers a+ bi and a− bi, lying
at equal distances above and below the real axis,
are called complex conjugates. The results of
the quadratic formula are either both real, or
complex conjugates of each other. The complex
conjugate of a number z is notated as z̄ or z∗.

199
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Figure 20.3: A complex number and its conju-
gate.

The complex numbers obey all the same rules
of arithmetic as the reals, except that they can’t
be ordered along a single line. That is, it’s not
possible to say whether one complex number is
greater than another. We can compare them in
terms of their magnitudes (their distances from
the origin), but two distinct complex numbers
may have the same magnitude, so, for example,
we can’t say whether 1 is greater than i or i is
greater than 1.

Figure 20.4: A complex number can be described
in terms of its magnitude and argument.

There is a nice interpretation of complex mul-
tiplication. We define the argument of a com-
plex number as its angle in the complex plane,
measured counterclockwise from the positive real
axis. Multiplying two complex numbers then
corresponds to multiplying their magnitudes,
and adding their arguments.

Figure 20.5: The argument of uv is the sum of
the arguments of u and v.

Having expanded our horizons to include the
complex numbers, it’s natural to want to ex-
tend functions we knew and loved from the world
of real numbers so that they can also operate
on complex numbers. The only really natural
way to do this in general is to use Taylor series.
A particularly beautiful thing happens with the
functions ex, sinx, and cosx:

ex = 1 +
1

2!
x2 +

1

3!
x3 + . . .

cosx = 1− 1

2!
x2 +

1

4!
x4 − . . .

sinx = x− 1

3!
x3 +

1

5!
x5 − . . .

If x = iφ is an imaginary number, we have

eiφ = cosφ+ i sinφ,

a result known as Euler’s formula. The geometri-
cal interpretation in the complex plane is shown
in figure 20.6.
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Although the result may seem like something
out of a freak show at first, applying the defini-
tion of the exponential function makes it clear
how natural it is:

ex = lim
n→∞

(
1 +

x

n

)n
.

When x = iφ is imaginary, the quantity (1 +
iφ/n) represents a number lying just above 1 in
the complex plane. For large n, (1 + iφ/n) be-
comes very close to the unit circle, and its argu-
ment is the small angle φ/n. Raising this number
to the nth power multiplies its argument by n,
giving a number with an argument of φ.

Figure 20.6: The complex number eiφ lies on the
unit circle.

Sinusoidal functions have a remarkable prop-
erty, which is that if you add two different si-
nusoidal functions having the same frequency,
the result is also a sinusoid with that frequency.
For example, cosωt+ sinωt =

√
2 sin(ωt+ π/4),

which can be proved using trig identities. The
trig identities can get very cumbersome, how-
ever, and there is a much easier technique in-
volving complex numbers.

Figure 20.7 shows a useful way to visualize
what’s going on. When a circuit is oscillating at
a frequency ω, we use points in the plane to rep-
resent sinusoidal functions with various phases
and amplitudes.

The simplest examples of how to visualize
this in polar coordinates are ones like cosωt +

Figure 20.7: Representing functions with points
in polar coordinates.

Figure 20.8: Adding two sinusoidal functions.

cosωt = 2 cosωt, where everything has the same
phase, so all the points lie along a single line in
the polar plot, and addition is just like adding
numbers on the number line. The less trivial ex-
ample cosωt+ sinωt =

√
2 sin(ωt+ π/4), can be

visualized as in figure 20.8.

Figure 20.8 suggests that all of this can be
tied together nicely if we identify our plane with
the plane of complex numbers. For example, the
complex numbers 1 and i represent the functions
sinωt and cosωt.
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20.2 LRC circuits

As discussed previously, capacitance, C, is de-
fined as

UC =
1

2C
q2.

Similarly, inductance, L, is defined as

UL =
L

2
I2,

and measured in units of henries. The magni-
tude of the voltage difference across a capacitor
or inductor is given by

VC =
q

C

or

VL = L
dI

dt
.

In the equation for the inductor, the direction of
the voltage drop (plus or minus sign) is such that
the inductor resists the change in current.

A series LRC circuit exhibits oscillation, and,
if driven by an external voltage, resonates. The
Q of the circuit relates to the resistance value.
For large Q, the resonant frequency is

ω ≈ 1√
LC

.

A series RC or RL circuit exhibits exponential
decay,

q = qo exp

(
− t

RC

)
or

I = Io exp

(
−R
L
t

)
,

and the quantity RC or L/R is known as the
time constant.

When driven by a sinusoidal AC voltage with
amplitude Ṽ , a capacitor, resistor, or inductor
responds with a current having amplitude

Ĩ =
Ṽ

Z
,

where the impedance, Z, is a frequency-
dependent quantity having units of ohms. In a
capacitor, the current has a phase that is 90◦

ahead of the voltage, while in an inductor the
current is 90◦ behind. We can represent these
phase relationships by defining the impedances
as complex numbers:

ZC = − i

ωC
ZR = R

ZL = iωL

The arguments of the complex impedances are
to be interpreted as phase relationships between
the oscillating voltages and currents. The com-
plex impedances defined in this way combine in
series and parallel according to the same rules as
resistances.

When a voltage source is driving a load
through a transmission line, the maximum power
is delivered to the load when the impedances of
the line and the load are matched.
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Problems

20-a1 Find arg i, arg(−i), and arg 37, where
arg z denotes the argument of the complex num-
ber z.

. Solution, p. 239

20-a2 Visualize the following multiplications
in the complex plane using the interpretation
of multiplication in terms of multiplying mag-
nitudes and adding arguments: (i)(i) = −1,
(i)(−i) = 1, (−i)(−i) = −1.

. Solution, p. 239

20-a3 If we visualize z as a point in the com-
plex plane, how should we visualize −z? What
does this mean in terms of arguments? Give sim-
ilar interpretations for z2 and

√
z.

. Solution, p. 239

20-a4 Find four different complex numbers z
such that z4 = 1.

. Solution, p. 239

20-a5 Compute the following. For the final
two, use the magnitude and argument, not the
real and imaginary parts.

|1+i| , arg(1+i) ,

∣∣∣∣ 1

1 + i

∣∣∣∣ , arg

(
1

1 + i

)
,

From these, find the real and imaginary parts of
1/(1 + i).

. Solution, p. 239

20-d1 (a) Use complex number techniques to
rewrite the function f(t) = 4 sinωt + 3 cosωt in
the form A sin(ωt+ δ).

√

(b) Verify the result using the trigonometric
identity sin(α+ β) = sinα cosβ + sinβ cosα.

20-d2 This problem deals with the cubes and
cube roots of complex numbers, but the prin-
ciples involved apply more generally to other
exponents besides 3 and 1/3. These examples
are designed to be much easier to do using the
magnitude-argument representation of complex
numbers than with the cartesian representation.
If done by the easiest technique, none of these
requires more than two or three lines of simple
math. In the following, the symbols θ, a, and

b represent real numbers, and all angles are to
be expressed in radians. As often happens with
fractional exponents, the cube root of a complex
number will typically have more than one possi-
ble value. (Cf. 41/2, which can be 2 or −2.) In
parts c and d, this ambiguity is resolved explic-
itly in the instructions, in a way that is meant
to make the calculation as easy as possible.
(a) Calculate arg

[
(eiθ)3

]
.

√

(b) Of the points u, v, w, and x shown in the
figure, which could be a cube root of z?
(c) Calculate arg

[
3
√
a+ bi

]
. For simplicity, as-

sume that a + bi is in the first quadrant of the
complex plane, and compute the answer for a
root that also lies in the first quadrant.

√

(d) Compute

1 + i

(−2 + 2i)1/3
.

Because there is more than one possible root
to use in the denominator, multiple answers are
possible in this problem. Use the root that re-
sults in the final answer that lies closest to the
real line. (This is also the easiest one to find by
using the magnitude-argument techniques intro-
duced in the text.) √

Problem 20-d2.

20-d3 Calculate the quantity ii (i.e., find its
real and imaginary parts).
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√

20-g1 (a) Show that the equation VL =
LdI/dt has the right units.
(b) Verify that RC has units of time.
(c) Verify that L/R has units of time.

20-g2 Find the inductance of two identical
inductors in parallel.

20-g3 The wires themselves in a circuit can
have resistance, inductance, and capacitance.
Would “stray” inductance and capacitance be
most important for low-frequency or for high-
frequency circuits? For simplicity, assume that
the wires act like they’re in series with an induc-
tor or capacitor.

20-g4 Starting from the relation V = LdI/dt
for the voltage difference across an inductor,
show that an inductor has an impedance equal
to Lω.

20-g5 Suppose that an FM radio tuner for the
US commercial broadcast band (88-108 MHz)
consists of a series LRC circuit. If the induc-
tor is 1.0 µH, what range of capacitances should
the variable capacitor be able to provide? √

20-g6 (a) Find the parallel impedance of a
37 kΩ resistor and a 1.0 nF capacitor at f =
1.0× 104 Hz.

√

(b) A voltage with an amplitude of 1.0 mV drives
this impedance at this frequency. What is the
amplitude of the current drawn from the voltage
source, what is the current’s phase angle with re-
spect to the voltage, and does it lead the voltage,
or lag behind it? √

20-g7 A series LRC circuit consists of a 1.000
Ω resistor, a 1.000 F capacitor, and a 1.000 H in-
ductor. (These are not particularly easy values
to find on the shelf!)
(a) Plot its impedance as a point in the com-
plex plane for each of the following frequencies:
ω=0.250, 0.500, 1.000, 2.000, and 4.000 Hz.
(b) What is the resonant angular frequency, ωres,

and how does this relate to your plot?
√

(c) What is the resonant frequency fres corre-
sponding to your answer in part b? √

20-g8 At a frequency of 53.1 kHz, a certain
series LR circuit has an impedance of 1.6 kΩ +
(1.2 kΩ)i. Suppose that instead we want to
achieve the same impedance using two circuit el-
ements in parallel. What must the elements be?
As a check on your answer, you should find that
both values are round numbers when rounded off
to the correct number of significant figures.

20-g9 (a) In a series LC circuit driven by a
DC voltage (ω = 0), compare the energy stored
in the inductor to the energy stored in the
capacitor.
(b) Carry out the same comparison for an LC
circuit that is oscillating freely (without any
driving voltage).
(c) Now consider the general case of a series LC
circuit driven by an oscillating voltage at an
arbitrary frequency. Let UL and be the average
energy stored in the inductor, and similarly for
UC . Define a quantity u = UC/(UL + UC),
which can be interpreted as the capacitor’s
average share of the energy, while 1 − u is the
inductor’s average share. Find u in terms of L,
C, and ω, and sketch a graph of u and 1 − u
versus ω. What happens at resonance? Make
sure your result is consistent with your answer
to part a.

√



21 Thermodynamics

This is not a textbook. It’s a book of problems
meant to be used along with a textbook. Although
each chapter of this book starts with a brief sum-
mary of the relevant physics, that summary is
not meant to be enough to allow the reader to
actually learn the subject from scratch. The pur-
pose of the summary is to show what material is
needed in order to do the problems, and to show
what terminology and notation are being used.

21.1 Pressure, temperature,
and heat

References:

• Crowell, Simple Nature, lightandmat-
ter.com, sec. 5.1

• OpenStax University Physics, openstax.org,
v. 2, ch. 1

21.2 Kinetic theory

References:

• Crowell, Simple Nature, lightandmat-
ter.com, sec. 5.2

• OpenStax University Physics, openstax.org,
v. 2, ch. 2-3

21.3 Entropy

References:

• Crowell, Simple Nature, lightandmat-
ter.com, sec. 5.3-4

• OpenStax University Physics, openstax.org,
v. 2, ch. 4
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Problems

21-a1 (a) Show that under conditions of stan-
dard pressure and temperature, the volume of a
sample of an ideal gas depends only on the num-
ber of molecules in it.
(b) One mole is defined as 6.0×1023 atoms. Find
the volume of one mole of an ideal gas, in units
of liters, at standard temperature and pressure
(0◦C and 101 kPa). √

21-a2 A gas in a cylinder expands its volume
by an amount dV , pushing out a piston. Show
that the work done by the gas on the piston is
given by dW = P dV .

21-a3 (a) Atmospheric pressure at sea level
is 101 kPa. The deepest spot in the world’s
oceans is a valley called the Challenger Deep, in
the Marianas Trench, with a depth of 11.0 km.
Find the pressure at this depth, in units of at-
mospheres. Although water under this amount
of pressure does compress by a few percent, as-
sume for the purposes of this problem that it is
incompressible.
(b) Suppose that an air bubble is formed at this
depth and then rises to the surface. Estimate
the change in its volume and radius.

. Solution, p. 240

21-a4 The ideal gas law is PV = nkT , and
if everything is expressed in SI units, then the
Boltzmann constant k has the numerical value
k = 1.38 × 10−23 J/K. You may also have
seen a version of the equation in which n is ex-
pressed in units of moles rather than molecules,
and the constant of proportionality then has a
different value. The following are three other
ways in which we could imagine making a dif-
ferent version of the equation. In each case, ex-
plain whether this makes sense, and if so, find
the value of the constant of proportionality that
would replace the SI value of k.
(a) Temperature is measured in degrees Celsius.
(b) The amount of gas is measured in kilograms.
(c) The pressure and volume are measured in the
centimeter-gram-second (cgs) system, where, for

example, the unit of force is 1 g ·cm/s2, and all
other units are based on the centimeter, gram,
and second, rather than the SI base units of me-
ters, kilograms, and seconds.

21-d1 (a) A helium atom contains 2 protons,
2 electrons, and 2 neutrons. Find the mass of a
helium atom.

√

(b) Find the number of atoms in 1.0 kg of helium.√

(c) Helium gas is monoatomic. Find the amount
of heat needed to raise the temperature of 1.0
kg of helium by 1.0 degree C. (This is known as
helium’s heat capacity at constant volume.)√

21-d2 A sample of gas is enclosed in a sealed
chamber. The gas consists of molecules, which
are then split in half through some process such
as exposure to ultraviolet light, or passing an
electric spark through the gas. The gas re-
turns to the same temperature as the surround-
ing room, but the molecules remain split apart,
at least for some amount of time. (To achieve
these conditions, we would need an extremely
dilute gas. Otherwise the recombination of the
molecules would be faster than the cooling down
to the same temperature as the room.) How does
its pressure now compare with its pressure before
the molecules were split?

21-d3 Most of the atoms in the universe are
in the form of gas that is not part of any star
or galaxy: the intergalactic medium (IGM). The
IGM consists of about 10−5 atoms per cubic cen-
timeter, with a typical temperature of about 103

K. These are, in some sense, the density and
temperature of the universe (not counting light,
or the exotic particles known as “dark matter”).
Calculate the pressure of the universe (or, speak-
ing more carefully, the typical pressure due to the
IGM). √

21-d4 (a) Determine the ratio between the
escape velocities from the surfaces of the earth
and the moon.

√

(b) The temperature during the lunar daytime
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gets up to about 130◦C. In the extremely thin
(almost nonexistent) lunar atmosphere, estimate
how the typical velocity of a molecule would com-
pare with that of the same type of molecule in
the earth’s atmosphere. Assume that the earth’s
atmosphere has a temperature of 0◦C.

√

(c) Suppose you were to go to the moon and
release some fluorocarbon gas, with molecular
formula CnF2n+2. Estimate what is the small-
est fluorocarbon molecule (lowest n) whose typ-
ical velocity would be lower than that of an N2

molecule on earth in proportion to the moon’s
lower escape velocity. The moon would be able
to retain an atmosphere made of these molecules.√

21-d5 Our sun is powered by nuclear fu-
sion reactions, and as a first step in these reac-
tions, one proton must approach another proton
to within a short enough range r. This is diffi-
cult to achieve, because the protons have electric
charge +e and therefore repel one another elec-
trically. (It’s a good thing that it’s so difficult,
because otherwise the sun would use up all of
its fuel very rapidly and explode.) To make fu-
sion possible, the protons must be moving fast
enough to come within the required range. Even
at the high temperatures present in the core of
our sun, almost none of the protons are moving
fast enough.
(a) For comparison, the early universe, soon af-
ter the Big Bang, had extremely high tempera-
tures. Estimate the temperature T that would
have been required so that protons with average
energies could fuse. State your result in terms of
r, the mass m of the proton, and universal con-
stants.
(b) Show that the units of your answer to part a
make sense.
(c) Evaluate your result from part a numerically,
using r = 10−15 m and m = 1.7× 10−27 kg. As
a check, you should find that this is much hotter
than the sun’s core temperature of ∼ 107 K.

. Solution, p. 240

21-d6 The sun is mainly a mixture of hydro-
gen and helium, some of which is ionized. As
a simplified model, let’s pretend that it’s made

purely out of neutral, monatomic hydrogen, and
that the whole mass of the sun is in thermal equi-
librium. Given its mass, it would then contain
1.2 × 1057 atoms. It generates energy from nu-
clear reactions at a rate of 3.8 × 1026 W, and it
is in a state of equilibrium in which this amount
of energy is radiated off into space as light. Sup-
pose that its ability to radiate light were some-
how blocked. Find the rate at which its temper-
ature would increase. √

21-d7 In metals, some electrons, called con-
duction electrons, are free to move around,
rather than being bound to one atom. Classical
physics gives an adequate description of many of
their properties. Consider a metal at tempera-
ture T , and let m be the mass of the electron.
Find expressions for (a) the average kinetic en-
ergy of a conduction electron, and (b) the aver-
age square of its velocity, v2. (It would not be
of much interest to find v, which is just zero.)

Numerically,
√
v2, called the root-mean-square

velocity, comes out to be surprisingly large —
about two orders of magnitude greater than the
normal thermal velocities we find for atoms in a
gas. Why?
Remark: From this analysis, one would think that the
conduction electrons would contribute greatly to the heat
capacities of metals. In fact they do not contribute very
much in most cases; if they did, Dulong and Petit’s obser-
vations would not have come out as described in the text.
The resolution of this contradiction was only eventually
worked out by Sommerfeld in 1933, and involves the fact
that electrons obey the Pauli exclusion principle. √

21-d8 Most of the mass of an atom comes
from its protons and neutrons. The mass of a
proton is approximately the same as the mass of
a neutron. The planet Jupiter is made mostly
of hydrogen molecules. A normal hydrogen
molecule (H2) contains two protons (one in each
atom), and no neutrons. A small percentage of
the hydrogen in the universe is in a form in which
the nucleus contains both a proton and a neu-
tron; this is called deuterium, often notated D.
Since deuterium isn’t very abundant, the most
common thing to happen to a deuterium atom
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in Jupiter’s atmosphere is that it would find it-
self in a molecule whose other atom was a normal
hydrogen atom. The resulting molecule could be
described as a DH. A DH molecule contains a to-
tal of two protons and one neutron. Compare the
typical speed of a DH molecule in Jupiter’s at-
mosphere with the typical speed of an H2. Give
a quantitative comparison, and notate it so that
it’s clear which is the higher speed.

21-g1 Object A is a brick. Object B is half
of a similar brick. If A is heated, we have ∆S =
Q/T . Show that if this equation is valid for A,
then it is also valid for B.

. Solution, p. 240

21-g2 You use a spoon at room temperature,
22◦C, to mix your coffee, which is at 80◦C. Dur-
ing this brief period of thermal contact, 1.3 J of
heat is transferred from the coffee to the spoon.
Find the total change in the entropy of the uni-
verse. √

21-g3 Refrigerators, air conditioners, and
heat pumps are heat engines that work in re-
verse. You put in mechanical work, and the ef-
fect is to take heat out of a cooler reservoir and
deposit heat in a warmer one: QL + W = QH .
As with the heat engines discussed previously,
the efficiency is defined as the energy transfer
you want (QL for a refrigerator or air condi-
tioner, QH for a heat pump) divided by the en-
ergy transfer you pay for (W ).

Efficiencies are supposed to be unitless, but
the efficiency of an air conditioner is normally
given in terms of an EER rating (or a more com-
plex version called an SEER). The EER is de-
fined as QL/W , but expressed in the barbaric
units of of Btu/watt-hour. A typical EER rat-
ing for a residential air conditioner is about 10
Btu/watt-hour, corresponding to an efficiency of
about 3. The standard temperatures used for
testing an air conditioner’s efficiency are 80◦F
(27◦C) inside and 95◦F (35◦C) outside.
(a) What would be the EER rating of a reversed
Carnot engine used as an air conditioner?

√

(b) If you ran a 3-kW residential air conditioner,

with an efficiency of 3, for one hour, what would
be the effect on the total entropy of the universe?
Is your answer consistent with the second law of
thermodynamics? √

21-g4 Even when resting, the human body
needs to do a certain amount of mechanical work
to keep the heart beating. This quantity is dif-
ficult to define and measure with high precision,
and also depends on the individual and her level
of activity, but it’s estimated to be about 1 to 5
watts. Suppose we consider the human body as
nothing more than a pump. A person who is just
lying in bed all day needs about 1000 kcal/day
worth of food to stay alive. (a) Estimate the
person’s thermodynamic efficiency as a pump,
and (b) compare with the maximum possible ef-
ficiency imposed by the laws of thermodynamics
for a heat engine operating across the difference
between a body temperature of 37◦C and an am-
bient temperature of 22◦C. (c) Interpret your
answer.

21-g5 (a) Consider a one-dimensional ideal
gas consisting of n material particles, at temper-
ature T . Trace back through the logic of the
equipartition theorem on p. ?? to determine the
total energy.
(b) Explain why it should matter how many di-
mensions there are.
(c) Gases that we encounter in everyday life are
made of atoms, but there are gases made out
of other things. For example, soon after the
big bang, there was a period when the universe
was very hot and dominated by light rather than
matter. A particle of light is called a photon, so
the early universe was a “photon gas.” For sim-
plicity, consider a photon gas in one dimension.
Photons are massless, and we will see in ch. ??
on relativity that for a massless particle, the en-
ergy is related to the momentum by E = pc,
where c is the speed of light. (Note that p = mv
does not hold for a photon.) Again, trace back
through the logic of equipartition on p. ??. Does
the photon gas have the same heat capacity as
the one you found in part a?
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21-g6 Example ?? on page ?? suggests ana-
lyzing the resonance of a violin at 300 Hz as a
Helmholtz resonance. However, we might expect
the equation for the frequency of a Helmholtz
resonator to be a rather crude approximation
here, since the f-holes are not long tubes, but slits
cut through the face of the instrument, which is
only about 2.5 mm thick. (a) Estimate the fre-
quency that way anyway, for a violin with a vol-
ume of about 1.6 liters, and f-holes with a total
area of 10 cm2. (b) A common rule of thumb is
that at an open end of an air column, such as
the neck of a real Helmholtz resonator, some air
beyond the mouth also vibrates as if it was inside
the tube, and that this effect can be taken into
account by adding 0.4 times the diameter of the
tube for each open end (i.e., 0.8 times the diam-
eter when both ends are open). Applying this to
the violin’s f-holes results in a huge change in L,
since the ∼ 7 mm width of the f-hole is consider-
ably greater than the thickness of the wood. Try
it, and see if the result is a better approximation
to the observed frequency of the resonance.
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22 Optics

This is not a textbook. It’s a book of problems
meant to be used along with a textbook. Although
each chapter of this book starts with a brief sum-
mary of the relevant physics, that summary is
not meant to be enough to allow the reader to
actually learn the subject from scratch. The pur-
pose of the summary is to show what material is
needed in order to do the problems, and to show
what terminology and notation are being used.

22.1 Geometric optics

• Crowell, Simple Nature, lightandmat-
ter.com, sec. 12.1-4

• OpenStax University Physics, openstax.org,
v. 3, ch. 1-2

22.2 Wave optics

References:

• Crowell, Simple Nature, lightandmat-
ter.com, sec. 12.5

• OpenStax University Physics, openstax.org,
v. 3, ch. 3-4
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Problems

22-a1 Draw a ray diagram showing why
a small light source (a candle, say) produces
sharper shadows than a large one (e.g., a long
fluorescent bulb).

22-a2 A Global Positioning System (GPS) re-
ceiver is a device that lets you figure out where
you are by receiving timed radio signals from
satellites. It works by measuring the travel time
for the signals, which is related to the distance
between you and the satellite. By finding the
ranges to several different satellites in this way,
it can pin down your location in three dimen-
sions to within a few meters. How accurate does
the measurement of the time delay have to be to
determine your position to this accuracy?

22-a3 Estimate the frequency of an electro-
magnetic wave whose wavelength is similar in
size to an atom (about a nm). In what part of
the electromagnetic spectrum would such a wave
lie (infrared, gamma-rays, . . . )?

22-a4 The Stealth Bomber is designed with
flat, smooth surfaces. Why would this make it
difficult to detect using radar?

. Solution, p. 240

22-a5 The natives of planet Wumpus play
pool using light rays on an eleven-sided table
with mirrors for bumpers, shown in the figure on
the next page. Trace this shot accurately with a
ruler to reveal the hidden message. To get good
enough accuracy, you’ll need to photocopy the
page (or download the book and print the page)
and construct each reflection using a protractor.

. Solution, p. 240

22-a6 The figure on the next page shows
a curved (parabolic) mirror, with three parallel
light rays coming toward it. One ray is approach-
ing along the mirror’s center line. (a) Continue
the light rays until they are about to undergo
their second reflection. To get good enough accu-
racy, you’ll need to photocopy the page (or down-
load the book and print the page) and draw in

Problem 22-a5.

the normal at each place where a ray is reflected.
What do you notice? (b) Make up an example
of a practical use for this device. (c) How could
you use this mirror with a small lightbulb to pro-
duce a parallel beam of light rays going off to the
right?

. Solution, p. 241

Problem 22-a6.

22-a7 Suppose we have a polygonal room
whose walls are mirrors, and there a pointlike
light source in the room. In most such exam-
ples, every point in the room ends up being il-
luminated by the light source after some finite
number of reflections. A difficult mathematical
question, first posed in the middle of the last
century, is whether it is ever possible to have an
example in which the whole room is not illumi-
nated. (Rays are assumed to be absorbed if they
strike exactly at a vertex of the polygon, or if
they pass exactly through the plane of a mirror.)

The problem was finally solved in 1995 by
G.W. Tokarsky, who found an example of a room
that was not illuminable from a certain point.
Figure 22-a7 shows a slightly simpler example
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found two years later by D. Castro. If a light
source is placed at either of the locations shown
with dots, the other dot remains unilluminated,
although every other point is lit up. It is not
straightforward to prove rigorously that Castro’s
solution has this property. However, the plau-
sibility of the solution can be demonstrated as
follows.

Suppose the light source is placed at the right-
hand dot. Locate all the images formed by sin-
gle reflections. Note that they form a regular
pattern. Convince yourself that none of these
images illuminates the left-hand dot. Because
of the regular pattern, it becomes plausible that
even if we form images of images, images of im-
ages of images, etc., none of them will ever illu-
minate the other dot.

There are various other versions of the prob-
lem, some of which remain unsolved. The book
by Klee and Wagon gives a good introduction
to the topic, although it predates Tokarsky and
Castro’s work.

References:
G.W. Tokarsky, “Polygonal Rooms Not Illu-
minable from Every Point.” Amer. Math.
Monthly 102, 867-879, 1995.
D. Castro, “Corrections.” Quantum 7, 42, Jan.
1997.
V. Klee and S. Wagon, Old and New Unsolved
Problems in Plane Geometry and Number The-
ory. Mathematical Association of America,
1991.

22-d1 A man is walking at 1.0 m/s directly
towards a flat mirror. At what speed is his sep-
aration from his image decreasing? √

22-d2 If a mirror on a wall is only big enough
for you to see yourself from your head down to
your waist, can you see your entire body by back-
ing up? Test this experimentally and come up
with an explanation for your observations, in-
cluding a ray diagram.

Note that when you do the experiment, it’s
easy to confuse yourself if the mirror is even a
tiny bit off of vertical. One way to check yourself

Problem 22-a7.

is to artificially lower the top of the mirror by
putting a piece of tape or a post-it note where
it blocks your view of the top of your head. You
can then check whether you are able to see more
of yourself both above and below by backing up.

22-g1 Draw a ray diagram for the formation
of an image by a convex mirror. (a) How does
the image’s distance from the mirror compare
with the actual object’s distance from the mir-
ror? From this comparison, determine whether
the magnification is greater than or less than one.
(b) Is the image real, or virtual? Could this mir-
ror ever make the other type of image?

22-g2 As discussed in question 22-g1, there
are two types of curved mirrors, concave and con-
vex. Make a list of all the possible combinations
of types of images (virtual or real) with types
of mirrors (concave and convex). (Not all of
the four combinations are physically possible.)
Now for each one, use ray diagrams to deter-
mine whether increasing the distance of the ob-
ject from the mirror leads to an increase or a
decrease in the distance of the image from the
mirror.

Draw BIG ray diagrams! Each diagram should
use up about half a page of paper.

Some tips: To draw a ray diagram, you need
two rays. For one of these, pick the ray that
comes straight along the mirror’s axis, since its
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reflection is easy to draw. After you draw the two
rays and locate the image for the original object
position, pick a new object position that results
in the same type of image, and start a new ray di-
agram, in a different color of pen, right on top of
the first one. For the two new rays, pick the ones
that just happen to hit the mirror at the same
two places; this makes it much easier to get the
result right without depending on extreme accu-
racy in your ability to draw the reflected rays.

22-g3 If the user of an astronomical telescope
moves her head closer to or farther away from
the image she is looking at, does the magnifi-
cation change? Does the angular magnification
change? Explain. (For simplicity, assume that
no eyepiece is being used.)

. Solution, p. 241

22-g4 In the figure, only the image of my
forehead was located by drawing rays. Either
photocopy the figure or download the book and
print out the relevant page. On this copy of the
figure, make a new set of rays coming from my
chin, and locate its image. To make it easier to
judge the angles accurately, draw rays from the
chin that happen to hit the mirror at the same
points where the two rays from the forehead were
shown hitting it. By comparing the locations of
the chin’s image and the forehead’s image, verify
that the image is actually upside-down, as shown
in the original figure.

Problem 22-g4.

22-g5 The figure shows four points where rays
cross. Of these, which are image points? Ex-
plain.

Problem 22-g5.

22-g6 Here’s a game my kids like to play. I
sit next to a sunny window, and the sun reflects
from the glass on my watch, making a disk of
light on the wall or floor, which they pretend to
chase as I move it around. Is the spot a disk be-
cause that’s the shape of the sun, or because it’s
the shape of my watch? In other words, would a
square watch make a square spot, or do we just
have a circular image of the circular sun, which
will be circular no matter what?

22-g7 Apply the equation M = di/do to the
case of a flat mirror.

. Solution, p. 241

22-g8 Find the focal length of the mirror in
problem 22-a6 . √

22-g9 Rank the focal lengths of the mirrors
in the figure, from shortest to longest. Explain.

22-g10 (a) A converging mirror with a focal
length of 20 cm is used to create an image, using
an object at a distance of 10 cm. Is the image
real, or is it virtual? (b) How about f = 20 cm
and do = 30 cm? (c) What if it was a diverging
mirror with f = 20 cm and do = 10 cm? (d) A
diverging mirror with f = 20 cm and do = 30
cm?

. Solution, p. 241
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Problem 22-g9.

22-g11 (a) Make up a numerical example of
a virtual image formed by a converging mirror
with a certain focal length, and determine the
magnification. (You will need the result of prob-
lem ??.) Make sure to choose values of do and
f that would actually produce a virtual image,
not a real one. Now change the location of the
object a little bit and redetermine the magnifi-
cation, showing that it changes. At my local de-
partment store, the cosmetics department sells
hand mirrors advertised as giving a magnifica-
tion of 5 times. How would you interpret this?

(b) Suppose a Newtonian telescope is being
used for astronomical observing. Assume for
simplicity that no eyepiece is used, and assume
a value for the focal length of the mirror that
would be reasonable for an amateur instrument
that is to fit in a closet. Is the angular magnifi-
cation different for objects at different distances?
For example, you could consider two planets, one

of which is twice as far as the other.
. Solution, p. 241

22-g12 (a) Find a case where the magnifica-
tion of a curved mirror is infinite. Is the angular
magnification infinite from any realistic viewing
position? (b) Explain why an arbitrarily large
magnification can’t be achieved by having a suf-
ficiently small value of do.

. Solution, p. 241

22-g13 A concave surface that reflects sound
waves can act just like a converging mirror. Sup-
pose that, standing near such a surface, you are
able to find a point where you can place your
head so that your own whispers are focused back
on your head, so that they sound loud to you.
Given your distance to the surface, what is the
surface’s focal length? √

22-g14 The figure shows a device for con-
structing a realistic optical illusion. Two mir-
rors of equal focal length are put against each
other with their silvered surfaces facing inward.
A small object placed in the bottom of the cav-
ity will have its image projected in the air above.
The way it works is that the top mirror produces
a virtual image, and the bottom mirror then cre-
ates a real image of the virtual image. (a) Show
that if the image is to be positioned as shown, at
the mouth of the cavity, then the focal length of
the mirrors is related to the dimension h via the
equation

1

f
=

1

h
+

1

h+
(

1
h −

1
f

)−1 .

(b) Restate the equation in terms of a single vari-
able x = h/f , and show that there are two solu-
tions for x. Which solution is physically consis-
tent with the assumptions of the calculation?

22-g15 (a) A converging mirror is being used
to create a virtual image. What is the range
of possible magnifications? (b) Do the same for
the other types of images that can be formed by
curved mirrors (both converging and diverging).
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Problem 22-g14.

22-g16 A diverging mirror of focal length f is
fixed, and faces down. An object is dropped from
the surface of the mirror, and falls away from it
with acceleration g. The goal of the problem is
to find the maximum velocity of the image.
(a) Describe the motion of the image verbally,
and explain why we should expect there to be a
maximum velocity.
(b) Use arguments based on units to determine
the form of the solution, up to an unknown unit-
less multiplicative constant.
(c) Complete the solution by determining the
unitless constant. √

22-g17 A converging mirror has focal length
f . An object is located at a distance (1 + ε)f
from the mirror, where ε is small. Find the dis-
tance of the image from the mirror, simplifying
your result as much as possible by using the as-
sumption that ε is small.

22-g18 A mechanical linkage is a device that
changes one type of motion into another. The
most familiar example occurs in a gasoline car’s
engine, where a connecting rod changes the lin-
ear motion of the piston into circular motion
of the crankshaft. The top panel of the figure
shows a mechanical linkage invented by Peaucel-
lier in 1864, and independently by Lipkin around
the same time. It consists of six rods joined by
hinges, the four short ones forming a rhombus.
Point O is fixed in space, but the apparatus is
free to rotate about O. Motion at P is trans-
formed into a different motion at P′ (or vice
versa).

Geometrically, the linkage is a mechanical im-
plementation of the ancient problem of inversion
in a circle. Considering the case in which the
rhombus is folded flat, let the k be the distance
from O to the point where P and P′ coincide.
Form the circle of radius k with its center at O.
As P and P′ move in and out, points on the inside
of the circle are always mapped to points on its
outside, such that rr′ = k2. That is, the linkage
is a type of analog computer that exactly solves
the problem of finding the inverse of a number
r. Inversion in a circle has many remarkable geo-
metrical properties, discussed in H.S.M. Coxeter,
Introduction to Geometry, Wiley, 1961. If a pen
is inserted through a hole at P, and P′ is traced
over a geometrical figure, the Peaucellier linkage
can be used to draw a kind of image of the figure.

A related problem is the construction of pic-
tures, like the one in the bottom panel of the
figure, called anamorphs. The drawing of the
column on the paper is highly distorted, but
when the reflecting cylinder is placed in the cor-
rect spot on top of the page, an undistorted
image is produced inside the cylinder. (Wide-
format movie technologies such as Cinemascope
are based on similar principles.)

Show that the Peaucellier linkage does not
convert correctly between an image and its
anamorph, and design a modified version of the
linkage that does. Some knowledge of analytic
geometry will be helpful.

22-j1 Diamond has an index of refraction of
2.42, and part of the reason diamonds sparkle
is that this encourages a light ray to undergo
many total internal reflections before it emerges.
(a) Calculate the critical angle at which total in-
ternal reflection occurs in diamond. (b) Explain
the interpretation of your result: Is it measured
from the normal, or from the surface? Is it a
minimum angle for total internal reflection, or
is it a maximum? How would the critical angle
have been different for a substance such as glass
or plastic, with a lower index of refraction?√
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Problem 22-g18.

22-j2 Under ordinary conditions, gases have
indices of refraction only a little greater than
that of vacuum, i.e., n = 1 + ε, where ε is some
small number. Suppose that a ray crosses a
boundary between a region of vacuum and a re-
gion in which the index of refraction is 1 + ε.
Find the maximum angle by which such a ray
can ever be deflected, in the limit of small ε.√

22-j3 In an experiment to measure the un-
known index of refraction n of a liquid, you send
a laser beam from air into a tank filled with the
liquid. Let φ be the angle of the beam relative to
the normal while in the air, and let θ be the an-
gle in the liquid. You can set φ to any value you
like by aiming the laser from an appropriate di-
rection, and you measure θ as a result. We wish
to plan such an experiment so as to minimize
the error dn in the result of the experiment, for
a fixed error dθ in the measurement of the angle
in the liquid. We assume that there is no signif-
icant contribution to the error from uncertainty
in the index of refraction of air (which is very
close to 1) or from the angle φ. Find dn in terms
of dθ, and determine the optimal conditions.

. Solution, p. 242
22-j4 The intensity of a beam of light is de-
fined as the power per unit area incident on a
perpendicular surface. Suppose that a beam of
light in a medium with index of refraction n
reaches the surface of the medium, with air on
the outside. Its incident angle with respect to the
normal is θ. (All angles are in radians.) Only a
fraction f of the energy is transmitted, the rest
being reflected. Because of this, we might ex-
pect that the transmitted ray would always be
less intense than the incident one. But because
the transmitted ray is refracted, it becomes nar-
rower, causing an additional change in intensity
by a factor g > 1. The product of these factors
I = fg can be greater than one. The purpose of
this problem is to estimate the maximum amount
of intensification.
We will use the small-angle approximation θ � 1
freely, in order to make the math tractable. In
our previous studies of waves, we have only stud-
ied the factor f in the one-dimensional case
where θ = 0. The generalization to θ 6= 0 is
rather complicated and depends on the polar-
ization, but for unpolarized light, we can use
Schlick’s approximation,

f(θ) = f(0)(1− cos θ)5,

where the value of f at θ = 0 is found as in prob-
lem 13-d7 on p. 154.
(a) Using small-angle approximations, obtain an
expression for g of the form g ≈ 1 + Pθ2, and
find the constant P .
(b) Find an expression for I that includes the two
leading-order terms in θ. We will call this expres-
sion I2. Obtain a simple expression for the angle
at which I2 is maximized. As a check on your
work, you should find that for n = 1.3, θ = 63◦.
(Trial-and-error maximization of I gives 60◦.)
(c) Find an expression for the maximum value of
I2. You should find that for n = 1.3, the maxi-
mum intensification is 31%.

22-j5 Prove that the principle of least time
leads to Snell’s law.
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22-m1 When you take pictures with a cam-
era, the distance between the lens and the film
or chip has to be adjusted, depending on the dis-
tance at which you want to focus. This is done
by moving the lens. If you want to change your
focus so that you can take a picture of something
farther away, which way do you have to move the
lens? Explain using ray diagrams. [Based on a
problem by Eric Mazur.]

22-m2 A diverging lens with f = 30 cm is
forming an image of an object. The object is
60 cm from the lens. (a) Draw a ray diagram,
and label the image on the diagram. (b) Is the
image real, or virtual? Explain. (c) Calculate
the position of the image.

22-m3 Nearsighted people wear glasses whose
lenses are diverging. (a) Draw a ray diagram.
For simplicity pretend that there is no eye behind
the glasses. (b) If the focal length of the lens is
50.0 cm, and the person is looking at an object
at a distance of 80.0 cm, locate the image. √

22-m4 Suppose a converging lens is con-
structed of a type of plastic whose index of re-
fraction is less than that of water. How will the
lens’s behavior be different if it is placed under-
water?

. Solution, p. 242

22-m5 There are two main types of tele-
scopes, refracting (using a lens) and reflecting
(using a mirror). (Some telescopes use a mix-
ture of the two types of elements: the light first
encounters a large curved mirror, and then goes
through an eyepiece that is a lens. To keep things
simple, assume no eyepiece is used.) What im-
plications would the color-dependence of focal
length have for the relative merits of the two
types of telescopes? Describe the case where an
image is formed of a white star. You may find it
helpful to draw a ray diagram.

22-m6 Based on Snell’s law, explain why rays
of light passing through the edges of a converging
lens are bent more than rays passing through

parts closer to the center. It might seem like it
should be the other way around, since the rays
at the edge pass through less glass — shouldn’t
they be affected less? In your answer:

• Include a ray diagram showing a huge, full-
page, close-up view of the relevant part of
the lens.

• Make use of the fact that the front and
back surfaces aren’t always parallel; a lens
in which the front and back surfaces are al-
ways parallel doesn’t focus light at all, so if
your explanation doesn’t make use of this
fact, your argument must be incorrect.

• Make sure your argument still works even if
the rays don’t come in parallel to the axis
or from a point on the axis.

. Solution, p. 242

Problem 22-m6.

22-m7 When swimming underwater, why is
your vision made much clearer by wearing gog-
gles with flat pieces of glass that trap air behind
them? [Hint: You can simplify your reasoning by
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considering the special case where you are look-
ing at an object far away, and along the optic
axis of the eye.]

. Solution, p. 242

Problem 22-m7.

22-m8 The figure shows four lenses. Lens 1
has two spherical surfaces. Lens 2 is the same
as lens 1 but turned around. Lens 3 is made by
cutting through lens 1 and turning the bottom
around. Lens 4 is made by cutting a central circle
out of lens 1 and recessing it.

(a) A parallel beam of light enters lens 1 from
the left, parallel to its axis. Reasoning based
on Snell’s law, will the beam emerging from the
lens be bent inward, or outward, or will it remain
parallel to the axis? Explain your reasoning. As
part of your answer, make a huge drawing of one
small part of the lens, and apply Snell’s law at
both interfaces. Recall that rays are bent more if
they come to the interface at a larger angle with
respect to the normal.

(b) What will happen with lenses 2, 3, and 4?
Explain. Drawings are not necessary.

. Solution, p. 243

Problem 22-m8.

22-m9 The drawing shows the anatomy of the
human eye, at twice life size. Find the radius of
curvature of the outer surface of the cornea by
measurements on the figure, and then derive the
focal length of the air-cornea interface, where al-
most all the focusing of light occurs. You will
need to use physical reasoning to modify the lens-
maker’s equation for the case where there is only
a single refracting surface. Assume that the in-
dex of refraction of the cornea is essentially that
of water. √

22-m10 (a) Light is being reflected diffusely
from an object 1.000 m underwater. The light
that comes up to the surface is refracted at the
water-air interface. If the refracted rays all ap-
pear to come from the same point, then there
will be a virtual image of the object in the wa-
ter, above the object’s actual position, which will
be visible to an observer above the water. Con-
sider three rays, A, B and C, whose angles in the
water with respect to the normal are θi = 0.000◦,
1.000◦ and 20.000◦ respectively. Find the depth
of the point at which the refracted parts of A and
B appear to have intersected, and do the same
for A and C. Show that the intersections are at
nearly the same depth, but not quite. [Check:
The difference in depth should be about 4 cm.]

(b) Since all the refracted rays do not quite
appear to have come from the same point, this
is technically not a virtual image. In practical
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terms, what effect would this have on what you
see?

(c) In the case where the angles are all small,
use algebra and trig to show that the refracted
rays do appear to come from the same point, and
find an equation for the depth of the virtual im-
age. Do not put in any numerical values for the
angles or for the indices of refraction — just keep
them as symbols. You will need the approxima-
tion sin θ ≈ tan θ ≈ θ, which is valid for small
angles measured in radians.

22-m11 Two standard focal lengths for cam-
era lenses are 50 mm (standard) and 28 mm
(wide-angle). To see how the focal lengths re-
late to the angular size of the field of view, it
is helpful to visualize things as represented in
the figure. Instead of showing many rays com-
ing from the same point on the same object, as
we normally do, the figure shows two rays from
two different objects. Although the lens will in-
tercept infinitely many rays from each of these
points, we have shown only the ones that pass
through the center of the lens, so that they suffer
no angular deflection. (Any angular deflection at
the front surface of the lens is canceled by an op-
posite deflection at the back, since the front and
back surfaces are parallel at the lens’s center.)
What is special about these two rays is that they
are aimed at the edges of one 35-mm-wide frame
of film; that is, they show the limits of the field
of view. Throughout this problem, we assume
that do is much greater than di. (a) Compute
the angular width of the camera’s field of view
when these two lenses are used. (b) Use small-
angle approximations to find a simplified equa-
tion for the angular width of the field of view,
θ, in terms of the focal length, f , and the width
of the film, w. Your equation should not have
any trig functions in it. Compare the results of
this approximation with your answers from part
a. (c) Suppose that we are holding constant the
aperture (amount of surface area of the lens be-
ing used to collect light). When switching from
a 50-mm lens to a 28-mm lens, how many times
longer or shorter must the exposure be in order

to make a properly developed picture, i.e., one
that is not under- or overexposed? [Based on a
problem by Arnold Arons.]

. Solution, p. 243

Problem 22-m11.

22-m12 A nearsighted person is one whose
eyes focus light too strongly, and who is therefore
unable to relax the lens inside her eye sufficiently
to form an image on her retina of an object that
is too far away.

(a) Draw a ray diagram showing what happens
when the person tries, with uncorrected vision,
to focus at infinity.

(b) What type of lenses do her glasses have?
Explain.

(c) Draw a ray diagram showing what happens
when she wears glasses. Locate both the image
formed by the glasses and the final image.

(d) Suppose she sometimes uses contact lenses
instead of her glasses. Does the focal length of
her contacts have to be less than, equal to, or
greater than that of her glasses? Explain.

22-m13 Fred’s eyes are able to focus on
things as close as 5.0 cm. Fred holds a mag-
nifying glass with a focal length of 3.0 cm at a
height of 2.0 cm above a flatworm. (a) Locate the
image, and find the magnification. (b) Without
the magnifying glass, from what distance would
Fred want to view the flatworm to see its details
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as well as possible? With the magnifying glass?
(c) Compute the angular magnification.

22-m14 The figure shows a lens with surfaces
that are curved, but whose thickness is constant
along any horizontal line. Use the lensmaker’s
equation to prove that this “lens” is not really a
lens at all.

. Solution, p. 243

22-m15 Zahra likes to play practical jokes on
the friends she goes hiking with. One night, by
a blazing camp fire, she stealthily uses a lens of
focal length f to gather light from the fire and
make a hot spot on Becky’s neck. (a) Draw a
ray diagram and set up the equation for the im-
age location, inferring the correct plus and minus
signs from the diagram. (b) Let A be the dis-
tance from the lens to the campfire, and B the
distance from the lens to Becky’s neck. Consider
the following nine possibilities:

B
< f = f > f

A
< f
= f
> f

By reasoning about your equation from part a,
determine which of these are possible and which
are not.

. Solution, p. 244

22-m16 It would be annoying if your eye-
glasses produced a magnified or reduced image.
Prove that when the eye is very close to a lens,
and the lens produces a virtual image, the angu-
lar magnification is always approximately equal
to 1 (regardless of whether the lens is diverging
or converging).

22-q1 The figure shows a diffraction pattern
made by a double slit, along with an image of
a meter stick to show the scale. Sketch the
diffraction pattern from the figure on your paper.
Now consider the four variables in the equation
λ/d = sin θ/m. Which of these are the same for
all five fringes, and which are different for each
fringe? Which variable would you naturally use

in order to label which fringe was which? La-
bel the fringes on your sketch using the values of
that variable.

22-q2 Match gratings A-C with the diffrac-
tion patterns 1-3 that they produce. Explain.

22-q3 The figure below shows two diffraction
patterns. The top one was made with yellow
light, and the bottom one with red. Could the
slits used to make the two patterns have been
the same?

22-q4 The figure on p. ?? shows a diffrac-
tion pattern made by a double slit, along with
an image of a meter stick to show the scale. The
slits were 146 cm away from the screen on which
the diffraction pattern was projected. The spac-
ing of the slits was 0.050 mm. What was the
wavelength of the light? √

22-q5 Why would blue or violet light be the
best for microscopy?

. Solution, p. 244

22-q6 The figure below shows two diffraction
patterns, both made with the same wavelength
of red light. (a) What type of slits made the pat-
terns? Is it a single slit, double slits, or some-
thing else? Explain. (b) Compare the dimen-
sions of the slits used to make the top and bot-
tom pattern. Give a numerical ratio, and state
which way the ratio is, i.e., which slit pattern
was the larger one. Explain.

. Solution, p. 244

22-q7 When white light passes through a
diffraction grating, what is the smallest value of
m for which the visible spectrum of order m over-
laps the next one, of order m + 1? (The visible
spectrum runs from about 400 nm to about 700
nm.)

22-q8 For star images such as the ones in fig-
ure ??, estimate the angular width of the diffrac-
tion spot due to diffraction at the mouth of the
telescope. Assume a telescope with a diameter
of 10 meters (the largest currently in existence),
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Problem 22-q9.

Problem 22-m14.

Problem 22-m15.

and light with a wavelength in the middle of the
visible range. Compare with the actual angu-
lar size of a star of diameter 109 m seen from a
distance of 1017 m. What does this tell you?

. Solution, p. 244

22-q9 The figure below shows three diffrac-
tion patterns. All were made under identical
conditions, except that a different set of double
slits was used for each one. The slits used to
make the top pattern had a center-to-center sep-
aration d = 0.50 mm, and each slit was w = 0.04
mm wide. (a) Determine d and w for the slits
used to make the pattern in the middle. (b) Do
the same for the slits used to make the bottom
pattern.

. Solution, p. 244

22-q10 The beam of a laser passes through
a diffraction grating, fans out, and illuminates a
wall that is perpendicular to the original beam,
lying at a distance of 2.0 m from the grating.
The beam is produced by a helium-neon laser,
and has a wavelength of 694.3 nm. The grat-
ing has 2000 lines per centimeter. (a) What
is the distance on the wall between the central
maximum and the maxima immediately to its
right and left? (b) How much does your answer
change when you use the small-angle approxima-
tions θ ≈ sin θ ≈ tan θ? √

22-q11 Ultrasound, i.e., sound waves with
frequencies too high to be audible, can be used
for imaging fetuses in the womb or for breaking
up kidney stones so that they can be eliminated
by the body. Consider the latter application.
Lenses can be built to focus sound waves, but be-
cause the wavelength of the sound is not all that
small compared to the diameter of the lens, the
sound will not be concentrated exactly at the ge-
ometrical focal point. Instead, a diffraction pat-
tern will be created with an intense central spot
surrounded by fainter rings. About 85% of the
power is concentrated within the central spot.
The angle of the first minimum (surrounding the
central spot) is given by sin θ = λ/b, where b is
the diameter of the lens. This is similar to the
corresponding equation for a single slit, but with
a factor of 1.22 in front which arises from the
circular shape of the aperture. Let the distance
from the lens to the patient’s kidney stone be
L = 20 cm. You will want f > 20 kHz, so that
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the sound is inaudible. Find values of b and f
that would result in a usable design, where the
central spot is small enough to lie within a kid-
ney stone 1 cm in diameter.

22-q12 Under what circumstances could one
get a mathematically undefined result by solving
the double-slit diffraction equation for θ? Give
a physical interpretation of what would actually
be observed.

. Solution, p. 245

22-q13 When ultrasound is used for medi-
cal imaging, the frequency may be as high as
5-20 MHz. Another medical application of ul-
trasound is for therapeutic heating of tissues in-
side the body; here, the frequency is typically 1-3
MHz. What fundamental physical reasons could
you suggest for the use of higher frequencies for
imaging?
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23 More about relativity

This is not a textbook. It’s a book of problems
meant to be used along with a textbook. Although
each chapter of this book starts with a brief sum-
mary of the relevant physics, that summary is
not meant to be enough to allow the reader to
actually learn the subject from scratch. The pur-
pose of the summary is to show what material is
needed in order to do the problems, and to show
what terminology and notation are being used.

23.1 More about relativity

References:

• Crowell, Simple Nature, lightandmat-
ter.com, sec. 7.3

• OpenStax University Physics, openstax.org,
v. 3, sec. 5.8-9
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Problems

23-a1 (a) A free neutron (as opposed to a
neutron bound into an atomic nucleus) is unsta-
ble, and undergoes beta decay (which you may
want to review). The masses of the particles in-
volved are as follows:

neutron 1.67495× 10−27 kg
proton 1.67265× 10−27 kg
electron 0.00091× 10−27 kg
antineutrino < 10−35 kg

Find the energy released in the decay of a free
neutron.

√

(b) Neutrons and protons make up essentially
all of the mass of the ordinary matter around us.
We observe that the universe around us has no
free neutrons, but lots of free protons (the nu-
clei of hydrogen, which is the element that 90%
of the universe is made of). We find neutrons
only inside nuclei along with other neutrons and
protons, not on their own.

If there are processes that can convert neu-
trons into protons, we might imagine that there
could also be proton-to-neutron conversions, and
indeed such a process does occur sometimes in
nuclei that contain both neutrons and protons:
a proton can decay into a neutron, a positron,
and a neutrino. A positron is a particle with the
same properties as an electron, except that its
electrical charge is positive. A neutrino, like an
antineutrino, has negligible mass.

Although such a process can occur within a
nucleus, explain why it cannot happen to a free
proton. (If it could, hydrogen would be radioac-
tive, and you wouldn’t exist!)

23-a2 (a) Find a relativistic equation for the
velocity of an object in terms of its mass and
momentum (eliminating γ). Use natural units
(i.e., discard factors of c) throughout.

√

(b) Show that your result is approximately the
same as the nonrelativistic value, p/m, at low
velocities.
(c) Show that very large momenta result in
speeds close to the speed of light.
(d) Insert factors of c to make your result from

part a usable in SI units.
√

23-a3 (a) A charged particle is surrounded by
a uniform electric field. Starting from rest, it is
accelerated by the field to speed v after traveling
a distance d. Now it is allowed to continue for
a further distance 3d, for a total displacement
from the start of 4d. What speed will it reach,
assuming newtonian physics?
(b) Find the relativistic result for the case of v =
c/2.

23-a4 Expand the equation K = m(γ−1) in a
Taylor series, and find the first two nonvanishing
terms. Explain why the vanishing terms are the
ones that should vanish physically. Show that
the first term is the nonrelativistic expression for
kinetic energy.

23-a5 Consider the relativistic relation for
momentum as a function of velocity (for a parti-
cle with nonzero mass). Expand this in a Taylor
series, and find the first two nonvanishing terms.
Explain why the vanishing terms are the ones
that should vanish physically. Show that the first
term is the newtonian expression.

23-a6 Expand the relativistic equation for
the longitudinal Doppler shift of light D(v) in
a Taylor series, and find the first two nonvan-
ishing terms. Show that these two terms agree
with the nonrelativistic expression, so that any
relativistic effect is of higher order in v.

23-a7 (a) Let L be the diameter of our galaxy.
Suppose that a person in a spaceship of mass
m wants to travel across the galaxy at constant
speed, taking proper time τ . Find the kinetic
energy of the spaceship. (b) Your friend is impa-
tient, and wants to make the voyage in an hour.
For L = 105 light years, estimate the energy in
units of megatons of TNT (1 megaton=4×109 J).



24 Quantum physics

This is not a textbook. It’s a book of problems
meant to be used along with a textbook. Although
each chapter of this book starts with a brief sum-
mary of the relevant physics, that summary is
not meant to be enough to allow the reader to
actually learn the subject from scratch. The pur-
pose of the summary is to show what material is
needed in order to do the problems, and to show
what terminology and notation are being used.

24.1 The nucleus, half-life,
and probability

References:

• Crowell, Simple Nature, lightandmat-
ter.com, sec. 8.2, 13.1

• OpenStax University Physics, openstax.org,
v. 3, ch. 10

24.2 Wave-particle duality

References:

• Crowell, Simple Nature, lightandmat-
ter.com, sec. 13.2-3

• OpenStax University Physics, openstax.org,
v. 3, ch. 6
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Problems

24-a1 241Pu decays either by electron decay
or by alpha decay. (A given 241Pu nucleus may
do either one; it’s random.) What are the iso-
topes created as products of these two modes of
decay?

24-a2 The nuclear process of beta decay by
electron capture is p + e− → n + ν. One of the
protons in the nucleus absorbs a proton.
(a) Show that charge is conserved in this reac-
tion.
(b) Explain why electron capture doesn’t occur
in hydrogen atoms. (If it did, matter wouldn’t
exist!)

24-d1 If a radioactive substance has a half-
life of one year, does this mean that it will be
completely decayed after two years? Explain.

24-d2 (a) A nuclear physicist is studying a
nuclear reaction caused in an accelerator exper-
iment, with a beam of ions from the accelerator
striking a thin metal foil and causing nuclear re-
actions when a nucleus from one of the beam ions
happens to hit one of the nuclei in the target.
After the experiment has been running for a few
hours, a few billion radioactive atoms have been
produced, embedded in the target. She does not
know what nuclei are being produced, but she
suspects they are an isotope of some heavy el-
ement such as Pb, Bi, Fr or U. Following one
such experiment, she takes the target foil out of
the accelerator, sticks it in front of a detector,
measures the activity every 5 min, and makes a
graph (figure). The isotopes she thinks may have
been produced are:

isotope half-life (minutes)
211Pb 36.1
214Pb 26.8
214Bi 19.7
223Fr 21.8
239U 23.5

Which one is it?
(b) Having decided that the original experimen-
tal conditions produced one specific isotope, she
now tries using beams of ions traveling at sev-
eral different speeds, which may cause different
reactions. The following table gives the activity
of the target 10, 20 and 30 minutes after the end
of the experiment, for three different ion speeds.

activity (millions of decays/s) after. . .
10 min 20 min 30 min

first ion speed 1.933 0.832 0.382
second ion speed 1.200 0.545 0.248
third ion speed 7.211 1.296 0.248

Since such a large number of decays is being
counted, assume that the data are only inaccu-
rate due to rounding off when writing down the
table. Which are consistent with the production
of a single isotope, and which imply that more
than one isotope was being created?

24-d3 All helium on earth is from the de-
cay of naturally occurring heavy radioactive ele-
ments such as uranium. Each alpha particle that
is emitted ends up claiming two electrons, which
makes it a helium atom. If the original 238U
atom is in solid rock (as opposed to the earth’s
molten regions), the He atoms are unable to dif-
fuse out of the rock. This problem involves dat-
ing a rock using the known decay properties of
uranium 238. Suppose a geologist finds a sam-
ple of hardened lava, melts it in a furnace, and
finds that it contains 1230 mg of uranium and 2.3
mg of helium. 238U decays by alpha emission,
with a half-life of 4.5 × 109 years. The subse-
quent chain of alpha and electron (beta) decays
involves much shorter half-lives, and terminates
in the stable nucleus 206Pb. Almost all natural
uranium is 238U, and the chemical composition
of this rock indicates that there were no decay
chains involved other than that of 238U.
(a) How many alphas are emitted per decay
chain? [Hint: Use conservation of mass.]
(b) How many electrons are emitted per decay
chain? [Hint: Use conservation of charge.]
(c) How long has it been since the lava originally
hardened?
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Problem 24-d2.

√

24-g1 What is the probability of rolling a pair
of dice and getting “snake eyes,” i.e., both dice
come up with ones?

24-g2 Devise a method for testing experimen-
tally the hypothesis that a gambler’s chance of
winning at craps is independent of her previous
record of wins and losses. If you don’t invoke the
mathematical definition of statistical indepen-
dence, then you haven’t proposed a test. This
has nothing to do with the details of the rules of
craps, or with the fact that it’s a game played
using dice.

24-g3 A blindfolded person fires a gun at a
circular target of radius b, and is allowed to con-
tinue firing until a shot actually hits it. Any
part of the target is equally likely to get hit. We
measure the random distance r from the center
of the circle to where the bullet went in.
(a) Show that the probability distribution of r
must be of the form D(r) = kr, where k is
some constant. (Of course we have D(r) = 0
for r > b.)
(b) Determine k by requiring D to be properly
normalized.

√

(c) Find the average value of r.
√

(d) Interpreting your result from part c, how
does it compare with b/2? Does this make sense?
Explain.

24-g4 We are given some atoms of a certain
radioactive isotope, with half-life t1/2. We pick
one atom at random, and observe it for one half-
life, starting at time zero. If it decays during
that one-half-life period, we record the time t at
which the decay occurred. If it doesn’t, we reset
our clock to zero and keep trying until we get an
atom that cooperates. The final result is a time
0 ≤ t ≤ t1/2, with a distribution that looks like
the usual exponential decay curve, but with its
tail chopped off.
(a) Find the distribution D(t), with the proper
normalization.

√

(b) Find the average value of t.
√

(c) Interpreting your result from part b, how
does it compare with t1/2/2? Does this make
sense? Explain.

24-g5 The speed, v, of an atom in an ideal
gas has a probability distribution of the form
D(v) = bve−cv

2

, where 0 ≤ v < ∞, c relates
to the temperature, and b is determined by nor-
malization.
(a) Sketch the distribution.
(b) Find b in terms of c.

√

(c) Find the average speed in terms of c, elimi-
nating b. (Don’t try to do the indefinite integral,
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because it can’t be done in closed form. The rel-
evant definite integral can be found in tables or
done with computer software.) √

24-j1 Suppose we want to build an electronic
light sensor using an apparatus in which the light
strikes a metal plate and generates a current
through the photoelectric effect. How would its
ability to detect different parts of the spectrum
depend on the type of metal used in the capaci-
tor plates?

24-j2 The photoelectric effect can occur
not just for metal cathodes but for any sub-
stance, including living tissue. Ionization of
DNA molecules can cause cancer or birth defects.
If the energy required to ionize DNA is on the
same order of magnitude as the energy required
to produce the photoelectric effect in a metal,
which of the following types of electromagnetic
waves might pose such a hazard? Explain.

60 Hz waves from power lines
100 MHz FM radio
microwaves from a microwave oven
visible light
ultraviolet light
x-rays

24-j3 When light is reflected from a mirror,
perhaps only 80% of the energy comes back. One
could try to explain this in two different ways:
(1) 80% of the photons are reflected, or (2) all
the photons are reflected, but each loses 20% of
its energy. Based on your everyday knowledge
about mirrors, how can you tell which interpreta-
tion is correct? [Based on a problem from PSSC
Physics.]

24-j4 Give a numerical comparison of the
number of photons per second emitted by
a hundred-watt FM radio transmitter and a
hundred-watt lightbulb. √

24-j5 The beam of a 100 W overhead projec-
tor covers an area of 1 m× 1 m when it hits the
screen 3 m away. Estimate the number of pho-
tons that are in flight at any given time. (Since

this is only an estimate, we can ignore the fact
that the beam is not parallel.) √

24-j6 In the photoelectric effect, electrons are
observed with virtually no time delay (∼ 10 ns),
even when the light source is very weak. (A weak
light source does however only produce a small
number of ejected electrons.) The purpose of this
problem is to show that the lack of a significant
time delay contradicted the classical wave theory
of light, so throughout this problem you should
put yourself in the shoes of a classical physicist
and pretend you don’t know about photons at
all. At that time, it was thought that the elec-
tron might have a radius on the order of 10−15 m.
(Recent experiments have shown that if the elec-
tron has any finite size at all, it is far smaller.)
(a) Estimate the power that would be soaked up
by a single electron in a beam of light with an
intensity of 1 mW/m2.

√

(b) The energy, Es, required for the electron to
escape through the surface of the cathode is on
the order of 10−19 J. Find how long it would take
the electron to absorb this amount of energy, and
explain why your result constitutes strong evi-
dence that there is something wrong with the
classical theory. √

24-j7 (a) A radio transmitter radiates power
P in all directions, so that the energy spreads
out spherically. Find the energy density at a
distance r.

√

(b) Let the wavelength be λ. As described in ex-
ample ?? on p. ??, find the number of photons
in a volume λ3 at this distance r.

√

(c) For a 1000 kHz AM radio transmitting sta-
tion, assuming reasonable values of P and r, ver-
ify, as claimed in the example, that the result
from part b is very large.

24-m1 In a television, suppose the electrons
are accelerated from rest through a voltage dif-
ference of 104 V. What is their final wavelength?√
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24-m2 Use the Heisenberg uncertainty prin-
ciple to estimate the minimum velocity of a pro-
ton or neutron in a 208Pb nucleus, which has a
diameter of about 13 fm (1 fm=10−15 m). As-
sume that the speed is nonrelativistic, and then
check at the end whether this assumption was
warranted. √

24-m3 Find the energy of a nonrelativistic
particle in a one-dimensional box of length L,
expressing your result in terms of L, the parti-
cle’s mass m, the number of peaks and valleys n
in the wavefunction, and fundamental constants.√

24-m4 A free electron that contributes to
the current in an ohmic material typically has
a speed of 105 m/s (much greater than the drift
velocity).
(a) Estimate its de Broglie wavelength, in nm.√

(b) If a computer memory chip contains 108 elec-
tric circuits in a 1 cm2 area, estimate the linear
size, in nm, of one such circuit.

√

(c) Based on your answers from parts a and b,
does an electrical engineer designing such a chip
need to worry about wave effects such as diffrac-
tion?
(d) Estimate the maximum number of electric
circuits that can fit on a 1 cm2 computer chip
before quantum-mechanical effects become im-
portant.

24-m5 In classical mechanics, an interaction
energy of the form U(x) = 1

2kx
2 gives a har-

monic oscillator: the particle moves back and
forth at a frequency ω =

√
k/m. This form for

U(x) is often a good approximation for an indi-
vidual atom in a solid, which can vibrate around
its equilibrium position at x = 0. (For sim-
plicity, we restrict our treatment to one dimen-
sion, and we treat the atom as a single parti-
cle rather than as a nucleus surrounded by elec-
trons). The atom, however, should be treated
quantum-mechanically, not clasically. It will
have a wave function. We expect this wave func-
tion to have one or more peaks in the classically

allowed region, and we expect it to tail off in the
classically forbidden regions to the right and left.
Since the shape of U(x) is a parabola, not a se-
ries of flat steps as in figure ?? on page ??, the
wavy part in the middle will not be a sine wave,
and the tails will not be exponentials.
(a) Show that there is a solution to the
Schrödinger equation of the form

Ψ(x) = e−bx
2

,

and relate b to k, m, and ~. To do this, calculate
the second derivative, plug the result into the
Schrödinger equation, and then find what value
of b would make the equation valid for all val-
ues of x. This wavefunction turns out to be the
ground state. Note that this wavefunction is not
properly normalized — don’t worry about that.
(b) Sketch a graph showing what this wavefunc-
tion looks like.
(c) Let’s interpret b. If you changed b, how would
the wavefunction look different? Demonstrate by
sketching two graphs, one for a smaller value of
b, and one for a larger value.
(d) Making k greater means making the atom
more tightly bound. Mathematically, what hap-
pens to the value of b in your result from part
a if you make k greater? Does this make sense
physically when you compare with part c? √

24-m6 Estimate the angular momentum of a
spinning basketball, in units of ~. Explain how
this result relates to the correspondence princi-
ple.

24-m7 Before the quantum theory, experi-
mentalists noted that in many cases, they would
find three lines in the spectrum of the same
atom that satisfied the following mysterious rule:
1/λ1 = 1/λ2 +1/λ3. Explain why this would oc-
cur. Do not use reasoning that only works for hy-
drogen — such combinations occur in the spectra
of all elements. [Hint: Restate the equation in
terms of the energies of photons.]
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24-m8 The wavefunction of the electron in
the ground state of a hydrogen atom, shown in
the top left of figure ?? on p. ??, is

Ψ = π−1/2a−3/2e−r/a,

where r is the distance from the proton, and
a = ~2/kme2 = 5.3× 10−11 m is a constant that
sets the size of the wave. The figure doesn’t
show the proton; let’s take the proton to be a
sphere with a radius of b = 0.5 fm.
(a) Reproduce figure ?? in a rough sketch, and
indicate, relative to the size of your sketch, some
idea of how big a and b are.
(b) Calculate symbolically, without plugging in
numbers, the probability that at any moment,
the electron is inside the proton. [Hint: Does
it matter if you plug in r = 0 or r = b in the
equation for the wavefunction?]

√

(c) Calculate the probability numerically.
√

(d) Based on the equation for the wavefunction,
is it valid to think of a hydrogen atom as having
a finite size? Can a be interpreted as the size of
the atom, beyond which there is nothing? Or is
there any limit on how far the electron can be
from the proton?

24-m9 Show that the wavefunction given in
problem 24-m8 is properly normalized.

24-m10 This problem generalizes the one-
dimensional result from problem 24-m3.
Find the energy levels of a particle in a three-
dimensional rectangular box with sides of length
a, b, and c. √

24-m11 Hydrogen is the only element whose
energy levels can be expressed exactly in an
equation. Calculate the ratio λE/λF of the wave-
lengths of the transitions labeled E and F in
problem ?? on p. ??. Express your answer as
an exact fraction, not a decimal approximation.
In an experiment in which atomic wavelengths
are being measured, this ratio provides a natural,
stringent check on the precision of the results.√

24-m12 The electron, proton, and neutron
were discovered, respectively, in 1897, 1919, and
1932. The neutron was late to the party, and
some physicists felt that it was unnecessary to
consider it as fundamental. Maybe it could be
explained as simply a proton with an electron
trapped inside it. The charges would cancel out,
giving the composite particle the correct neutral
charge, and the masses at least approximately
made sense (a neutron is heavier than a proton).
(a) Given that the diameter of a proton is on the
order of 10−15 m, use the Heisenberg uncertainty
principle to estimate the trapped electron’s min-
imum momentum.

√

(b) Find the electron’s minimum kinetic energy.√

(c) Show via E = mc2 that the proposed expla-
nation may have a problem, because the contri-
bution to the neutron’s mass from the electron’s
kinetic energy would be comparable to the neu-
tron’s entire mass.

24-m13 Suppose that an electron, in one di-
mension, is confined to a certain region of space
so that its wavefunction is given by

Ψ =


0 if x < 0

A sin(2πx/L) if 0 ≤ x ≤ L
0 if x > L

Determine the constant A from normalization.√

24-m14 Show that a wavefunction of the
form Ψ = eby sin ax is a possible solution of the
Schrödinger equation in two dimensions, with a
constant potential U . Can we tell whether it
would apply to a classically allowed region, or a
classically forbidden one?



Answers

1-a1

134 mg× 10−3 g

1 mg
× 10−3 kg

1 g
= 1.34× 10−4 kg

1-d1 (a) Let’s do 10.0 g and 1000 g. The arith-
metic mean is 505 grams. It comes out to be
0.505 kg, which is consistent. (b) The geomet-
ric mean comes out to be 100 g or 0.1 kg, which
is consistent. (c) If we multiply meters by me-
ters, we get square meters. Multiplying grams
by grams should give square grams! This sounds
strange, but it makes sense. Taking the square
root of square grams (g2) gives grams again. (d)
No. The superduper mean of two quantities with
units of grams wouldn’t even be something with
units of grams! Related to this shortcoming is
the fact that the superduper mean would fail the
kind of consistency test carried out in the first
two parts of the problem.
1-d2 (a) They’re all defined in terms of the ra-
tio of side of a triangle to another. For instance,
the tangent is the length of the opposite side over
the length of the adjacent side. Dividing meters
by meters gives a unitless result, so the tangent,
as well as the other trig functions, is unitless.
(b) The tangent function gives a unitless result,
so the units on the right-hand side had better
cancel out. They do, because the top of the frac-
tion has units of meters squared, and so does the
bottom.
1-d3 The final line is supposed to be an equa-
tion for the height, so the units of the expression
on the right-hand side had better equal meters.
The pi and the 3 are unitless, so we can ignore
them. In terms of units, the final becomes

m =
m2

m3
=

1

m
.

This is false, so there must be a mistake in the
algebra. The units of lines 1, 2, and 3 check out,
so the mistake must be in the step from line 3 to
line 4. In fact the result should have been

h =
3V

πr2
.

Now the units check: m = m3/m2.

1-j1 The proportionality V ∝ L3 can be re-
stated in terms of ratios as V1/V2 = (L1/L2)3 =
(1/10)3 = 1/1000, so scaling down the linear di-
mensions by a factor of 1/10 reduces the volume
by 1/1000, to a milliliter.

1-j2

1 mm2 ×
(

1 cm

10 mm

)2

= 10−2 cm2

1-j3 The bigger scope has a diameter that’s ten
times greater. Area scales as the square of the
linear dimensions, so A ∝ d2, or in the language
of ratios A1/A2 = (d1/d2)2 = 100. Its light-
gathering power is a hundred times greater.

1-j4 The cone of mixed gin and vermouth is
the same shape as the cone of vermouth, but its
linear dimensions are doubled. Translating the
proportionality V ∝ L3 into an equation about
ratios, we have V1/V2 = (L1/L2)3 = 8. Since
the ratio of the whole thing to the vermouth is
8, the ratio of gin to vermouth is 7.

1-k1 Since they differ by two steps on the
Richter scale, the energy of the bigger quake
is 104 times greater. The wave forms a hemi-
sphere, and the surface area of the hemisphere
over which the energy is spread is proportional
to the square of its radius, A ∝ r2, or r ∝

√
A,

which means r1/r2 =
√
A1/A2. If the amount

of vibration was the same, then the surface areas
must be in the ratio A1/A2 = 104, which means
that the ratio of the radii is 102.

1-p1 Directly guessing the number of jelly
beans would be like guessing volume directly.
That would be a mistake. Instead, we start
by estimating the linear dimensions, in units of
beans. The contents of the jar look like they’re
about 10 beans deep. Although the jar is a
cylinder, its exact geometrical shape doesn’t re-
ally matter for the purposes of our order-of-
magnitude estimate. Let’s pretend it’s a rect-
angular jar. The horizontal dimensions are also

233
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something like 10 beans, so it looks like the jar
has about 10× 10× 10 or ∼ 103 beans inside.
1-q1 Let’s estimate the Great Wall’s volume,
and then figure out how many bricks that would
represent. The wall is famous because it covers
pretty much all of China’s northern border, so
let’s say it’s 1000 km long. From pictures, it
looks like it’s about 10 m high and 10 m wide, so
the total volume would be 106 m×10 m×10 m =
108 m3. If a single brick has a volume of 1 liter, or
10−3 m3, then this represents about 1011 bricks.
If one person can lay 10 bricks in an hour (taking
into account all the preparation, etc.), then this
would be 1010 man-hours.
2-k1 ∆x = 1

2at
2, so for a fixed value of ∆x,

we have t ∝ 1/
√
a. Translating this into the

language of ratios gives tM/tE =
√
aE/aM =√

3 = 1.7.
2-n4 (a) Other than w, the only thing with
units that can occur in our answer is g. If we
want to combine a distance and an acceleration
to produce a time, the only way to do so is
like

√
w/g, possibly multiplied by a unitless con-

stant.
(b) It is convenient to introduce the notations L
for the length of one side of the vee and h for the
height, so that L2 = w2 +h2. The acceleration is
a = g sin θ = gh/L. To travel a distance L with
this acceleration takes time

t =
√

2L/a =

√(
2w

g

)(
h

w
+
w

h

)
.

Let x = h/w. For a fixed value of w, this time is
an increasing function of x+1/x, so we want the
value of x that minimizes this expression. Taking
the derivative and setting it equal to zero gives
x = 1, or h = w. In other words, the time is
minimized if the angle is 45◦.
(c) Plugging x = 1 back in, we have t∗ = 2t =
4
√
w/g, so the unitless factor was 4.

2-p2 (a) Solving for ∆x = 1
2at

2 for a, we find

a = 2∆x/t2 = 5.51 m/s2. (b) v =
√

2a∆x =
66.6 m/s. (c) The actual car’s final veloc-
ity is less than that of the idealized constant-
acceleration car. If the real car and the idealized

car covered the quarter mile in the same time but
the real car was moving more slowly at the end
than the idealized one, the real car must have
been going faster than the idealized car at the
beginning of the race. The real car apparently
has a greater acceleration at the beginning, and
less acceleration at the end. This make sense, be-
cause every car has some maximum speed, which
is the speed beyond which it cannot accelerate.
3-j2 The boat’s velocity relative to the land
equals the vector sum of its velocity with respect
to the water and the water’s velocity with respect
to the land,

vBL = vBW + vWL.

If the boat is to travel straight across the river,
i.e., along the y axis, then we need to have
vBL,x = 0. This x component equals the sum
of the x components of the other two vectors,

vBL,x = vBW,x + vWL,x,

or
0 = −|vBW | sin θ + |vWL|.

Solving for θ, we find

sin θ = |vWL|/|vBW |,

so

θ = sin−1 |vWL|
|vBW |

.

4-a1 (a) The force of gravity on an object can’t
just be g, both because g doesn’t have units of
force and because the force of gravity is different
for different objects.
(b) The force of gravity on an object can’t just be
m either. This again has the wrong units, and
it also can’t be right because it should depend
on how strong gravity is in the region of space
where the object is.
(c) If the object happened to be free-falling, then
the only force acting on it would be gravity, so
by Newton’s second law, a = F/m, where F is
the force that we’re trying to find. Solving for F ,
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we have F = ma. But the acceleration of a free-
falling object has magnitude g, so the magnitude
of the force is mg. The force of gravity on an
object doesn’t depend on what else is happening
to the object, so the force of gravity must also
be equal to mg if the object doesn’t happen to
be free-falling.
4-a2 (a) This is a measure of the box’s resis-
tance to a change in its state of motion, so it
measures the box’s mass. The experiment would
come out the same in lunar gravity.
(b) This is a measure of how much gravitational
force it feels, so it’s a measure of weight. In lu-
nar gravity, the box would make a softer sound
when it hit.
(c) As in part a, this is a measure of its resis-
tance to a change in its state of motion: its mass.
Gravity isn’t involved at all.
4-a5 a = ∆v/∆t, and also a = F/m, so

∆t =
∆v

a

=
m∆v

F

=
(1000 kg)(50 m/s− 20 m/s)

3000 N
= 10 s

4-m1 (a) The swimmer’s acceleration is caused
by the water’s force on the swimmer, and the
swimmer makes a backward force on the wa-
ter, which accelerates the water backward. (b)
The club’s normal force on the ball accelerates
the ball, and the ball makes a backward normal
force on the club, which decelerates the club. (c)
The bowstring’s normal force accelerates the ar-
row, and the arrow also makes a backward nor-
mal force on the string. This force on the string
causes the string to accelerate less rapidly than it
would if the bow’s force was the only one acting
on it. (d) The tracks’ backward frictional force
slows the locomotive down. The locomotive’s
forward frictional force causes the whole planet
earth to accelerate by a tiny amount, which is
too small to measure because the earth’s mass is
so great.
5-d10 (a) There is no theoretical limit on how

much normal force FN the climber can make on
the walls with each foot, so the frictional force
can be made arbitrarily large. This means that
with any µ > 0, we can always get the verti-
cal forces to cancel. The theoretical minimum
value of µ will be determined by the need for the
horizontal forces to cancel, so that the climber
doesn’t pop out of the corner like a watermelon
seed squeezed between two fingertips. The hori-
zontal component of the frictional force is always
less than the magnitude of the frictional force,
which is turn is less than µFN . To find the mini-
mum value of µ, we set the static frictional force
equal to µFN .

Let the x axis be along the plane that bi-
sects the two walls, let y be the horizontal di-
rection perpendicular to x, and let z be ver-
tical. Then cancellation of the forces in the
z direction is not the limiting factor, for the
reasons described above, and cancellation in y
is guaranteed by symmetry, so the only issue
is the cancellation of the x forces. We have
2Fs cos(θ/2)−2FN sin(θ/2) = 0. Combining this
with Fs = µFN results in µ = tan(θ/2).

(b) For θ = 0, µ is very close to zero. That
is, we can always theoretically stay stuck be-
tween two parallel walls, simply by pressing hard
enough, even if the walls are made of ice or pol-
ished marble with a coating of WD-40. As θ gets
close to 180◦, µ blows up to infinity. We need at
least some dihedral angle to do this technique,
because otherwise we’re facing a flat wall, and
there is nothing to cancel the wall’s normal force
on our feet.

(c) The result is 99.0◦, i.e., just a little wider
than a right angle.

5-m1 (a) By Newton’s third law, the forces
are F and −F . Pick a coordinate system in
which skater 1 moves in the negative x direction
due to a force −F . Since the forces are con-
stant, the accelerations are also constant, and
the distances moved by their centers of mass are
∆x1 = (1/2)a1T

2 and ∆x2 = (1/2)a2T
2. The

accelerations are a1 = −F/m1 and a2 = F/m2.
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We then have

`f − `0 = ∆x2 −∆x1

=
1

2
F

(
1

m1
+

1

m2

)
T 2,

resulting in

T =

√√√√ 2(`f − `0)

F
(

1
m1

+ 1
m2

)
(b) √

m

N/kg
=

√
m

kg·ms−2kg−1 = s

(c) If the force is bigger, we expect physically
that they will reach arm’s length more quickly.
Mathematically, a bigger F on the bottom re-
sults in a smaller T .
(d) If one of the masses is very small, then
1/m1+1/m2 gets very big, and T gets very small.
This makes sense physically. If you flick a flea off
of yourself, contact is broken very quickly.
7-m1

Etotal,i = Etotal,f

PEi + heati = PEf +KEf + heatf

1

2
mv2 = PEi − PEf + heati − heatf

= −∆PE −∆heat

v =

√
2

(
−∆PE −∆heat

m

)
= 6.4 m/s

8-a1 Momentum is a vector. The total mo-
mentum of the molecules is always zero, since
the momenta in different directions cancal out on
the average. Cooling changes individual molec-
ular momenta, but not the total.
8-a2 By conservation of momentum, the total
momenta of the pieces after the explosion is the
same as the momentum of the firework before the
explosion. However, there is no law of conserva-
tion of kinetic energy, only a law of conservation
of energy. The chemical energy in the gunpowder

is converted into heat and kinetic energy when
it explodes. All we can say about the kinetic en-
ergy of the pieces is that their total is greater
than the kinetic energy before the explosion.
8-g3 A conservation law is about addition: it
says that when you add up a certain thing, the
total always stays the same. Funkosity would
violate the additive nature of conservation laws,
because a two-kilogram mass would have twice as
much funkosity as a pair of one-kilogram masses
moving at the same speed.
8-m3 Let m be the mass of the little puck and
M = 2.3m be the mass of the big one. All we
need to do is find the direction of the total mo-
mentum vector before the collision, because the
total momentum vector is the same after the col-
lision. Given the two components of the momen-
tum vector px = Mv and py = mv, the direc-
tion of the vector is tan−1(py/px) = 23◦ counter-
clockwise from the big puck’s original direction
of motion.
9-d13 The moment of inertia is I =

∫
r2 dm.

Let the ring have total mass M and radius b.
The proportionality

M

2π
=

dm

dθ

gives a change of variable that results in

I =
M

2π

∫ 2π

0

r2 dθ.

If we measure θ from the axis of rotation, then
r = b sin θ, so this becomes

I =
Mb2

2π

∫ 2π

0

sin2 θ dθ.

The integrand averages to 1/2 over the 2π range
of integration, so the integral equals π. We there-
fore have I = 1

2Mb2. This is, as claimed, half the
value for rotation about the symmetry axis.
9-g1 The pliers are not moving, so their an-
gular momentum remains constant at zero, and
the total torque on them must be zero. Not only
that, but each half of the pliers must have zero
total torque on it. This tells us that the magni-
tude of the torque at one end must be the same
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as that at the other end. The distance from the
axis to the nut is about 2.5 cm, and the dis-
tance from the axis to the centers of the palm
and fingers are about 8 cm. The angles are close
enough to 90◦ that we can pretend they’re 90 de-
grees, considering the rough nature of the other
assumptions and measurements. The result is
(300 N)(2.5 cm) = (F )(8 cm), or F = 90 N.
10-d5 (a) If the expression 1 + by is to make
sense, then by has to be unitless, so b has units
of m−1. The input to the exponential function
also has to be unitless, so k also has of m−1. The
only factor with units on the right-hand side is
Po, so Po must have units of pressure, or Pa.
(b)

dP = ρg dy

ρ =
1

g

dP

dy

=
Po
g
e−ky(−k − kby + b)

(c) The three terms inside the parentheses on
the right all have units of m−1, so it makes sense
to add them, and the factor in parentheses has
those units. The units of the result from b then
look like

kg

m3
=

Pa

m/s2
m−1

=
N/m2

m2/s2

=
kg·m−1 ·s−2

m2/s2
,

which checks out.
11-a1 Newton’s law of gravity depends on the
inverse square of the distance, so if the two plan-
ets’ masses had been equal, then the factor of
0.83/0.059 = 14 in distance would have caused
the force on planet c to be 142 = 2.0× 102 times
weaker. However, planet c’s mass is 3.0 times
greater, so the force on it is only smaller by a
factor of 2.0× 102/3.0 = 65.
11-d1 Newton’s law of gravity is F =
GMm/r2. Both G and the astronaut’s mass m

are the same in the two situations, so F ∝Mr−2.
In terms of ratios, this is

Fc
Fe

=
Mc

Me

(
rc
re

)−2

.

The result is 11 N.
11-d2 (a) The asteroid’s mass depends on the
cube of its radius, and for a given mass the sur-
face gravity depends on r−2. The result is that
surface gravity is directly proportional to radius.
Half the gravity means half the radius, or one
eighth the mass. (b) To agree with a, Earth’s
mass would have to be 1/8 Jupiter’s. We as-
sumed spherical shapes and equal density. Both
planets are at least roughly spherical, so the only
way out of the contradiction is if Jupiter’s den-
sity is significantly less than Earth’s.
11-g1 Any fractional change in r results in
double that amount of fractional change in 1/r2.
For example, raising r by 1% causes 1/r2 to go
down by very nearly 2%. A 27-day orbit is 1/13.5
of a year, so the fractional change in 1/r2 is

2× (4/13.5) cm

3.84× 105 km
× 1 km

105 cm
= 1.5× 10−11

11-j5 Newton’s second law gives

F = mDaD,

where F is Ida’s force on Dactyl. Using Newton’s
universal law of gravity, F= GmImD/r

2,and the
equation a = v2/r for circular motion, we find

GmImD/r
2 = mDv

2/r.

Dactyl’s mass cancels out, giving

GmI/r
2 = v2/r.

Dactyl’s velocity equals the circumference of its
orbit divided by the time for one orbit: v =
2πr/T . Inserting this in the above equation and
solving for mI , we find

mI =
4π2r3

GT 2
,
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so Ida’s density is

ρ = mI/V

=
4π2r3

GV T 2
.

11-m6 (a) Based on units, we must have g =
kGλ/y, where k is a unitless universal constant.
(b) For the actual calculation, we have

g =

∫
dgy

= G

∫
dm

r2
cos θ,

where θ is the angle between the perpendicular
and the r vector. Then dm = λ dx, cos θ = y/r,

and r =
√
x2 + y2, so

g = G

∫ ∞
−∞

λ dx

x2 + y2
· b√

x2 + y2

= Gλy

∫ ∞
−∞

(x2 + y2)−3/2 dx.

Even though this has limits of integration, this
is an indefinite integral because it contains the
variable y. It’s nicer to clean this up by doing a
change of variable to the unitless quantity u =
x/y, giving

g =
Gλ

y

∫ ∞
−∞

(u2 + 1)−3/2 du.

The definite integral is the sort of thing that sane
people these days will do using computer soft-
ware. It equals 2. The result for the field is

g =
2Gλ

y
.

15-a4 (a) Conservation of energy gives

UA = UB +KB

KB = UA − UB
1

2
mv2 = e∆V

v =

√
2e∆V

m

(b) Plugging in numbers, we get 5.9 × 107 m/s.
This is about 20% of the speed of light, so the
nonrelativistic assumption was good to at least
a rough approximation.
15-d1 By symmetry, the field is always directly
toward or away from the center. We can there-
fore calculate it along the x axis, where r = x,
and the result will be valid for any location at
that distance from the center. The electric field
is minus the derivative of the potential,

E = −dV

dx

= − d

dx

(
x−1e−x

)
= x−2e−x + x−1e−x

At small x, near the proton, the first term domi-
nates, and the exponential is essentially 1, so we
have E ∝ x−2, as we expect from the Coulomb
force law. At large x, the second term domi-
nates, and the field approaches zero faster than
an exponential.
16-a1 ∆t = ∆q/I = e/I = 0.16 µs
16-d5 In series, they give 11 kΩ. In parallel,
they give (1/1 kΩ + 1/10 kΩ)−1 = 0.9 kΩ.
16-g2 It’s much more practical to measure
voltage differences. To measure a current, you
have to break the circuit somewhere and insert
the meter there, but it’s not possible to discon-
nect the circuits sealed inside the board.
16-g11 The actual shape is irrelevant; all we
care about is what’s connected to what. There-
fore, we can draw the circuit flattened into a
plane. Every vertex of the tetrahedron is adja-
cent to every other vertex, so any two vertices to
which we connect will give the same resistance.
Picking two arbitrarily, we have this:

This is unfortunately a circuit that cannot
be converted into parallel and series parts, and
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that’s what makes this a hard problem! How-
ever, we can recognize that by symmetry, there is
zero current in the resistor marked with an aster-
isk. Eliminating this one, we recognize the whole
arrangement as a triple parallel circuit consist-
ing of resistances R, 2R, and 2R. The resulting
resistance is R/2.

18-d3 Note that in the Biot-Savart law, the
variable r is defined as a vector that points from
the current to the point at which the field is be-
ing calculated, whereas in the polar coordinates
used to express the equation of the spiral, the
vector more naturally points the opposite way.
This requires some fiddling with signs, which I’ll
suppress, and simply identify d` with dr.

B =
kI

c2

∫
d`× r

r3

The vector dr has components dx = w(cos θ −
θ sin θ) and dy = w(sin θ + θ cos θ). Evaluating
the vector cross product, and substituting θ/w
for r, we find

B =
kI

c2w

∫
θ(cos θ sin θ − θ sin2 θ − cos θ sin θ − θ cos2 θ) dθ

θ3

=
kI

c2w

∫
dθ

θ

=
kI

c2w
ln
θ2

θ1

=
kI

c2w
ln
b

a

19-d6 (a) For a material object, p = mv. The
velocity vector reverses itself, but mass is still
positive, so the momentum vector is reversed.
(b) In the forward-time universe, conservation
of momentum is p1,i + p2,i = p1,f + p2,f . In
the backward-time universe, all the momenta are
reversed, but that just negates both sides of the
equation, so momentum is still conserved.

20-a1 arg i = 90◦, arg(−i) = −90◦, arg 37 = 0

20-a2

20-a3

20-a4 1, i, −1, −i
20-a5

|1 + i| =
√

12 + 12 =
√

2

arg(1 + i) = 45◦∣∣∣∣ 1

1 + i

∣∣∣∣ =
1

|1 + i|
= 1/

√
2

arg

(
1

1 + i

)
= − arg(1 + i) = −45◦

The real part is (1/
√

2) cos(−45◦) = 1/2. The
imaginary part is (1/

√
2) sin(−45◦) = −1/2.
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21-a3 (a) We have

dP = ρg dy

∆P =

∫
ρg dy,

and since we’re taking water to be incompress-
ible, and g doesn’t change very much over 11 km
of height, we can treat ρ and g as constants and
take them outside the integral.

∆P = ρg∆y

= (1.0 g/cm3)(9.8 m/s2)(11.0 km)

= (1.0× 103 kg/m3)(9.8 m/s2)(1.10× 104 m)

= 1.0× 108 Pa

= 1.0× 103 atm.

The precision of the result is limited to a few
percent, due to the compressibility of the water,
so we have at most two significant figures. If
the change in pressure were exactly a thousand
atmospheres, then the pressure at the bottom
would be 1001 atmospheres; however, this dis-
tinction is not relevant at the level of approxi-
mation we’re attempting here.
(b) Since the air in the bubble is in thermal con-
tact with the water, it’s reasonable to assume
that it keeps the same temperature the whole
time. The ideal gas law is PV = nkT , and
rewriting this as a proportionality gives

V ∝ P−1,

or
Vf
Vi

=

(
Pf
Pi

)−1

≈ 103.

Since the volume is proportional to the cube of
the linear dimensions, the growth in radius is
about a factor of 10.
21-d5 (a) Roughly speaking, the thermal en-
ergy is ∼ kBT (where kB is the Boltzmann con-
stant), and we need this to be on the same order
of magnitude as ke2/r (where k is the Coulomb
constant). For this type of rough estimate it’s
not especially crucial to get all the factors of

two right, but let’s do so anyway. Each pro-
ton’s average kinetic energy due to motion along
a particular axis is (1/2)kBT . If two protons
are colliding along a certain line in the center-
of-mass frame, then their average combined ki-
netic energy due to motion along that axis is
2(1/2)kBT = kBT . So in fact the factors of 2
cancel. We have T = ke2/kBr.
(b) The units are K = (J·m/C2)(C2)/((J/K)·m),
which does work out.
(c) The numerical result is ∼ 1010 K, which as
suggested is much higher than the temperature
at the core of the sun.

21-g1 If the full-sized brick A undergoes some
process, such as heating it with a blowtorch,
then we want to be able to apply the equation
∆S = Q/T to either the whole brick or half
of it, which would be identical to B. When we
redefine the boundary of the system to contain
only half of the brick, the quantities ∆S and Q
are each half as big, because entropy and energy
are additive quantities. T , meanwhile, stays the
same, because temperature isn’t additive — two
cups of coffee aren’t twice as hot as one. These
changes to the variables leave the equation con-
sistent, since each side has been divided by 2.

22-a4 Because the surfaces are flat, you get
specular reflection. In specular reflection, all the
reflected rays go in one direction. Unless the
plane is directly overhead, that direction won’t
be the right direction to make the rays come back
to the radar station.

This is different from a normal plane, which
has complicated, bumpy surfaces. These surfaces
give diffuse reflection, which spreads the reflected
rays randomly in more or less every possible di-
rection.

22-a5 It spells “bonk.”
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22-a6 (a) The rays all cross at pretty much
the same place, given the accuracy with which
we can draw them.
(b) It could be used to cook food, for instance.
All the sunlight is concentrated in a small area.
(c) Put the lightbulb at the point where the rays
cross. The outgoing rays will then form a parallel
beam going out to the right.

22-g3 The magnification is the ratio of the im-
age’s size to the object’s size. It has nothing
to do with the person’s location. The angular
magnification, however, does depend on the per-
son’s location, because things farther away sub-
tend smaller angles. The distance to the actual
object is not changed significantly, since it’s zil-
lions of miles away in outer space, but the dis-
tance to the image does change if the observer’s
point of view changes. If you can get closer to
the image, the angular magnification is greater.
22-g7 For a flat mirror, di and do are equal, so
the magnification is 1, i.e., the image is the same
size as the object.
22-g10 (a) The object distance is less than the
focal length, so the image is virtual: because the

object is so close, the cone of rays is diverging
too strongly for the mirror to bring it back to
a focus. (b) Now the object distance is greater
than the focal length, so the image is real. (c),(d)
A diverging mirror can only make virtual images.

22-g11 (a) In problem #2 we found that the
equation relating the object and image distances
was of the form 1/f = −1/di+ 1/do. Let’s make
f = 1.00 m. To get a virtual image we need
do < f , so let do = 0.50 m. Solving for di, we
find di = 1/(1/do − 1/f) = 1.00 m. The mag-
nification is M = di/do = 2.00. If we change do
to 0.55 m, the magnification becomes 2.22. The
magnification changes somewhat with distance,
so the store’s ad must be assuming you’ll use the
mirror at a certain distance. It can’t have a mag-
nification of 5 at all distances.
(b) Theoretically yes, but in practical terms no.
If you go through a calculation similar to the
one in part a, you’ll find that the images of both
planets are formed at almost exactly the same di,
di = f , since 1/do is pretty close to zero for any
astronomical object. The more distant planet
has an image half as big (M = di/do, and do is
doubled), but we’re talking about angular mag-
nification here, so what we care about is the an-
gular size of the image compared to the angular
size of the object. The more distant planet has
half the angular size, but its image has half the
angular size as well, so the angular magnification
is the same. If you think about it, it wouldn’t
make much sense for the angular magnification
to depend on the planet’s distance — if it did,
then determining astronomical distances would
be much easier than it actually is!

22-g12 (a) This occurs when the di is infinite.
Let’s say it’s a converging mirror creating a vir-
tual image, as in problems 2 and 3. Then we’d
get an infinite di if we put do = f , i.e., the object
is at the focal point of the mirror. The image is
infinitely large, but it’s also infinitely far away,
so its angular size isn’t infinite; an angular size
can never be more than about 180◦ since you
can’t see in back of your head!.
(b) It’s not possible to make the magnification
infinite by having do = 0. The image loca-
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tion and object location are related by 1/f =
1/do − 1/di, so 1/di = 1/do − 1/f . If do is zero,
then 1/do is infinite, 1/di is infinite, and di is zero
as well. In other words, as do approaches zero,
so does di, and di/do doesn’t blow up. Physi-
cally, the mirror’s curvature becomes irrelevant
from the point of view of a tiny flea sitting on
its surface: the mirror seems flat to the flea. So
physically the magnification would be 1, not in-
finity, for very small values of do.

22-j3 We have n = sinφ/ sin θ. Do-
ing implicit differentiation, we find dn =
− sinφ(cos θ/ sin2 θ) dθ, which can be rewritten
as dn = −n cot θ dθ. This can be minimized by
making θ as big as possible. To make θ as big as
possible, we want φ to be as close as possible to
90 degrees, i.e., almost grazing the surface of the
tank.

This result makes sense, because we’re de-
pending on refraction in order to get a measure-
ment of n. At φ = 0, we get θ = 0, which pro-
vides no information at all about the index of
refraction — the error bars become infinite. The
amount of refraction increases as the angles get
bigger.

22-m4 The refracted ray that was bent closer
to the normal in the plastic when the plastic was
in air will be bent farther from the normal in
the plastic when the plastic is in water. It will
become a diverging lens.

22-m6 Refraction occurs only at the bound-
ary between two substances, which in this case
means the surface of the lens. Light doesn’t get
bent at all inside the lens, so the thickness of the
lens isn’t really what’s important. What mat-
ters is the angles of the lens’ surfaces at various
points.

Ray 1 makes an angle of zero with respect to
the normal as it enters the lens, so it doesn’t get
bent at all, and likewise at the back.

At the edge of the lens, 2, the front and back
are not parallel, so a ray that traverses the lens
at the edge ends up being bent quite a bit.

Although I drew both ray 1 and ray 2 coming
in along the axis of the lens, it really doesn’t
matter. For instance, ray 3 bends on the way in,

but bends an equal amount on the way out, so
it still emerges from the lens moving in the same
direction as the direction it originally had.

Summarizing and systematizing these obser-
vations, we can say that for a ray that enters the
lens at the center, where the surfaces are paral-
lel, the sum of the two deflection angles is zero.
Since the total deflection is zero at the center, it
must be larger away from the center.

22-m7 Normally, in air, your eyes do most of
their focusing at the air-eye boundary. When
you swim without goggles, there is almost no
difference in speed at the water-eye interface, so
light is not strongly refracted there (see figure),
and the image is far behind the retina.

Goggles fix this problem for the following rea-
son. The light rays cross a water-air boundary
as they enter the goggles, but they’re coming in
along the normal, so they don’t get bent. At
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the air-eye boundary, they get bent the same
amount they normally would when you weren’t
swimming.

22-m8 (a) See the figure below. The first re-
fraction clearly bends it inward. However, the
back surface of the lens is more slanted, so the
ray makes a bigger angle with respect to the nor-
mal at the back surface. The bending at the back
surface is therefore greater than the bending at
the front surface, and the ray ends up being bent
outward more than inward.

(b) Lens 2 must act the same as lens 1. It’s di-
verging. One way of knowing this is time-reversal
symmetry: if we flip the original figure over and
then reverse the direction of the ray, it’s still a
valid diagram.

Lens 3 is diverging like lens 1 on top, and di-
verging like lens 2 on the bottom. It’s a diverging
lens.

As for lens 4, any close-up diagram we draw
of a particular ray passing through it will look
exactly like the corresponding close-up diagram
for some part of lens 1. Lens 4 behaves the same
as lens 1.
22-m11 Since do is much greater than di, the
lens-film distance di is essentially the same as f .
(a) Splitting the triangle inside the camera into
two right triangles, straightforward trigonometry
gives

θ = 2 tan−1 w

2f

for the field of view. This comes out to be 39◦

and 64◦ for the two lenses. (b) For small an-
gles, the tangent is approximately the same as
the angle itself, provided we measure everything
in radians. The equation above then simplifies
to

θ =
w

f

The results for the two lenses are .70 rad = 40◦,
and 1.25 rad = 72◦. This is a decent approxima-
tion.

(c) With the 28-mm lens, which is closer to
the film, the entire field of view we had with the
50-mm lens is now confined to a small part of
the film. Using our small-angle approximation
θ = w/f , the amount of light contained within
the same angular width θ is now striking a piece
of the film whose linear dimensions are smaller
by the ratio 28/50. Area depends on the square
of the linear dimensions, so all other things being
equal, the film would now be overexposed by a
factor of (50/28)2 = 3.2. To compensate, we
need to shorten the exposure by a factor of 3.2.
22-m14 One surface is curved outward and
one inward. Therefore the minus sign applies in
the lensmaker’s equation. Since the radii of cur-
vature are equal, the quantity 1/r1−1/r2 equals
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zero, and the resulting focal length is infinite. A
big focal length indicates a weak lens. An infi-
nite focal length tells us that the lens is infinitely
weak — it doesn’t focus or defocus rays at all.

22-m15 (a) The situation being described re-
quires a real image, since the rays need to con-
verge at a point on Becky’s neck. See the ray
diagram drawn with thick lines, showing object
location o and image location i.

If we move the object farther away, to o′ the
cone of rays intercepted by the lens (thin lines)
is less strongly diverging, and the lens is able to
bring it to a closer focus, at i′. In the diagrams,
we see that a smaller θo leads to a larger θi,
so the signs in the equation ±θo ± θi = θf
must be the same, and therefore both positive,
since θf is positive by definition. The equation
relating the image and object locations must be
1/f = 1/do + 1/di.

(b) The case with di = f is not possible, be-
cause then we need 1/do = 0, i.e., do = ∞. Al-
though it is possible in principle to have an ob-
ject so far away that it is practically at infinity,
that is not possible in this situation, since Zahra
can’t take her lens very far away from the fire.
By the way, this means that the focal length f is
not where the focus happens — the focus hap-
pens at di.

For similar reasons, we can’t have do = f .

Since all the variables are positive, we must
have 1/do and 1/di both less than 1/f . This
implies that do > f and di > f . Of the nine
logical possibilities in the table, only this one is
actually possible for this real image.

22-q5 You don’t want the wave properties of
light to cause all kinds of funny-looking diffrac-
tion effects. You want to see the thing you’re
looking at in the same way you’d see a big object.
Diffraction effects are most pronounced when the

wavelength of the light is relatively large com-
pared to the size of the object the light is in-
teracting with, so red would be the worst. Blue
light is near the short-wavelength end of the vis-
ible spectrum, which would be the best.
22-q6 (a) You can tell it’s a single slit because
of the double-width central fringe.
(b) Four fringes on the top pattern are about
23.5 mm, while five fringes on the bottom one
are about 14.5 mm. The spacings are 5.88 and
2.90 mm, with a ratio of 2.03. A smaller d leads
to larger diffraction angles, so the width of the
slit used to make the bottom pattern was almost
exactly twice as wide as the one used to make
the top one.
22-q8 For the size of the diffraction blob, we
have:

λ

d
∼ sin θ

≈ θ

θ ∼ 700 nm

10 m

≈ 10−7 radians

For the actual angular size of the star, the small-
angle approximation gives

θ ∼ 109 m

1017 m

= 10−8 radians

The diffraction blob is ten times bigger than the
actual disk of the star, so we can never make an
image of the star itself in this way.
22-q9 (a) The patterns have two structures, a
coarse one and a fine one. You can look up in
the book which corresponds to w and which to
d, or just use the fact that smaller features make
bigger diffraction angles. The top and middle
patterns have the same coarse spacing, so they
have the same w. The fine structure in the top
pattern has 7 fringes in 12.5 mm, for a spac-
ing of 1.79 mm, while the middle pattern has 11
fringes in 41.5 mm, giving a spacing of 3.77 mm.
The value of d for the middle pattern is therefore
(0.50 mm)(1.79/3.77) = 0.23 mm.
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(b) This one has about the same d as the top
one (it’s difficult to measure accurately because
each group has only a small number of fringes),
but the coarse spacing is different, indicating a
different value of w. It has two coarse groupings
in 23 mm, i.e., a spacing of 12.5 mm. The coarse
groupings in the original pattern were about 23
mm apart, so there is a factor of two between
the w = 0.04 mm of the top pattern and the
w = 0.08 mm of the bottom one.
22-q12 The equation, solved for θ, is θ =
sin−1(mλ/d). The sine function only ranges
from −1 to +1, so the inverse sine is undefined
for |mλ/d| > 1, i.e., |m| > d/λ. Physically, we
only get fringes out to angles of 90 degrees (the
inverse sine of 1) on both sides, corresponding to
values of m less than d/λ.
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potential energy, 82
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projectile motion, 33
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quality factor
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defined, 142

rotational invariance, 32

scalar, 31
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simple machine, 53
solar constant, 197
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specific heat
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